CS143: Relational Model

Book Chapters

(5th) Chapters 1.3-7, 2.1, 3.1-2, 4.1 (6th) Chapters 1.3-6, 2.1-4, 3.1-2, 4.5

(7th) Chapters 2.1-4, 3.1-2

Things to Learn

- Data model
- Relational model
- Database construction steps

DataBase Management System (DBMS)

- Q: What is DBMS?
 - A system that manages data and provides six properties
 - Massive
 - Convenient
 - Efficient
 - Safe
 - Persistent
 - Multi-user
- High-level architecture of DBMS:

Data Model

- The way we model/conceptualize/visualize/represent data
- Need some representation to manage data in a computer
- Many different ways to model data
 - Example (Airline flight): Graph model
 - * Node: city
 - * Edge: flight between cities
 - * Label on edge: flight time, etc.
 - * Example standard: RDF (Resource Description Framework)
 - Example (Company hierarchy): Tree model
 - * CEO \rightarrow Presidents \rightarrow Vice presidents \rightarrow Department heads ...
 - * Example standard: XML (eXtensible Markup Language), JSON (JavaScript Object Notation)
 - Models to learn in the class: Relational and E/R model

Example to Use in the Class

- School information
 - Student(sid, name, age, GPA, address, ...)
 - Class(dept, cnum, sec, title, instructor, ...)
 - Enroll(sid, dept, cnum, sec)
 - ...

Relational Model

• Example: Student(sid, name, address, age, GPA) Student

sid	name	addr	age	GPA
301	John	183 Westwood	19	2.1
303	Elaine	301 Wilshire	17	3.9
401	James	183 Westwood	17	3.5
208	Esther	421 Wilshire	20	3.1

- All data is represented as *relations* (= *tables*)
- Each relation has a set of *attributes* (= columns)
- Each relation contains of a set of *tuples* (= *rows*)
- Each attribute has a *domain* (= *type*)
 - Only atomic types
- Similar to Excel spreadsheet

History of Relational Model

- By far, the most significant invention in the history of DBMS
 - E.F. Codd, 1970
 - Completely revolutionized the field
 - Before it, network and hierarchical model: difficult to use and pose queries
 - Turing Award, 1981
- *Extremely* simple and strong mathematical foundation
- Supported by most DBMS systems
- An argument for simplicity

Concepts and Terminology

Schema

The structure of relations in database: relation name, attribute name, domain (optional).

- Example:
 - Student(sid, name, address, GPA, age)
 - Course(dept: char(2), cnum: int, sec: int, unit: int, title: char(100))
 char(2): string of length 2

Instance (= Data)

Actual contents (tuples) of relation (explain using the table example)

- Schema \approx Type, Instance \approx Value
- Schema \approx Class, Instance \approx Instance

Keys

- A set of attributes that are known to be unique in the relation
 - Student(<u>sid</u>, name, address, GPA, age)
 - Course(dept, <u>cnum</u>, <u>sec</u>, unit, instructor, title)
- Multiple keys possible
 - Course(dept, <u>cnum</u>, <u>sec</u>, unit, instructor, title)
 - Course(dept, <u>cnum</u>, sec, unit, <u>instructor</u>, title)
 - Course(<u>dept</u>, cnum, <u>sec</u>, unit, instructor, <u>title</u>)
- Q: When do we need keys? How can they be used?

Name Scope

- Names of relation: Unique across relations
- Names of attributes: Unique in a table, same name in different tables OK

Set semantics

- No duplicate tuples (different in SQL. More discussion later)
 - Q: Can a relation with no duplicates have no keys?
- Tuple order does not matter
 - Authors of a paper: Need explicit ordering
- Orders of attributes do not matter

Null value

- Common interpretation
 - Do not know
 - Do not want to say
 - Not applicable
 - Example: Student(id, dept, name, GPA) before first quarter?
- Complications from Null
 - Example: Student(id, dept, name, age, GPA)
 - $-Q_1$: Find students whose age ≥ 20 . Susan's age is Null. Susan in the result?
 - $-Q_2$: Find students whose age < 20. Susan in the result?
 - $-Q_3$: Find students whose age ≥ 20 or age < 20 and. Susan in the result?
 - * But $Q_3 = Q_1 \cup Q_2$? Something is wrong.
- Relational algebra, SQL: 3-valued logic
 - Every condition is evaluated as True, False or Unknown
 - Various (arbitrary) rules to deal with anomalous situation
 - More discussion later
- Unfortunately, Nulls are very common in DB.
- Common sources of error in data analysis: "Pay attention to Nulls!"

