CS143: Normalization Theory

Book Chapters

(5th) Chapters 7.1-5, 7.8 (6th) Chapters 8.1-5, 8.8

(7th) Chapters 7.1-5, 7.9

Introduction

Main question

- How do we design "good" tables for a relational database?
 - Typically we start with ER and convert it into tables
 - Still, different people come up with different ER, and thus different tables. Which one is better? What design should we choose?
- Relational design theory
 - A theory on how to identify and create a good table design or a "normal form"
 - Several definitions of "normal forms" exist
 - We learn the most popular normal form, Boyce-Codd Normal Form (BCNF)

Warning

• The most difficult and theoretical part of the course. Pay attention!

Motivation & Intuition

(StudentClass(sid, name, addr, dept, cnum, title, unit) slide)

- **Q:** Is it a good table design?
- REDUNDANCY: The same information mentioned multiple times. Redundancy leads to potential anomaly.
 - 1. UPDATE ANOMALY: Only some information may be updated

- **Q:** What if a student changes the address?

- 2. INSERTION ANOMALY: Some information cannot be represented
 Q: What if a student does not take any class?
- 3. DELETION ANOMALY: Deletion of some information may delete others
 Q: What if the only class that a student takes is cancelled?
- Q: Is there a better design? What tables would you use?
- Q: Any way to arrive at such table design more systematically?
 - Q: Where is the redundancy from?
 (Slide on "guessing" missing info)
 - FUNCTIONAL DEPENDENCY: Some attributes are "determined" by other attrs
 - * e.g., sid \rightarrow (name, addr), (dept, cnum) \rightarrow (title, unit)
 - * When there is a functional dependency, we may have redundancy.
 e.g., (301, James, 11 West) is stored redundantly. So is (CS, 143, database, 04).
 - DECOMPOSITION: When there is a FD, no need to store multiple instances of this relationship. Store it once in a separate table
 - * (Intuitive normalization of StudentClass table)
 StudentClass(sid, name, addr, dept, cnum, title, unit)
 FDs: sid→(name, addr), (dept, cnum)→(title, unit)
 1. sid → (name, addr): no need to store it multiple time. separate it out

2. (dept, cnum) \rightarrow (title, unit). separate it out

- Basic idea of table "normalization"
 - Whenever there is a FD, the table may be "bad" (not in normal form)
 - We use FDs to "split" or "decompose" table and remove redundancy
 - We learn FUNCTIONAL DEPENDENCY and DECOMPOSITION to formalize this.

Functional Dependency

Overview

- The fundamental tool for normalization theory
- May seem dry and irrelevant, but bear with me. Extremely useful
- Things to learn

- FD, trivial FD, logical implication, closure, FD and key, projected FD

Functional dependency $X \to Y$

- Notation: u[X] values for the attributes X of tuple u e.g, Assuming u = (sid: 100, name: James, addr: Wilshire), u[sid, name] = (100, James)
- FUNCTIONAL DEPENDENCY $X \to Y$
 - For any $u_1, u_2 \in R$, if $u_1[X] = u_2[X]$, then $u_1[Y] = u_2[Y]$
 - More informally, $X \to Y$ means that "no two tuples in R can have the same X values but different Y values"

(e.g., StudentClass(sid, name, addr, dept, cnum, title, unit))

- * **Q:** sid \rightarrow name?
- * Q: dept, cnum \rightarrow title, unit?
- * **Q:** dept, cnum \rightarrow sid?

- Whether a FD is true or not depends on real-world semantics

$\langle examples \rangle$								
Α	B	C						
a_1	b_1	c_1	\mathbf{O} : AB \rightarrow C. Is this okay?					
a_1	b_2	c_2						
a_2	$ b_1$	c_3						

\mathbf{R}	epla	ace α	c_3 to a	21.
1	A	В	C	Q: AB \rightarrow C. Is this okay?
0	ι_1	b_1	c_1	
0	ι_1	b_2	c_2	
0	l_2	b_1	c_1	NOTE: AB \rightarrow C does not mean no duplicate C values.
Re	epla	ace <i>l</i>	b_2 to b_2	p_1
1	A	В	C	
0	ι_1	b_1	c_1	$\mathbf{O} \cdot \mathbf{AB} \rightarrow \mathbf{C}$. Is this obay?
0	ι_1	b_1	c_2	Q. HD 7 C. IS this onay.
0	$\iota_2 \mid$	b_1	c_3	

