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ABSTRACT
Considerable research has been devoted to utilizing multimodal
features for better understanding multimedia data. However, two
core research issues have not yet been adequately addressed. First,
given a set of features extracted from multiple media sources (e.g.,
extracted from the visual, audio, and caption track of videos), how
do we determine the best modalities? Second, once a set of modal-
ities has been identified, how do we best fuse them to map to se-
mantics? In this paper, we propose a two-step approach. The first
step finds statistically independent modalitiesfrom raw features.
In the second step, we use super-kernel fusionto determine the
optimal combination of individual modalities. We carefully ana-
lyze the tradeoffs between three design factors that affect fusion
performance: modality independence, curse of dimensionality, and
fusion-model complexity. Through analytical and empirical studies,
we demonstrate that our two-step approach, which achieves a care-
ful balance of the three design factors, can improve class-prediction
accuracy over traditional techniques.

Categories and Subject Descriptors: H.3.1 [INFORMATION STOR-
AGE AND RETRIEVAL]: Content Analysis and Indexing
General Terms: Algorithms
Keywords: Multimodal fusion, independent analysis, super-kernel
fusion, modality independence, curse of dimensionality

1. INTRODUCTION
Multimedia data such as images and videos are represented by

features from multiple media sources. Traditionally, images are
represented by keywords and perceptual features such as color, tex-
ture, and shape [25]. Videos are represented by features embedded
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in the visual, audio and caption tracks. [2]. These features are ex-
tracted and then fused in a complementary way for understanding
the semantics of multimedia data [21].

Unfortunately, traditional work on multimodal integration has
largely been heuristic-based. It lacks theories to answer two fun-
damental questions: 1) what are the bestmodalities? and 2) how
can we optimally fuse information from multiple modalities? Sup-
pose we extract l, m, n features from the visual, audio, and caption
tracks of videos. At one extreme, we could treat all these features
as one modality and form a feature vector of l+m+n dimensions.
At the other extreme, we could treat each of the l + m + n fea-
tures as one modality. We could also regard the extracted features
from each media-source as one modality, formulating a visual, au-
dio, and caption modality with l, m, and n features, respectively.
Almost all prior multimodal-fusion work in the multimedia com-
munity employs one of these three approaches. But, can any of
these feature compositions yield the optimal result?

Statistical methods such as principle component analysis (PCA)
and independent component analysis (ICA) have been shown to
be useful for feature transformation and selection. PCA is useful
for denoising data, and ICA aims to transform data to a space of
independent axes (components). Despite their best attempt under
some error-minimization criteria, PCA and ICA do not guarantee
to produce independent components. In addition, the created fea-
ture space may be of very high dimensions and thus be susceptible
to the curse of dimensionality1. In the first part of this paper, we
propose an independent modality analysisscheme, which identifies
independent modalities, and at the same time, avoids the curse-of-
dimensionality challenge.

Once a good set of modalities has been identified, the second re-
search challenge is to fuse these modalities in an optimal way to
perform data analysis (e.g., classification). Suppose we can yield
truly independent modalities, and each modality can derive accu-
rate posterior probability for class prediction. We can simply use
the product-combinationrule to multiply the probabilities for pre-

1The work of [7] shows that, when data dimension is high, the
distances between pairs of objects in the space become increas-
ingly similar to each other due to the central limit theory. This
phenomenon is called the dimensionality curse[6], because it can
severely hamper the effectiveness of data analysis.
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dicting class membership. Unfortunately, the above two conditions
do not hold in general for a multimedia data-analysis task (see Sec-
tion 2 for detailed discussion). Using the product-combination rule
to fuse information is thus inappropriate. Another popular fusion
method is the weighted-sumrule, which performs a linear combi-
nation on the modalities. The weighted-sum rule enjoys the ad-
vantage of simplicity, but its linear constraint forbids high model
complexity; hence it cannot adequately explore the interdependen-
cies left unresolved by PCA and ICA. We propose our super-kernel
fusion scheme to fuse individual modalities in a non-linear way
(linear fusion is a special case of our method). The super-kernel
fusionscheme finds the best combination of modalities through su-
pervised training.

