
CS143: Normalization Theory

Book Chapters

(5th) Chapters 7.1-5, 7.8
(6th) Chapters 8.1-5, 8.8
(7th) Chapters 7.1-5, 7.9

Introduction

Main question

� How do we design “good” tables for a relational database?

– Typically we start with ER and convert it into tables

– Still, different people come up with different ER, and thus different tables. Which one
is better? What design should we choose?

� Relational design theory

– A theory on how to identify and create a good table design or a “normal form”

– Several definitions of “normal forms” exist

– We learn the most popular normal form, Boyce-Codd Normal Form (BCNF)

Warning

� The most difficult and theoretical part of the course. Pay attention!

Motivation & Intuition

〈StudentClass(sid, name, addr, dept, cnum, title, unit) slide〉

� Q: Is it a good table design?

� REDUNDANCY: The same information mentioned multiple times. Redundancy leads to
potential anomaly.

1. UPDATE ANOMALY: Only some information may be updated

1



– Q: What if a student changes the address?

2. INSERTION ANOMALY: Some information cannot be represented

– Q: What if a student does not take any class?

3. DELETION ANOMALY: Deletion of some information may delete others

– Q: What if the only class that a student takes is cancelled?

� Q: Is there a better design? What tables would you use?

� Q: Any way to arrive at such table design more systematically?

– Q: Where is the redundancy from?
〈 Slide on “guessing” missing info 〉

– FUNCTIONAL DEPENDENCY: Some attributes are “determined” by other attrs

* e.g., sid → (name, addr), (dept, cnum) → (title, unit)

* When there is a functional dependency, we may have redundancy.

· e.g., (301, James, 11 West) is stored redundantly. So is (CS, 143, database, 04).

– DECOMPOSITION: When there is a FD, no need to store multiple instances of this
relationship. Store it once in a separate table

* 〈Intuitive normalization of StudentClass table〉
StudentClass(sid, name, addr, dept, cnum, title, unit)
FDs: sid→(name, addr), (dept, cnum)→(title, unit)

1. sid → (name, addr): no need to store it multiple time. separate it out

2



2. (dept, cnum) → (title, unit). separate it out

� Basic idea of table “normalization”

– Whenever there is a FD, the table may be “bad” (not in normal form)

– We use FDs to “split” or “decompose” table and remove redundancy

– We learn FUNCTIONAL DEPENDENCY and DECOMPOSITION to formalize this.

Functional Dependency

Overview

� The fundamental tool for normalization theory

� May seem dry and irrelevant, but bear with me. Extremely useful

� Things to learn

– FD, trivial FD, logical implication, closure, FD and key, projected FD

Functional dependency X → Y

� Notation: u[X] - values for the attributes X of tuple u
e.g, Assuming u = (sid: 100, name: James, addr: Wilshire), u[sid, name] = (100, James)

� FUNCTIONAL DEPENDENCY X → Y

– For any u1, u2 ∈ R, if u1[X] = u2[X], then u1[Y ] = u2[Y ]

– More informally, X → Y means that “no two tuples in R can have the same X values
but different Y values”

〈e.g., StudentClass(sid, name, addr, dept, cnum, title, unit)〉
* Q: sid → name?

* Q: dept, cnum → title, unit?

* Q: dept, cnum → sid?

3



– Whether a FD is true or not depends on real-world semantics

〈examples〉
A B C

a1 b1 c1
a1 b2 c2
a2 b1 c3

Q: AB → C. Is this okay?

Replace c3 to c1.
A B C

a1 b1 c1
a1 b2 c2
a2 b1 c1

Q: AB → C. Is this okay?

NOTE: AB → C does not mean no duplicate C values.

Replace b2 to b1
A B C

a1 b1 c1
a1 b1 c2
a2 b1 c3

Q: AB → C. Is this okay?

� TRIVIAL functional dependency: X → Y when Y ⊂ X

– It is always true regardless of real world semantics
(diagram)

� NON-TRIVIAL FD: X → Y when Y 6⊂ X
(diagram)

� COMPLETELY NON-TRIVIAL FD: X → Y with no overlap between X and Y
(diagram)

We will focus on completely non-trivial functional dependency.

Implication and Closure

� LOGICAL IMPLICATION

4



ex) R(A,B,C,G,H, I)
F : A→ B, A→ C, CG→ H, CG→ I, B → H (set of functional dependencies)

– Q: Is A→ H true under F?

F LOGICALLY IMPLIES A→ H

〈canonical database method to prove A→ H〉
A B C G H I

a1 b1 c1 g1 h1 i1
a1 ?

If ? = h1, then A→ H

* Q: AG→ I?

� CLOSURE OF FD F: F+

F+ : the set of all FD’s that are logically implied by F.

� CLOSURE OF ATTRIBUTE SET X: X+

X+: the set of all attrs that are functionally determined by X

– Q: What attribute values do we know given (sid, dept, cnum)?

� CLOSURE X+ COMPUTATION ALGORITHM

〈X+ computation algorithm slide〉
Start with X+ = X
Repeat until no change in X+

If there is Y → Z and Y ⊂ X+, add Z to X+

〈example〉
R(A,B,C,G,H, I) and A→ B,A→ C,CG→ H,CG→ I,B → H

5



– Q: {A}+?

– Q: {A,G}+?

� FUNCTIONAL DEPENDENCY AND KEY

– Key determines a tuple and functional dependency determines other attributes. Any
formal relationship?

