CS143: Relational Model

Book Chapters

(5th) Chapters 1.3-7, 2.1, 3.1-2, 4.1
(6th) Chapters 1.3-6, 2.1-4, 3.1-2, 4.5
(7th) Chapters 2.1-4, 3.1-2

Things to Learn

- Data model
- Relational model
- Database construction steps

DataBase Management System (DBMS)

- Q: What is DBMS?
 - A system that manages data and provides six properties
 - Massive
 - Convenient
 - Efficient
 - Safe
 - Persistent
 - Multi-user

- High-level architecture of DBMS:
Data Model

- The way we model/conceptualize/visualize/represent data
- Need some representation to manage data in a computer
- Many different ways to model data
 - Example (Airline flight): Graph model
 * Node: city
 * Edge: flight between cities
 * Label on edge: flight time, etc.
 * Example standard: RDF (Resource Description Framework)
 - Example (Company hierarchy): Tree model
 * CEO → Presidents → Vice presidents → Department heads . . .
 * Example standard: XML (eXtensible Markup Language), JSON (JavaScript Object Notation)
 - Models to learn in the class: Relational and E/R model

Example to Use in the Class

- School information
 - Student(sid, name, age, GPA, address, . . .)
 - Class(dept, cnum, sec, title, instructor, . . .)
 - Enroll(sid, dept, cnum, sec)
 - . . .

Relational Model

- Example: Student(sid, name, address, age, GPA)

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>addr</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>John</td>
<td>183 Westwood</td>
<td>19</td>
<td>2.1</td>
</tr>
<tr>
<td>303</td>
<td>Elaine</td>
<td>301 Wilshire</td>
<td>17</td>
<td>3.9</td>
</tr>
<tr>
<td>401</td>
<td>James</td>
<td>183 Westwood</td>
<td>17</td>
<td>3.5</td>
</tr>
<tr>
<td>208</td>
<td>Esther</td>
<td>421 Wilshire</td>
<td>20</td>
<td>3.1</td>
</tr>
</tbody>
</table>

- All data is represented as relations (= tables)
- Each relation has a set of attributes (= columns)
- Each relation contains a set of tuples (= rows)
- Each attribute has a domain (= type)
 - Only atomic types
- Similar to Excel spreadsheet
History of Relational Model

- By far, the most significant invention in the history of DBMS
 - E.F. Codd, 1970
 - Completely revolutionized the field
 - Before it, network and hierarchical model: difficult to use and pose queries
 - Turing Award, 1981

- Extremely simple and strong mathematical foundation
- Supported by most DBMS systems
- An argument for simplicity

Concepts and Terminology

Schema
The structure of relations in database: relation name, attribute name, domain (optional).

- Example:
 - Student(sid, name, address, GPA, age)
 - Course(dept: char(2), cnum: int, sec: int, unit: int, title: char(100))
 char(2): string of length 2

Instance (= Data)
Actual contents (tuples) of relation (explain using the table example)

- Schema ≈ Type, Instance ≈ Value
- Schema ≈ Class, Instance ≈ Instance

Keys
- A set of attributes that are known to be unique in the relation
 - Student(sid, name, address, GPA, age)
 - Course(dept, cnum, sec, unit, instructor, title)
- Multiple keys possible
 - Course(dept, cnum, sec, unit, instructor, title)
 - Course(dept, cnum, sec, unit, instructor, title)
 - Course(dept, cnum, sec, unit, instructor, title)

- Q: When do we need keys? How can they be used?
Name Scope

- Names of relation: Unique across relations
- Names of attributes: Unique in a table, same name in different tables OK

Set semantics

- No duplicate tuples (different in SQL. More discussion later)
 - Q: Can a relation with no duplicates have no keys?
- Tuple order does not matter
 - Authors of a paper: Need explicit ordering
- Orders of attributes do not matter