Steps in Database Construction

Flow chart diagram

- 1. Domain Analysis: Understand application-domain semantics being captured
 - E/R diagram
 - discussed later
- 2. Database design: Design tables to capture the information
 - Relational design theory (functional dependency, normal form, etc)
 - discussed later if time and interest permit
- 3. Table creation: using Database Definition Language
 - DDL: A language to define relations and their characteristics:
 - Schema, integrity constraints, indexes, ...
- 4. Load: typically bulk-load. insert tuple possible
- 5. Query and update: using Data Manipulation Language
 - DML: A language to query and update relations

SQL and DDL, Load, DML

What is SQL?

- Structured Query Language
- The standard language for interacting with all commercial RDBMS
- The history of SQL standard
 - SQL89: first standard
 - SQL92: the main and most widely-supported standard. several hundred pages
 - $\ {\rm SQL1999}, \ {\rm SQL2003}, \ {\rm SQL2006}, \ {\rm SQL2008}, \ {\rm SQL2011}, \ {\rm SQL2016}$
 - We will mainly use the standard SQL92 in class. Individual product uses slight variations of the standard. Some class query may not run on them.
- SQL has many components
 - DDL: Schema definition, constraints, indexes, ...
 - DML: data retrieval, modification, \ldots
 - Transactions, Authorization, \ldots
- We learn schema definition part today.

Basic SQL Types

- Basic SQL types (commonly used subset)
 - String
 - * Char(n) padded fixed length

• Padding character is system dependent (space for Oracle, auto-removed for MySQL)

- * Varchar(n) variable length
- Number
 - * Integer 32bit
 - * Decimal(5,2) 999.99
 - * Real, Double 32bit, 64bit
- Datetime
 - * Date '2002-01-15'
 - * Time '13:50:00'
 - * Timestamp '2002-01-15 13:50:00' (On MySQL, Datetime is preferred)
- Schema definition (table creation)
 - Course(dept, <u>cnum</u>, <u>sec</u>, unit, instructor, title)

* No Null in primary key

```
- Course(dept, cnum, sec, unit, instructor, title)
Course(dept, cnum, sec, unit, instructor, title)
Course(dept, cnum, sec, unit, instructor, title)
* CREATE TABLE Course (
dept CHAR(2) NOT NULL DEFAULT 'CS',
cnum INTEGER NOT NULL,
```

sec INTEGER NOT NULL, unit INTEGER, instructor VARCHAR(30), title VARCHAR(30) DEFAULT, PRIMARY KEY(dept, cnum, sec), UNIQUE(dept, cnum, instructor), UNIQUE(dept, sec, title))

* One primary key per table

- * Unique for other keys
- * Primary key, unique are enforced through index (more discussion later)
- * SQL92: No Null in primary key. Null OK for unique
 - · MySQL: automatically add not null for primary key attributes
- * DEFAULT for default values
- SQL for dropping a table
 - DROP TABLE Course

Loading data

- Vendor specific
- MySQL
 - LOAD DATA LOCAL INFILE <datafile> INTO TABLE Course
- Microsoft SQL Server
 - BULK INSERT Course FROM <datafile>

Things to remember

- Data model
- Schema
- Instance
- Relational model
 - relation, attribute, tuple, domain
 - key
 - null value
 - set semantics
- Database construction steps
 - 1. Domain analysis: E/R model, UML
 - 2. Database design: Database design theory
 - 3. Table creation: DDL
 - 4. Load
 - 5. Query and update: DML