1.1 An Illustrative Example
Let us use a simple example to explain the shortcomings of some

traditional multimodal integration schemes that invite further re-
search. Figure 1 shows the existence of feature dependencies in
a real image dataset, before and after performing PCA/ICA. This
figure plots the normalized correlation matrix in absolute value de-
rived from a 2k-image dataset of 14 classes. (Detailed description
for this image dataset is given in Section 5.) A total of 144 fea-
tures are considered: the first 108 are color features; the other 36
are texture features. Correlation between features within the same
media source and across different media sources is measured by
computing the covariance matrix:

C =
1

N

X
xi2X

(xi � �x)(xi � �x)T with �x =
1

N

X
xi2X

xi (1)

where N is the total number of sample data, xi is a feature vector
to represent ith sample, and X is the set of feature vectors for N
samples. Normalized correlation between features i and j is de-
fined by

Ĉ(i; j) =
C(i; j)p

C(i; i)� C(j; j)
: (2)

In the figure, both the x- and y-axis depict the 144 features. The
light-colored areas in the figure indicate high correlation between
features, and the dark-colored areas indicate low correlation. If
any feature correlates only with itself, only the diagonal elements
will be light-colored. The off-diagonal light-colored areas in Fig-
ure 1(a) indicate that this image dataset exhibits not only a high
correlation of features within the same media source, but also be-
tween certain features from different media sources (e.g., color and
texture). Color and texture are traditionally treated as orthogonal
modalities, but this example shows otherwise. These correlated
and even noisy “raw” features may affect the learning algorithm
by obscuring the distributions of truly relevant and representative
features. (The weighted-sum fusion rule cannot deal with these in-
terdependencies.)

Figure 1(b) presents the feature correlation matrix after we ap-
plied both PCA and ICA to the data. The process yields 58 “im-
proved” components. Although the components exhibit better inde-
pendence, interdependencies between components still exist. Our
work in this paper first deals with grouping components like these
58 into a smaller number of independent modalities to avoid the
dimensionality curse. We then explore non-linear combinations of
the modalities to improve the effective multimodal fusion.

1.2 Contribution Summary
As the main contribution of this work, we propose a multimodal-

fusion framework for multimedia data analysis. Given a list of fea-
tures extracted from multiple media-sources, we tackle two core

issues:

� Formulating independent feature modalities (Section 3).

� Fusing multiple modalities optimally (Section 4).

We carefully analyze the tradeoffs between three design factors
that affect fusion performance: modality independence, curse of
dimensionality, and fusion-model complexity. Through analytical
and empirical studies on an image dataset and TREC-Video 2003
benchmarks, we show that a careful balance of the three design
factors consistently leads to superior performance for multimodal
fusion.

2. RELATED WORK
We discuss related work in modality identificationand modality

fusion.

2.1 Modality Identification
LetD denote the number of modalities. Given d1 � � � dm features

extracted from m media sources, respectively, prior modality iden-
tification work can be divided into two representative categories.

1. D = 1, or treating all features as one modality. This ap-
proach does not require the fusion step. Goh et al. [14] used
the raw color and texture features to form a high-dimensional
feature vector for each image. Recently, statistical methods
such as PCA and ICA have been widely used in the Com-
puter Vision, Machine Learning, Signal Processing commu-
nities to denoise data and to identify independent informa-
tion sources (e.g., [8, 15, 21, 32, 34]). In the multimedia
community, the work of [16, 18] observed that audio and
visual data of a video stream exhibit some statistical regu-
larity, and that regularity can be explored for joint process-
ing. Smaragdis et al. [27] proposed to operate on a fused
set of audio/visual features and to look for combined sub-
space components amenable to interpretation. Vinokourov et
al. [33] found a common latent/semantic space from multi-
language documents using independent component analysis
for cross-language document retrieval. The major shortcom-
ing of these works is that the curse of dimensionality arises,
causing ineffective feature-to-semantics mapping and ineffi-
cient indexing [25]. (Please refer to [7, 11, 12] for the discus-
sion of dimensionality-curse and why dimension reduction
can greatly enhance the effectiveness of statistical analysis
and the efficiency of query processing.)

2. D = m, or treating each source as one modality. This ap-
proach treats the features as m modalities, with di features
in the ith modality (i = 1; � � � ;m). Most work in image and
video retrieval analysis (e.g., [2, 13, 26, 28, 31]) employs
this approach. For example, the QBIC system [13] supported
image queries based on combining distances from the color
and texture modalities. Velivelli et al. [31] separated video
features into audio and visual modalities. IBM video analy-
sis [2] also regarded each media track (visual, audio, textual,
etc.) as one modality. For each modality, these works trained
a separate classification model, and then used the weighted-
sum rule to fuse a class-prediction decision. This modality-
decomposition method can alleviate the curse of dimension-
ality. However, since media sources are treated separately,
the interdependencies between sources are left unexplored.