- TRIVIAL functional dependency: $X \to Y$ when $Y \subset X$
 - It is always true regardless of real world semantics (diagram)
- NON-TRIVIAL FD: $X \to Y$ when $Y \not\subset X$ (diagram)
- COMPLETELY NON-TRIVIAL FD: $X \to Y$ with no overlap between X and Y (diagram)

We will focus on completely non-trivial functional dependency.

Implication and Closure

• LOGICAL IMPLICATION

ex) R(A, B, C, G, H, I) $F: A \to B, A \to C, CG \to H, CG \to I, B \to H$ (set of functional dependencies)

- **Q:** Is $A \to H$ true under F?

F LOGICALLY IMPLIES $A \to H$

(canonical database method to prove $A \to H$) А В С G Η Ι h_1 b_1 i_1 c_1 a_1 g_1 ? a_1 If ? = h1, then $A \to H$

* **Q:**
$$AG \rightarrow I$$
?

• CLOSURE OF FD F: F⁺

 ${\rm F}^+$: the set of all FD's that are logically implied by F.

• CLOSURE OF ATTRIBUTE SET X: X⁺

X⁺: the set of all attrs that are functionally determined by X

- **Q**: What attribute values do we know given (sid, dept, cnum)?

• CLOSURE X^+ COMPUTATION ALGORITHM

 $\langle \mathbf{X}^+ \text{ computation algorithm slide} \rangle$ Start with $X^+ = X$ Repeat until no change in X^+ If there is $Y \to Z$ and $Y \subset X^+$, add Z to X^+

 $\begin{array}{l} \langle \text{example} \rangle \\ R(A,B,C,G,H,I) \text{ and } A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H \end{array}$

$$- \mathbf{Q}: \{A\}^+?$$

- **Q:** {*A*, *G*}⁺?

• FUNCTIONAL DEPENDENCY AND KEY

- Key determines a tuple and functional dependency determines other attributes. Any formal relationship?
- **Q:** In previous example, is (A, B) a key of R? R(A, B, C, G, H, I) and $A \to B, A \to C, CG \to H, CG \to I, B \to H$
- X is a KEY of R if and only if
 - 1. $X \to \text{all attributes of } R \text{ (i.e., } X^+ = R)$
 - 2. No subset of X satisfies 1 (i.e., X is minimal)
- PROJECTING FD

 $R(A,B,C,D):A\to B,B\to A,A\to C$

- **Q:** What FDs hold for R'(B, C, D) which is a projection of R?
- In order to find FD's after projection, we first need to compute F^+ and pick the FDs from F^+ with only the attributes in the projection.

Decomposition

- (Remind the decomposition idea of StudentClass table)
- Splitting table $R(A_1, \ldots, A_n)$ into two tables, $R_1(A_1, \ldots, A_i)$ and $R_2(A_j, \ldots, A_n)$

 $- \{A_1, \dots, A_n\} = \{A_1, \dots, A_i\} \cup \{A_j, \dots, A_n\}$

- (Conceptual diagram for $R(X, Y, Z) \rightarrow R_1(X, Y)$ and $R_2(Y, Z)$)

• Q: When we decompose, what should we watch out for?

LOSSLESS-JOIN DECOMPOSITION

- $R = R_1 \bowtie R_2$
- Intuitively, we should not lose any information by decomposing R
- Can reconstruct the original table from the decomposed tables
- **Q:** When is decomposition lossless?

$\langle example \rangle$								
cnum	sid	name						
143	1	James						
143	2	Elaine						
325	3	Susan						

- Q: Decompose into $S_1(cnum, sid)$, $S_2(cnum, name)$. Lossless?

– Q: Decompose into $S_1(cnum, sid)$, $S_2(sid, name)$. Lossless?

