CS143: Relational Algebra

Book Chapters

(5th) Chapters 2.2-3
(6th) Chapter 2.5-6
(7th) Chapter 2.5-6

Things to Learn

- Relational algebra
- Select, Project, Join, ...

Database query language

- Data Manipulation Language (DML): A language to query and update relations

What is a query?

- Oxford English Dictionary: A question, especially one addressed to an official or organization
- Database jargon for question (complex word for simple concept)
- Questions to get answers from a database
- Example: Get the students who are taking all CS classes but no Physics class
- Some queries are easy to pose, some are not
- Some queries are easy for DBMS to answer, some are not

Relational query languages

- Relational algebra (formal), SQL (practical)
- Relational Query:
- A query is executed against input relations and produces an output relation

$$
\text { Input relations } \longrightarrow \text { query } \longrightarrow \text { Output relation }
$$

- Very useful: "Piping" is possible

Relational Algebra

Input relations (set) \longrightarrow query \longrightarrow Output relation (set)

- Set semantics. no duplicate tuples. duplicates are eliminated
- In contrast, multiset semantics for SQL (performance reason)

Examples to Use

- School information
- Student(sid, name, addr, age, GPA)

sid	name	addr	age	GPA
301	John	183 Westwood	19	2.1
303	Elaine	301 Wilshire	17	3.9
401	James	183 Westwood	17	3.5
208	Esther	421 Wilshire	20	3.1

- Class(dept, cnum, sec, unit, title, instructor)

dept	cnum	sec	unit	title	instructor
CS	112	01	03	Modeling	Dick Muntz
CS	143	01	04	DB Systems	John Cho
EE	143	01	03	Signal	Dick Muntz
ME	183	02	05	Mechanics	Susan Tracey

- Enroll(sid, dept, cnum, sec)

sid	dept	cnum	sec
301	CS	112	01
301	CS	143	01
303	EE	143	01
303	CS	112	01
401	CS	112	01

Simplest query: relation name

- Query 1: All students

SELECT operator

Select all tuples satisfying a condition

- Query 2: Students with age <18
- Query 3: Students with GPA >3.7 and age <18
- Notation: $\sigma_{C}(R)$
- Filters out rows in a relation
$-C$: A boolean expression with attribute names, constants, comparisons ($>, \leq, \neq, \ldots$) and connectives (\wedge, \vee, \neg)
- R can be either a relation or a result from another operator

PROJECT operator

- Query 4: sid and GPA of all students
- Query 5: All departments offering classes
- Relational algebra removes duplicates (set semantics)
- SQL does not (multiset or bag semantics)
- Notation: $\pi_{A}(R)$
- Filters out columns in a relation
- A: a set of attributes to keep
- Query 6: sid and GPA of all students with age <18
- We can "compose" multiple operators
- Q: Is it ever useful to compose two projection operators next to each other?
- Q: Is it ever useful to compose two selection operators next to each other?

CROSS PRODUCT (CARTESIAN PRODUCT) operator

- Example: $R \times S$

A
a_{1}
a_{2}
:---:
a_{1}
a_{1}
a_{1}
a_{2}
a_{2}
a_{2}

- Concatenation of tuples from both relations
- One result tuple for each pair of tuples in R and S
- If column names conflict, prefix with the table name
- Notation: $R_{1} \times R_{2}$
$-R_{1} \times R_{2}=\left\{t \mid t=\left\langle t_{1}, t_{2}\right\rangle\right.$ for $t_{1} \in R_{1}$ and $\left.t_{2} \in R_{2}\right\}$
- Q: Looks odd to concatenate unrelated tuples. Why use \times ?
- Query 7: Names of students who take CS courses
- Explanation: start with the query requiring sid, not name
- Q: Can we write it differently?
- Benefit of RDBMS. It figures out the best way to compute.
- Q: If $|R|=r$ and $|S|=s$, what is $|R \times S|$?

NATURAL JOIN operator

- Example: Student \bowtie Enroll
- Shorthand for $\sigma_{\text {Student.sid=Enroll.sid }}$ (Student \times Enroll)
- Notation: $R_{1} \bowtie R_{2}$
- Concatenate tuples horizontally
- Enforce equality on common attributes
- We may assume only one copy of the common attributes are kept
- Query 8: Names of students who take CS classes (Same as before)
- Query 9: Names of students taking classes offered by "Dick Muntz"
- Natural join: The most natural way to join two tables

RENAME operator

- Query 10: Find the pairs of student names who live in the same address.
- What about $\pi_{\text {name }, \text { name }}\left(\sigma_{\text {addr }=a d d r}(\right.$ Student \times Student $\left.)\right)$?
- Notation: $\rho_{S}(R)$ - rename R to S
- Notation: $\rho_{S\left(A 1^{\prime}, A 2^{\prime}\right)}(R)$ for $R(A 1, A 2)$ - rename $R(A 1, A 2)$ to $S\left(A 1^{\prime}, A 2^{\prime}\right)$
- Q: Is $\pi_{\text {Student.name,S.name }}\left(\sigma_{\text {Student.addr=S.addr }}\left(\right.\right.$ Student $\times \rho_{S}($ Student $\left.\left.)\right)\right)$ really correct?
- How many times (John, James) returned?

UNION operator

- Query 11: Find all student and instructor names.
- Q: Can we do it with cross product or join?
- Notation: $R \cup S$
- Union of tuples from R and S
- The schemas of R and S should be the same
- No duplicate tuples in the result

DIFFERENCE operator

- Query 12: Find the courses (dept, cnum, sec) that no student is taking
- How can we find the courses that at least one student is taking?
- Notation: $R-S$
- Schemas of R and S must match exactly
- Query 13: What if we want to get the titles of the courses?
- Very common. To match schemas, we lose information. We have to join back.

INTERSECT operator

- Query 14: Find the instructors who teach both CS and EE courses
- Q: Can we answer this using only selection and projection?
- Notation: $R \cap S=R-(R-S)$
- Draw Venn Diagram to verify

More questions

- Q: sids of students who did not take any CS courses?
- Q: Is $\pi_{\text {sid }}\left(\sigma_{\text {title }}{ }^{\prime} C S^{\prime}(\right.$ Enroll $\left.)\right)$ correct?
- Q: What is its complement?
- General advice: When a query is difficult to write, think in terms of its complement.

Relational algebra: things to remember

- Data manipulation language (query language)
- Relation \rightarrow algebra \rightarrow relation
- Relational algebra: set semantics, SQL: bag semantics
- Operators: $\sigma, \times, \bowtie, \rho, \cup,-, \cap$
- General suggestion: If difficult to write, consider its complement