Our method is to apply independent component analysis on the
raw feature sets to identify k “independent” components. There-
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(a) Before PCA/ICA (b) After PCA/ICA

Figure 1: Feature Correlation Matrix.

after, we group these components into D modalities to 1) min-
imize the dependencies between modalities, and 2) mitigate the
dimensionality-curse problem.

2.2 Modality Fusion
Given that we have obtained D modalities, we need to fuse D

classifiers, one for each modality, for interpreting data.
PCA and ICA cannot perfectly identify independent components

for at least two reasons. First, like the way the k-means algorithm
works, all well-known ICA algorithms (fixed-point algorithm [17],
Infomax [1, 5], kernel canonical analysis [33], and kernel inde-
pendent analysis [3]) need a good estimate of the number of inde-
pendent components k to find them effectively. Second, as we dis-
cussed in Section 1, ICA only performs the best attempt under some
error-minimization criteria to find k independent components. But
the resulting components, as shown in Figure 1(b), may still exhibit
interdependencies.

Now, given D modalities, not entirely independent of each other,
we need an effective fusion strategy. Various fusion strategies for
multimodal information have been presented and were discussed
in [20], including product combination, weighted-sum, voting, and
min-max aggregation. Among them, product combinationand weighted-
sumare by far the most popular fusion methods.

1. Product combination. Supposing that D modalities are inde-
pendent of each other, and we can estimate posterior proba-
bility for each modality accurately, the product-combination
rule is the optimal fusion model from the Bayesian perspec-
tive. However, in addition to the fact that we will not have D
truly independent modalities, we generally cannot estimate
posterior probability with high accuracy. The work of [29]
concluded that the product-combination rule works well only
when the posterior probability of individual classifiers can
be accurately estimated. In a multimedia data-understanding
task, we often assert similarity between data based on our be-
liefs. (E.g., one can “believe” two videos to be 87% similar
or 90% similar. This estimate does not come from classi-
cal probability experiments, so the sum of beliefs may not
be equal to one.) Because of this subjective process, and
because the product-combination rule is highly sensitive to
noise, this strategy is not appropriate.

2. Weighted-sum. The weighted-sum strategy is more tolerant
to noise because sumdoes not magnify noise as severely as
product. Weighted-sum (e.g., [30]) is a linear model, not
equipped to explore the interdependencies between modal-
ities. Recently, Yan and Hauptmann [35] presented a the-
oretical framework for bounding the average precision of a
linear combination function in video retrieval. Concluding
that the linear combination functions have limitations, they
suggested that non-linearity and cross-media relationships
should be introduced to achieve better performance.

In this work, we propose a super-kernel scheme, which can fuse
multimodal information non-linearly to explore the cross-modality
relationship.

3. INDEPENDENT MODALITY ANALYSIS
In this section, we present our approach to transform m raw fea-

tures to D modalities. Given input in the form of an m� n matrix
X (n denotes the number of training instances), our independent
modality analysis procedure produces M1 � � �MD modalities. The
procedure consists of the following three steps:

1. Run principal component analysis (PCA) on X to remove
noise and reduce the feature dimensionality. Let U denote
the matrix containing the first k eigenvectors. The PCA rep-
resentation of zero-mean feature vectorsX is defined asUTX .

2. Run independent component analysis (ICA) on the PCA out-
put UTX to obtain estimates of independent feature compo-
nents S and an estimate of a mixing matrix W . We can re-
cover the independent components by computing S =WUTX .

3. Run independent modality grouping (IMG) on S to form in-
dependent modalities M1; � � � ;MD .

3.1 PCA
PCA has been frequently used as a technique for removing noises

and redundancies between feature dimensions [19]. PCA projects
the original data to a lower dimensionality space such that the vari-
ance of the data is best maintained. Let’s assume that we have n
samples, fx1; � � � ;xng, and each xi is an m-dimensional vector.
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Figure 2: Scatter Plots of the 2k Image Dataset.

We can represent the n samples as a matrix Xm�n. It is known
in linear algebra that any such matrix can be decomposed in the
following form (known as singular value decomposition or SVD):

X = UDV
T
;

where matrices Um�p and Vn�p represent orthonormal basis vec-
tors matrices (eigenvectors of the symmetric matrixXXT andXTX),
with p as the number of largest principal components. The Dp�p

matrix is a diagonal matrix, and the diagonal elements of D are
the eigenvalues of XXT and XTX . Consider the projection onto
the subspace spanned by the p largest principal components (PC’s),
i.e., UTX .