- DECOMPOSITION $R(X, Y, Z) \Rightarrow R_1(X, Y), R_2(X, Z)$ IS LOSSLESS IF $X \to Y$ OR $X \to Z$
 - That is, the shared attributes are the key of one of the decomposed tables
 - We can use FDs to check whether a decomposition is lossless

Example: StudentClass(sid, name, addr, dept, cnum, title, unit)

sid \rightarrow (name,addr), (dept,cnum) \rightarrow (title,unit)

* **Q:** Decomposition into R₁(sid, name, addr), R₂(sid, dept, cnum, title, unit). Loss-less?

Boyce-Codd Normal Form (BCNF)

FD, key & redundancy

- Example: StudentClass(sid, name, addr, dept, cnum, title, unit)
 - **Q:** sid \rightarrow (name,addr). Does it cause redundancy?
 - After decomposition, Student(sid, name, addr)
 - * **Q:** sid \rightarrow (name,addr). Does it still cause redundancy?
 - * Q: Why does the same FD cause redundancy in one case, but not in the other?
- In general, FD $X \to Y$ leads to redundancy if X DOES NOT CONTAIN A KEY.

BCNF definition

- R is in BCNF with regard to F, iff for every non-trivial $X \to Y \in F+$, X contains a key
- "Good" table design (no redudancy due to FD)
- Q: Class(dept, cnum, title, unit). dept,cnum \rightarrow title,unit.
 - Q: Intuitively, is it a good table design? Any redundancy? Any better design?

- **Q:** Is it in BCNF?

• **Q:** Employee(name, dept, manager). name \rightarrow dept, dept \rightarrow manager.

- Q: What is the English interpretation of the two dependencies?

- **Q:** Intuitively, is it a good table design? Any redundancy? Better design?

- Q: Is it in BCNF?

• **Remarks:** Most times, BCNF tells us when a design is "bad" (due to redundancy from functional dependency.

BCNF normalization algorithm

- Decomposing tables until all tables are in BCNF
 - For each FD $X \to Y$ that violates the condition, separate those attributes into another table to remove redundancy.
 - We also have to make sure that this decomposition is lossless.
- Algorithm

For any R in the schema If non-trivial $X \to Y$ holds on R, and if X does not have a key

- 1. Compute X^+ (X⁺: closure of X)
- 2. Decompose R into $R_1(X^+)$ and $R_2(X, Z)$ // X is common attributes where Z is all attributes in R except X^+

Repeat until no more decomposition

- Example: ClassInstructor(dept, cnum, title, unit, instructor, office, fax) instructor → office, office → fax (dept, cnum) → (title, unit), (dept, cnum) → instructor.
 - Q: What is the English interpretation of the two dependencies?
 - Q: Intuitively, is it a good table design? Any redundancy? Better design?

- **Q:** Is it in BCNF?

- Q: Normalize it into BCNF using the algorithm.

NOTE: The algorithm guarantees lossless join decomposition, because after the decomposition based on $X \to Y$, X becomes the key of one of the decomposed table

• Example: $R(A, B, C, G, H, I), A \to B, A \to C, G \to I, B \to H$. Convert to BCNF.

• Q: Does the algorithm lead to a unique set of relations?

 $\langle \text{e.g., } R(A, B, C), A \to C, B \to C \rangle$ **Q:** What if we start with $A \to C$?

Q: What if we start with $B \to C$?

• Q: $R_1(A, B), R_2(B, C, D)$ with $A \to B, B \to A, A \to C$. Are R_1 and R_2 in BCNF?

NOTE: We have to check all implied FD's for BCNF, not just the given ones.

Good Table Design in Practice

- Normalization splits tables to reduce redundancy.
- However, splitting tables has negative performance implication

Example: Instructor: name, office, phone, fax name \rightarrow office, office \rightarrow (phone, fax)

(design 1) Instructor(name, office, phone, fax)(design 2) Instructor(name, office), Office(office, phone, fax)

Q: Retrieve (name, office, phone) from Instructor. Which design is better?

• As a rule of thumb, start with normalized tables and merge them if performance is not good enough

Things to Remember

- Functional dependency $X \to Y$
 - Trivial functional dependency
 - Logical implication
 - Closure
- Decomposition
 - Lossless join decomposition
- Boyce-Codd Normal Form (BCNF)
- BCNF decomposition algorithm