CS143 Notes: Database Integrity

Book Chapters

(4th) Chapter 6.1-4
(5th) Chapter 4.2, 8.6
(6th) Chapter 4.4, 5.3
(7th) Chapter 4.4, 5.3

Things to Learn

• Key constraints
• Referential integrity (Foreign key constraints)
• CHECK constraints
• SQL trigger (part of SQL99)

What are integrity constraints?

• An example database with invalid entries (Show the example)

• A statement about what a valid database should look like
 – As a human being, we understand what is a “valid” database
 – The system needs an explicit specification of the semantics/rules
• Arbitrary predicate pertaining to the database (in principle)
 – In practice, only the ones that are easy to enforce
• If a SQL statement violates IC, the statement is aborted and generates an error
• Q: What rules/constaints can you find from the example?
• Database constraints checks the rules in the DB (Three tier diagram)

![Three tier diagram](image)

• Q: Why do we check these rules in DB, not in application? Checking them at application/Web browser can be cheaper

Data validity enforcement in RDBMS

• 3 ways to enforce data validity in RDBMS
 – Domain: GPA is real
 – Constraints: Gives error. Abort statement
 * Key
 * Referential Integrity
 * CHECK constraint
 – Trigger: Event-Condition-Action rule. If a certain event happens, invoke an action to handle it

Key Constraints

• A set of attributes should be unique in a table

Course(dept, cnum, sec, unit, instructor, title)
Course(dept, cnum, sec, unit, instructor, title)
Course(dept, cnum, sec, unit, instructor, title)

 – CREATE TABLE Course (
 dept CHAR(2) NOT NULL,
 cnum INTEGER NOT NULL,
 sec INTEGER NOT NULL,
 unit INTEGER,
 instructor VARCHAR(30),
 title VARCHAR(30),
 PRIMARY KEY(dept, cnum, sec),
 UNIQUE(dept, cnum, instructor),
 UNIQUE(dept, sec, title))

 – One primary key per table
Unique for other keys
Primary key, unique are enforced through index (more discussion later)

Referential Integrity Constraints

• Example:
 – If an sid appears in Enroll, it should also appear in Student
 – If an (dept, cnum, sec) appears in Enroll, it should also appear in Class
 * Q: Is the reverse true?

• Terminology
 – (Two table diagram: E.A references S.A)
 – E.A references S.A
 – E.A: referencing attribute or foreign key
 – S.A: referenced attribute
 – Referential integrity means that referenced value always exists
 * foreign key can be NULL. When a foreign key is NULL, no constraint checking

• Referential Integrity in SQL
 – Example:
 CREATE TABLE Enroll (
 sid INTEGER REFERENCES Student(sid),
 dept CHAR(2),
 cnum INTEGER,
 sec INTEGER,
 FOREIGN KEY (dept, cnum, sec) REFERENCES Class(dept, cnum, sec))
 – Notes:
 * Referenced attributes must be PRIMARY KEY or UNIQUE
 * Referenced attributes may be omitted if they are the same name with referencing attributes
 - e.g., sid INT REFERENCES Student
 * One attribute foreign key may be defined directly

• Referential Integrity Violation
 – Q: When is the RI violated (two table diagram)?
e.g., do we have to worry if a tuple is deleted from E?

- RI violation from E (insert to E or update to E.A) is not allowed
 * System rejects the statement
 * Always insert/update S first.
- RI violation from S is not allowed by default
 * But we can instruct DBMS to allow it and “fix the violation” automatically.

- Q: If a tuple in S is updated/deleted, what can we do to fix RI violation?

ON DELETE/UPDATE SET NULL/SET DEFAULT/CASCADE in SQL

1. Default: disallow the statement and generate error
2. SET NULL/SET DEFAULT: Change E.A value to NULL or default value
3. CASCADE:
 * On deletion of S: delete the referencing tuples in E
 * On update of S.A: change E.A to the new S.A

- Example:
 CREATE TABLE Enroll (
 sid INTEGER REFERENCES Student(sid)
 ON DELETE CASCADE
 dept CHAR(2),
 cnum INTEGER,
 sec INTEGER,
 FOREIGN KEY (dept, cnum, sec) REFERENCES
 Class(dept, cnum, sec)
 ON DELETE CASCADE
 ON UPDATE SET NULL)

Comments:
* By default, Student.sid update is not allowed if RI is violated
* Many RDBMS does not support all actions

- Comments: Referential integrity is the only SQL constraint that can “fix itself”
 * Other constraints simply abort and report error
- Q: Why should the referenced attributes be unique?