3.2 ICA
Compared to PCA, the spirit of ICA is to find statistically inde-

pendent hidden sources from a given set of mixture signals. Both
ICA and PCA project data matrices into components in different
spaces. However, the goals of the two methods are different. PCA
finds the uncorrelated components of maximum variance. It is ideal
for compressing data into a lower-dimensional space by removing
the least significant components. ICA finds the statistically inde-
pendent components. ICA is the ideal choice for separating mixed
signals and finding the most representative components.

To formalize an ICA problem, we assume that there are k un-
known independent components S = fs1; � � � ; skg. What we ob-
serve is a set of m-dimensional samples fx1; � � � ;xng, which are
mixture signals coming from k independent components, k � m.
We can represent all the observation data as a matrix Xm�n. A
linear mixture model can be formulated as:

X = AS

where Am�k is a mixing matrix. Our goal is to find W = A�1;
therefore given training set X , we can recover the independent
components (IC’s) through the transformation of S =WX .

ICA establishes a common latent space for the media, which can
be viewed as a method for learning the inter-relations between the
involved media [23, 27]. For multimedia data, observation data xi
usually contains features coming from more than one medium. The
different independent components fs1; � � � ; skg provide a mean-
ingful segmentation of the feature space. The kth column of W�1

constitutes the original multiple features associated with the kth

independent component. These independent components can pro-
vide a better interpretation for multimedia data. Figures 2(a) and

(b) show the scatter plots of the 2k image dataset, projected to a
two-dimensional subspace identified by the first two principal com-
ponents and the first two independent components. Dark points
correspond to the class of tools (one of the 14 classes), and green
(light) points correspond to the other 13 classes. Compared with
PC’s in Figure 2(a), IC’s found from ICA in Figure 2(b) can better
separate data from different semantic classes. Figure 2(b) strongly
suggests an ICA interpretation to differentiate semantics. The main
attraction of ICA is that it provides unsupervised groupings of data
that have been shown to be well aligned with manual grouping in
different media [15]. The representative and non-redundant feature
representations form a solid base for later processing.

Lacking any prior information about the number of independent
components, ICA algorithms usually assume that the number of in-
dependent components is the same as the dimension of observed
mixtures, that is, k = m. PCA technique can be used as prepro-
cessing to ICA to reduce noise in the data and control the number of
independent components [4]. Then ICA is performed on the main
eigenvectors of PCA representations (k = p, where p is the num-
ber of PC’s) to determine which PC’s actually are independent and
which should be grouped together as parts of a multidimensional
component. Finally, the independent components are recovered by
computing S =WUTX .

3.3 IMG
As discussed in Sections 1 and 2, though ICA makes a best at-

tempt to find independent components, the resulting k components
might not be independent, and the number of components can be
too large to face the challenge of “dimensionality curse” during
the statistical-analysis and query-processing phrases. IMG aims
to remedy these two problems by grouping k components into D
modalities.

We divide k components into D groups to satisfy two require-
ments: 1) the correlation between modalities is minimized, and
2) the number of features in each modality is not too large. The
first requirement maximizes modality independence. The second
requirement avoids the problem of curse-of-dimensionality. To de-
cide on D, we place a soft constraint on the number of components
that a modality can have. We set the soft constraint as 30 because
several prior works [7, 11, 12] indicate that when the number of
dimensions exceeds 20 to 30, the curse starts to kick in. Since only
the data can tell us exactly at what dimension the curse starts to
take effect, the selection of D must go through a cross-validation
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Figure 3: Fusion Architecture.

process: we pick a small number of candidateD values and rely on
experiments to select the best D.

For a given D, we employ a clustering approach to divide k
into D groups. Ding et al. [10] provided theoretical analysis to
show that minimizing inter-subgraph similarities and maximizing
intra-subgraph similarities always lead to more balanced graph par-
titions. Thus, we apply minimizing inter-group feature correla-
tion and maximizing intra-group feature correlationas our feature-
grouping criteria to determine independent modalities. Suppose we
have D modalities M1; � � � ;MD, each containing a number of fea-
ture components. The inter-group feature correlation between two
modalities Mi and Mj is defined as

C(Mi;Mj) =
X

8Si2Mi;8Sj2Mj

C(Si; Sj); (3)

where Si and Sj are features belonging to modalities Mi and Mj

respectively, and C(Si; Sj) is the normalized feature correlation
between Si and Sj . C(Si; Sj) can be calculated using Equation 1
and Equation 2. The intra-group feature correlation within modal-
ity Mi is defined as

C(Mi) = C(Mi;Mi): (4)

To minimize inter-group feature correlation while maximizing intra-
group feature correlation at the same time, we can formulate the
following objective function for grouping all the features into D
modalities,

min

DX
i=1
j>i

�
C(Mi;Mj)

C(Mi)
+
C(Mi;Mj)

C(Mj)

�
: (5)

Solving this objective function yields D modalities, with minimal
inter-modality correlation and balanced features in each modality.
The computational complexity is O(k2).