Null value

- Common interpretation
 - Do not know
 - Do not want to say
 - Not applicable
 - Example: Student(id, dept, name, GPA) – before first quarter?
- Complications from Null
 - Example: Student(id, dept, name, age, GPA)
 - Q_1: Find students whose age \geq 20. Susan’s age is Null. Susan in the result?
 - Q_2: Find students whose age < 20. Susan in the result?
 - Q_3: Find students whose age \geq 20 or age < 20 and. Susan in the result?
 * But $Q_3 = Q_1 \cup Q_2$? Something is wrong.
- Relational algebra, SQL: 3-valued logic
 - Every condition is evaluated as True, False or Unknown
 - Various (arbitrary) rules to deal with anomalous situation
 - More discussion later
- Unfortunately, Nulls are very common in DB.
- Common sources of error in data analysis: “Pay attention to Nulls!”
Steps in Database Construction

Flow chart diagram

1. **Domain Analysis**: Understand application-domain semantics being captured
 - E/R diagram
 - discussed later

2. **Database design**: Design tables to capture the information
 - Relational design theory (functional dependency, normal form, etc)
 - discussed later if time and interest permit

3. **Table creation**: using Database Definition Language
 - DDL: A language to define relations and their characteristics:
 - Schema, integrity constraints, indexes, . . .

4. **Load**: typically bulk-load. insert tuple possible

5. **Query and update**: using Data Manipulation Language
 - DML: A language to query and update relations

SQL and DDL, Load, DML

What is SQL?

- Structured Query Language
- The standard language for interacting with all commercial RDBMS
- The history of SQL standard
 - SQL89: first standard
 - SQL92: the main and most widely-supported standard. several hundred pages
 - We will mainly use the standard SQL92 in class. Individual product uses slight variations of the standard. Some class query may not run on them.

- SQL has many components
 - DDL: Schema definition, constraints, indexes, . . .
 - DML: data retrieval, modification, . . .
 - Transactions, Authorization, . . .
- We learn schema definition part today.
Basic SQL Types

- Basic SQL types (commonly used subset)
 - String
 * `Char(n)` – padded fixed length
 • Padding character is system dependent (space for Oracle, auto-removed for MySQL)
 * `Varchar(n)` – variable length
 - Number
 * `Integer` – 32bit
 * `Decimal(5,2)` – 999.99
 * `Real, Double` – 32bit, 64bit
 - Datetime
 * `Date` – ‘2002-01-15’
 * `Time` – ‘13:50:00’
 * `Timestamp` – ‘2002-01-15 13:50:00’ (On MySQL, Datetime is preferred)

- Schema definition (table creation)
 - `Course(dept, cnum, sec, unit, instructor, title)`
 * `CREATE TABLE Course (`
 ` dept CHAR(2) NOT NULL,`
 ` cnum INTEGER NOT NULL,`
 ` sec INTEGER NOT NULL,`
 ` unit INTEGER,`
 ` instructor VARCHAR(30),`
 ` title VARCHAR(30),`
 ` PRIMARY KEY(dept, cnum, sec))`
 * No Null in primary key

- `Course(dept, cnum, sec, unit, instructor, title)`
 `Course(dept, cnum, sec, unit, instructor, title)`
 `Course(dept, cnum, sec, unit, instructor, title)`
 * `CREATE TABLE Course (`
 ` dept CHAR(2) NOT NULL DEFAULT 'CS',`
 ` cnum INTEGER NOT NULL,`
 ` sec INTEGER NOT NULL,`
 ` unit INTEGER,`
 ` instructor VARCHAR(30),`
 ` title VARCHAR(30) DEFAULT,`
 ` PRIMARY KEY(dept, cnum, sec),`
 ` UNIQUE(dept, cnum, instructor),`
 ` UNIQUE(dept, sec, title))`
 * One primary key per table
* Unique for other keys
* Primary key, unique are enforced through index (more discussion later)
* SQL92: No Null in primary key. Null OK for unique
 - MySQL: automatically add not null for primary key attributes
* DEFAULT for default values

- SQL for dropping a table
 - DROP TABLE Course

Loading data

- Vendor specific
- MySQL
 - LOAD DATA LOCAL INFILE <datafile> INTO TABLE Course
- Microsoft SQL Server
 - BULK INSERT Course FROM <datafile>

Things to remember

- Data model
- Schema
- Instance
- Relational model
 - relation, attribute, tuple, domain
 - key
 - null value
 - set semantics
- Database construction steps
 1. Domain analysis: E/R model, UML
 2. Database design: Database design theory
 3. Table creation: DDL
 4. Load
 5. Query and update: DML