Self referencing table

- Example:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NULL</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

CREATE TABLE R (
 A INTEGER PRIMARY KEY,
 B INTEGER REFERENCES R(A)
 ON DELETE CASCADE)

- Comments:
 * A table references itself: self-referencing table
 * Q: What will happen if we delete (1,NULL)?

Circular constraints

- Example:
 ChickenFrom(cid, eid): eid became cid,
 EggFrom(eid, cid): eid is born of cid
 (Chicken.eid ⊂ Egg.eid, Egg.cid ⊂ Chicken.cid) (diagram)

- Q: Can we insert any tuple to Chicken? or to Egg? How can we fix it?
CHECK constraint

- Add \textit{CHECK(condition)} as part of table definition
 - Rejects any modification statement that will make the condition FALSE.
 - In SQL92, conditions can be complex, e.g., with subqueries

- \textbf{Example:} \(0 \leq GPA \leq 4.0\)

 \begin{verbatim}
 CREATE TABLE Student(
 ...
 GPA real,
 ...
 CHECK(0 <= GPA and GPA <= 4.0),
 ...
)
 \end{verbatim}

- \textbf{Example:} \(cnum < 600 \text{ AND } unit < 10\)

 \begin{verbatim}
 CREATE TABLE Enroll(
 dept CHAR(2),
 cnum INT,
 unit INT,
 title VARCHAR(50),
 CHECK (cnum < 600 \text{ AND } unit < 10)
)
 \end{verbatim}

- \textbf{Q:} The units of all CS classes are above 3 for Class(dept, cnum, unit, title)??

- \textbf{Q:} Students whose GPA is below 2.0 cannot take CS classes?

- For performance reasons, most systems do not allow subqueries in condition.
 - This restriction makes CHECK constraint very easy to enforce.
 - Examine the condition only on the tuple that is currently being updated/inserted.
Triggers

Trigger

• Event-Condition-Action rule (or ECA rule)
 – We explicitly specify what events to monitor, what condition to check and what action to take if the condition is met.

• Query 1: If a student’s GPA goes below 2.0, drop the student from all classes

Comments: Row-level trigger

• Query 2: All new students have to take CS143 (For every insertion to Student, add the corresponding tuple to Enroll.)

Comments: Statement-level trigger

• Trigger general syntax: Event-Condition-Action rule (or ECA rule)
 – CREATE TRIGGER <name>
 <event>
 <referencing clause>// optional
 WHEN (<condition>) // optional
 <action>

 – <event>
 * BEFORE | AFTER INSERT ON R
 * BEFORE | AFTER DELETE ON R
 * BEFORE | AFTER UPDATE [OF A1, A2, ..., An] ON R

 – <action>
 * Any SQL statement. Multiple statements should be enclosed with BEGIN ATOMIC
 . . . END and be separated by ;

 – <referencing clause>
 * REFERENCING OLD|NEW TABLE|ROW AS <var>, . . .
* FOR EACH ROW: row-level trigger
* FOR EACH STATEMENT (default): statement-level trigger

- **Query 3:** For, $R(A)$, after inserting (1), what will happen?

  ```sql
  CREATE TRIGGER Recursion
  AFTER INSERT ON R
  BEGIN INSERT INTO R VALUES (1); END
  ```

- **Action sequence**
 1. BEFORE trigger
 2. Statement
 3. AFTER trigger
 4. Constraint checking
What is supported in MySQL

- Key constraint
- Under InnoDB, most referential integrity except “ON DELETE/UPDATE SET DEFAULT”
- No CHECK constraints
 - MariaDB 10.2.1 added (limited) CHECK constraint support
- Limited trigger: does not allow updating the table that caused the trigger event
 - Generates error and rejects the statement that caused the event

Things to Remember

Constraints and Trigger

- Key constraint: PRIMARY KEY, UNIQUE
- Referential Integrity
 - Referencing attribute (foreign key), referenced attribute
 * Referenced attribute should be PRIMARY KEY or UNIQUE
 - Violation at referencing attribute not allowed
 - Violation at referenced attribute can be fixed automatically
 * ON DELETE/UPDATE SET NULL/SET DEFAULT/CASCADE
- Tuple-based CHECK constraint
- Trigger