4. SUPER-KERNEL FUSION
OnceD modalities have been identified by our independent modal-

ity analysis, we need to fuse multimodal information optimally.
Suppose we train for the dth modality classifier fd. We need to
combine these D classifiers to perform class prediction for query
instance xq . The fusion architecture is depicted in Figure 3.

After fd, d = 1 � � �D have been trained, the information can be
fused in several ways. Let f denote the fused classification func-

tion. The product-combination rule can be formulated as

f =

DY
d=1

fd:

And the most widely used weighted-sum rule can be depicted as

f =

DX
d=1

�dfd;

where �d is the weight for individual classifier fd. As we have
discussed in Section 2, both these popular models suffer from sev-
eral shortcomings, including being sensitive to prediction error and
being limited by the linear-model complexity. (Please consult Sec-
tion 2 for detailed discussion.) To overcome these shortcomings,
we propose using super-kernel fusionto aggregate fd’s.

The algorithm of super-kernel fusion is summarized in Figure 4,
which consists of the following three steps:

1. Train individual classifiers ffdg. The inputs to the algorithm
are the n training instances fx1; � � � ;xng and their corre-
sponding labels fy1; � � � ; yng. After the independent modal-
ity analysis (IMA), the m-dimensional features are divided
into D modalities. Each training instance xi is represented
by fx1i ; � � � ;x

D
i g, where xdi is the feature representation for

xi in dth modality. All the training instances are divided into
D matrices fM1; � � � ;MDg, where each Md is an n� jMdj
matrix, and jMdj is the number of features in dth modality
(d = 1 � � �D). To train classifier fd, we useMd and the label
information. Though many learning algorithms can be em-
ployed to train fd, we employ an SVM as our base-classifier
because of its effectiveness. For training each fd, the kernel
function and kernel parameters are carefully chosen via cross
validation (steps 1� 3 in Figure 4).

2. Estimate posterior probability. Once we have trained D clas-
sifiers for the D modalities, we create a super-kernel matrix
K for modality fusion. This matrix is created by passing
each training instance to each of the D classifiers to estimate
its posterior probability. We use Platt’s formula [24] to con-
vert an SVM score to probability. As a result of this step, we
obtain an n � D matrix consisting of n entries of D class-
prediction probability (steps 4� 6 in Figure 4).

3. Fuse the classifiers. The super-kernelalgorithm treats K a
matrix of n training instances, each with a vector of D el-
ements. Next, we again employ SVMs to train the super-
classifier. The inputs to SVMs include K, training labels, a
selected kernel function, and kernel parameters. At the end
of the training process, we yield function f to perform class
prediction. The complexity of the fusion model depends on
the kernel chosen. For instance, we can select a polynomial,
RBF or Laplacian function (steps 7� 8 in Figure 4).

Finally, once the class-prediction function f has been trained,
we can use the function to predict the class membership of a query
point xq . Assume xq is an m-dimensional feature vector in orig-
inal feature space, we can convert it to an ICA feature represen-
tation WUT

xq , where W and U are transformation matrices ob-
tained from PCA and ICA process, respectively (Section 3). Then,
WUT

xq is further divided intoD modalities (information obtained
from the IMG process), named as fx1q ; � � � ;x

D
q g. The class-prediction

function for query point xq can be written as

ŷq = f(f1(x
1

q); � � � ; fd(x
D
q )):
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Algorithm Super-kernel Fusion
Input:
X = fx1; � � � ;xng; /* A set of training data*/
Y = fy1; � � � ; yng; /* Labels of training data*/

Output:
f ; /* Class-prediction function*/

Variable:
ff1; � � � ; fDg; /* A set of discriminative functions*/
fM1; � � � ;MDg; /* A set ofn� jMdj matrices*/
K; /* Super-kernel matrix with dimension ofn�D */

Function calls:
fd(x

d
i ); /* Prediction score ofxdi fromfd */

Train(K;Y ); /* Train a discriminative function*/
IMA(X); /* Independent modality analysis*/
Prob(s); /* Convert an SVM score to probability*/

Begin:
1) fM1; � � � ;MDg  IMA(X);
2) for each d = 1; � � � ; D
3) fd  Train(Md; Y );
4) for each data xi 2 X
5) for each discriminative function fd
6) K(i; d) Prob(fd(xdi ));
7) f  Train(K;Y );
8) return f ;
End

Figure 4: Super-kernel Fusion Algorithm.

5. EXPERIMENTS
Our experiments were designed to evaluate the effectiveness of

using independent modality analysisand multimodal kernel fusion
to determine the optimal multimodal information fusion for multi-
media data retrieval. Specifically, we wanted to answer the follow-
ing questions:
1. Can independent modality analysis improve the effectiveness of
multimedia data analysis?

2. Can super-kernel fusion improve fusion performance?
We conducted our experiments on two real-world datasets: one is a
2k image dataset, and the other is TREC-2003 video track bench-
mark. We randomly selected a percentage of data from the dataset
to be used as training examples. The remaining data were used
for testing. For each dataset, the training/testing ratio was empiri-
cally chosen via cross-validation so that the sampling ratio worked
best in our experiments. To perform independent modality analy-
sis, we applied traditional PCA and ICA algorithms2 onto the given
features (including all the training and testing data) to get the inde-
pendent components following the steps described in Section 3. To
perform class prediction, we employed the one-per-class (OPC) en-
semble [9], which trains all the classifiers, each of which predicts
the class membership for one class. The class prediction on a test-
ing instance is decided by voting among all the classifiers. The
results presented here were the average of 10 runs.
Dataset #1: 2k image dataset.
The image dataset was collected from the Corel Image CDs. Corel
images have been widely used by the computer vision, image pro-
cessing, and multimedia research communities for conducting var-

2InfoMax was chosen as our ICA algorithm because of its robust-
ness, though other ICA algorithms could also be applied.

ious experiments. This set contains 2k representative images from
fourteen categories: architecture, bears, clouds, elephants, fabrics,
fireworks, flowers, food, landscape, people, textures, tigers, tools,
and waves. We tried different kernel functions, kernel parameters
and training/testing ratios. Laplacian kernel with 
 = 0:001 and
80% of the dataset as training data gave us the best results on the
experiments of using raw features. We used the Laplacian kernel
with 
 = 0:001 for all subsequent experiments on this 2k image
dataset. We randomly picked 80% of images for training and the
remaining 20% were used for testing data. For each image, we
extracted 144 features (documented in [22]) including color and
texture features. This small dataset is used to provide insights into
understanding the effectiveness of our methods, and the tradeoffs
between design factors.

Dataset #2: TREC-2003 Video Track.
TREC-2003 video track used 133 hours digital video (MPEG-1)
from ABC and CNN news. The task is to detect the presence of
the specified concept in video shots. The ground-truth of the pres-
ence of each concept was assumed to be binary (either present or
absent in the data). Sixteen concepts are defined in the benchmark,
including airplane, animal, building, female speech, madeleine al-
bright, nature vegetation, news subject face, news subject mono-
logue, NIST non-studio setting, outdoors, people, physical violence,
road, sport event, vehicle, and weather news. The video concept
detection benchmark is summarized as follows: 60% of the video
shots were randomly chosen from the corpus to be used solely for
the development of classifiers. The remaining 40% were used for
concept validation3. RBF kernels with 
 = 0:0001 gave us the best
results on the experiments, so we used the same parameter settings
in all subsequent experiments on this video dataset. For each video
shot, we extracted a number of features [2]: Color histogram, Edge
orientation histogram, Color correlogram, Co-occurrence texture,
Motion vector histogram, Visual perception texture, and Speech.

5.1 Evaluation of Modality Analysis
The first set of experiments examined the effectiveness of inde-

pendent modality analysis on the 2k image dataset. Table 1 com-
pares five methods based on the classification accuracy results of
14 concepts: original 144 dimensional features before any analysis
(RAW), super-kernel fusion using 108 dimensional color features
and 36 dimensional texture features as 2 modalities (SKF), 58 di-
mensional features after PCA (PCA), 58 dimensional features af-
ter ICA (ICA) and super-kernel fusion after IMG (IMG+SKF). As
shown in the table, treating color and texture as two modalities im-
proved the accuracy by around 1:0% compared to using raw feature
representation. However, the accuracy was 4:0% lower than super-
kernel fusion after IMG. This observation indicates that improve-
ment can be made by using super-kernel fusion to cover the inter-
dependency relationship between features. Moreover, after analyz-
ing the statistical relationships between feature dimensions and get-
ting rid of noise, super-kernel fusion can improve the performance
much more. PCA improved accuracy by around 1:0% compared
to the original feature format by reducing noise from features. ICA
worked better than PCA, improving accuracy by 2:5% compared to
the original feature format. However, the improvement is not sig-
nificant, compared to the performance of super-kernel fusion after
IMG. Independent modality analysis plus super-kernel fusion im-
proved classification accuracy around 5:0% compared to the orig-
inal feature representation. The result shows that the feature sets
3IBM research center won most of the best concept models in the
final TREC-2003 video concept competition. For the purpose of
comparison, we employed the same training and testing data used
by IBM.
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CATEGORY RAW SKF PCA ICA IMG+SKF

ARCHITECTURE 88:00 89:95 90:77 95:38 96:92

BEARS 74:70 76:72 75:00 75:00 81:56

CLOUDS 84:60 87:61 87:27 90:91 92:32

ELEPHANTS 83:90 84:67 84:83 87:21 89:91

FABRICS 85:10 85:90 87:22 87:82 87:93

FIREWORKS 93:50 95:69 94:91 96:46 99:50

FLOWERS 91:30 95:53 92:21 93:49 95:23

FOOD 92:20 95:58 93:36 95:76 97:48

LANDSCAPE 78:80 72:79 79:48 79:63 81:82

PEOPLE 82:30 85:50 87:45 86:27 89:36

TEXTURES 96:50 91:62 91:22 95:00 96:30

TIGERS 91:50 92:34 91:13 92:64 94:80

TOOLS 99:50 98:15 96:74 100:00 99:20

WAVES 86:10 89:49 84:71 87:27 91:42

Average 87:71 88:82 88:66 90:20 92:70

Table 1: Classification Accuracy (%) of Image Dataset.

from independent modality analysis can better interpret the con-
cepts, and super-kernel fusion can further incorporate information
from multiple modalities. Next, we evaluated how to select optimal
D and compared super-kernel fusion with other fusion methods.

5.2 Evaluation of Multimodal Kernel Fusion
The second set of experiments evaluated kernel fusion meth-

ods of combining multiple modalities. We grouped the “indepen-
dent” components after PCA/ICA into independent modalities and
trained individual classifiers for each modality. We evaluated the
effectiveness of multimodal kernel fusion on the 2k-image dataset
and TREC-2003 video benchmark.

The optimal number of independent modalities D was decided
by considering the tradeoff between dimensionality-curse and fea-
ture interdependency. Once D had been determined, feature com-
ponents were grouped using the IMG algorithm in Section 3.3.
WhenD = 1, all the feature components were treated as one vector
representation, suffering from the curse of dimensionality. WhenD
became larger, the curse of dimensionality was alleviated, but inter-
modality correlation increased4. From our 58-dimensional feature
data, the optimal modality D is 2 or 3, which enjoys the highest
class-prediction accuracy. Table 2 shows the optimal D for differ-
ent concepts (the second column).

Next, we compared different fusion models. Table 2 compares
the class-prediction accuracy of product combination (PC), linear
combination (LC), and super-kernel fusion (SKF). D indicates the
number of independent modalities that the 58 independent com-
ponents have been divided into. We found that super-kernel fu-
sion performed on average 6:5% better than product-combination
models and 4:5% better than linear-combination models. Note that
the worst results were achieved when using the product rule, 2:0%
worse than linear-combination models and 6:5% worse than those
of super-kernel fusion. The reason is that if any of the classifiers
reports the correct class’s posterior probability as zero, the output
will be zero, and the correct class cannot be identified. Therefore,
the final result reported by the combiner in such cases is either a
wrong class (worst case) or a reject (when all of the classes are
assigned a zero posterior probability).

Finally, we conducted fusion experiments on the video dataset.
For this TREC video dataset, we got only probability outputs from
single-modality classifiers through IBM. Therefore, we evaluated
only fusion schemas on this video dataset. Table 3 compares the

4The inter-modality correlation for all the D modalities is the sum-
mation of inter-modality correlations between every pair of modal-
ities, which is

PD

i=1j>i
C(Mi;Mj).

CATEGORY D PC LC SKF

ARCHITECTURE 2 96:40 96:53 96:92

BEARS 2 76:10 75:35 81:56

CLOUDS 3 82:71 89:77 92:32

ELEPHANTS 2 86:11 80:91 89:91

FABRICS 2 85:11 87:46 87:93

FIREWORKS 2 97:63 99:13 99:50

FLOWERS 3 82:29 86:14 95:23

FOOD 2 93:45 89:53 97:48

LANDSCAPE 2 77:55 74:24 81:82

PEOPLE 2 90:71 89:57 89:36

TEXTURES 2 74:51 94:27 96:30

TIGERS 3 87:31 95:00 94:80

TOOLS 2 91:48 94:20 99:20

WAVES 2 86:92 82:13 91:42

Average 2:3 86:31 88:16 92:70

Table 2: Classification Accuracy (%) of Image Dataset.

best results from IBM (IBM), product combination (PC), linear
combination (LC), and super-kernel fusion (SKF) based on Aver-
age Precision of video concept detection. The numbers of modal-
ities D for sixteen concepts ranged from 3 to 6 (compared to the
2k image dataset, this video dataset extracted features with much
higher dimension. To avoid the dimensionality curse, we need
larger D). Here we chose the NIST Average Precision (the sum
of the precision at each relevant hit in the hitlist divided by the total
number of relevant documents in the collection) as the evaluation
criteria. Average Precision (AP) was used by NIST to evaluate re-
trieval systems in TREC-2003 video track competition. For TREC-
2003 video track, a maximum of 1; 000 entries5 were returned and
ranked according to the highest probability of detecting the pres-
ence of the concept. The ground-truth of the presence of each con-
cept was assumed to be binary (either present or absent in the data).
For the 16 concepts in TREC-2003 video benchmark, super-kernel
fusion performed around 5:2% better than the linear-combination
models on average, 11:3% better than product-combination mod-
els. IBM results were obtained from fusion across modalities and
semantics [2]. Super-kernel fusion, which is fusion across modal-
ities only, performed around 2:0% better than the best results pro-
vided by IBM.

5.3 Observations
After our extensive empirical studies on the two datasets, we can

answer the questions proposed at the beginning of this section.
1. To deal with high-dimensional features from multiple media

5This number was chosen in the IBM’s work [2] for evaluation.
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CONCEPT IBM PC LC SKF

AIRPLANE 24:93 10:60 23:52 24:31

ANIMAL 6:09 6:75 8:59 8:2

BUILDING 8:02 7:92 4:68 8:42

FEMALE SPEECH 67:23 49:10 67:23 67:33

MADELEINE ALBRIGHT 47:41 16:54 33:93 43:27

NATURE VEGETATION 37:84 31:02 33:65 39:39

NEWS SUBJECT FACE 8:12 1:37 7:89 7:05

NEWS SUBJECT MONO. 20:41 3:1 8:87 13:48

NIST NON-STUDIO 69:1 69:65 66:38 69:88

OUTDOORS 65:16 69:81 53:87 66:16

PEOPLE 11:82 12:95 16:41 18:91

PHYSICAL VIOLENCE 3:04 1:06 1:42 1:8

ROAD 10 7:72 12:42 8:38

SPORT EVENT 48:45 24:20 40:49 52:8

VEHICLE 20:81 14:05 15:63 16:54

WEATHER NEWS 53:64 29:73 53:64 86:7

Average 31:38 22:28 28:04 33:29

Table 3: AP (%) of Video Concept Detection.

sources, it is necessary to do statistical analysis to reduce noise
and find the most representative feature-components. Independent
modality analysis can improve the effectiveness of multimedia data
analysis by achieving a tradeoff between dimensionality curse and
modality independency.

2. Super-kernel fusion is superior in its performance because its
high model complexity can explore interdependencies between modal-
ities.

6. CONCLUSION
In this paper, we have proposed a framework of optimal mul-

timodal information fusion for multimedia data analysis. First, we
constructed statistically independent modalitiesfrom the given fea-
ture set from multiple media sources. Next, we proposed super-
kernel fusionto learn the optimal combination of multimodal in-
formation. We carefully analyzed the tradeoffs between three de-
sign factors that affect fusion performance: modality independence,
curse of dimensionality, and fusion-model complexity. Our exten-
sive empirical studies show that our methods achieved markedly
improved performance on a 2k image dataset and TREC-Video
2003 benchmarks.

From the experimental results, we observe that different concepts
may be best depicted by different combinations of modalities. We
will extend this work to investigate concept-dependent multimodal
fusion schemes.
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