– Q: In previous example, is (A,B) a key of R?

R(A,B,C,G,H, I) and A→ B,A→ C,CG→ H,CG→ I,B → H

– X is a KEY of R if and only if

1. X → all attributes of R (i.e., X+ = R)

2. No subset of X satisfies 1 (i.e., X is minimal)

� PROJECTING FD

R(A,B,C,D) : A→ B,B → A,A→ C

– Q: What FDs hold for R′(B,C,D) which is a projection of R?

– In order to find FD’s after projection, we first need to compute F+ and pick the FDs
from F+ with only the attributes in the projection.

Decomposition

� 〈Remind the decomposition idea of StudentClass table〉

� Splitting table R(A1, . . . , An) into two tables, R1(A1, . . . , Ai) and R2(Aj , . . . , An)

– {A1, . . . , An} = {A1, . . . , Ai} ∪ {Aj , . . . , An}
– 〈Conceptual diagram for R(X,Y, Z)→ R1(X,Y ) and R2(Y, Z)〉

6



� Q: When we decompose, what should we watch out for?

LOSSLESS-JOIN DECOMPOSITION

� R = R1 ./ R2

� Intuitively, we should not lose any information by decomposing R

� Can reconstruct the original table from the decomposed tables

� Q: When is decomposition lossless?

〈example〉
cnum sid name

143 1 James
143 2 Elaine
325 3 Susan

– Q: Decompose into S1(cnum, sid), S2(cnum, name). Lossless?

– Q: Decompose into S1(cnum, sid), S2(sid, name). Lossless?

� DECOMPOSITION R(X,Y, Z)⇒ R1(X,Y ), R2(X,Z) IS LOSSLESS IF X → Y OR X → Z

– That is, the shared attributes are the key of one of the decomposed tables

– We can use FDs to check whether a decomposition is lossless

Example: StudentClass(sid, name, addr, dept, cnum, title, unit)

7



sid → (name,addr), (dept,cnum) → (title,unit)

* Q: Decomposition into R1(sid, name, addr), R2(sid, dept, cnum, title, unit). Loss-
less?

Boyce-Codd Normal Form (BCNF)

FD, key & redundancy

� Example: StudentClass(sid, name, addr, dept, cnum, title, unit)

– Q: sid → (name,addr). Does it cause redundancy?

– After decomposition, Student(sid, name, addr)

* Q: sid → (name,addr). Does it still cause redundancy?

* Q: Why does the same FD cause redundancy in one case, but not in the other?

� In general, FD X → Y leads to redundancy if X DOES NOT CONTAIN A KEY.

BCNF definition

� R is in BCNF with regard to F , iff for every non-trivial X → Y ∈ F+, X contains a key

� “Good” table design (no redudancy due to FD)

� Q: Class(dept, cnum, title, unit). dept,cnum→title,unit.

– Q: Intuitively, is it a good table design? Any redundancy? Any better design?

– Q: Is it in BCNF?

� Q: Employee(name, dept, manager). name→dept, dept→manager.

8



– Q: What is the English interpretation of the two dependencies?

– Q: Intuitively, is it a good table design? Any redundancy? Better design?

– Q: Is it in BCNF?

� Remarks: Most times, BCNF tells us when a design is “bad” (due to redundancy from
functional dependency.

BCNF normalization algorithm

� Decomposing tables until all tables are in BCNF

– For each FD X → Y that violates the condition, separate those attributes into another
table to remove redundancy.

– We also have to make sure that this decomposition is lossless.

� Algorithm

For any R in the schema
If non-trivial X → Y holds on R, and if X does not have a key

1. Compute X+ (X+: closure of X)

2. Decompose R into R1(X
+) and R2(X, Z) // X is common attributes where Z is all

attributes in R except X+

Repeat until no more decomposition

� Example: ClassInstructor(dept, cnum, title, unit, instructor, office, fax)
instructor → office, office → fax
(dept, cnum) → (title, unit), (dept, cnum) → instructor.

– Q: What is the English interpretation of the two dependencies?

– Q: Intuitively, is it a good table design? Any redundancy? Better design?

– Q: Is it in BCNF?

9



– Q: Normalize it into BCNF using the algorithm.

NOTE: The algorithm guarantees lossless join decomposition, because after the decomposi-
tion based on X → Y , X becomes the key of one of the decomposed table

� Example: R(A,B,C,G,H, I), A→ B,A→ C,G→ I,B → H. Convert to BCNF.

� Q: Does the algorithm lead to a unique set of relations?

〈e.g., R(A,B,C), A→ C,B → C〉
Q: What if we start with A→ C?

Q: What if we start with B → C?

� Q: R1(A,B), R2(B,C,D) with A→ B,B → A,A→ C. Are R1 and R2 in BCNF?

NOTE: We have to check all implied FD’s for BCNF, not just the given ones.

Good Table Design in Practice

� Normalization splits tables to reduce redundancy.

� However, splitting tables has negative performance implication

Example: Instructor: name, office, phone, fax
name → office, office → (phone,fax)

(design 1) Instructor(name, office, phone, fax)
(design 2) Instructor(name, office), Office(offce, phone, fax)

10



Q: Retrieve (name, office, phone) from Instructor. Which design is better?

� As a rule of thumb, start with normalized tables and merge them if performance is not good
enough

Things to Remember

� Functional dependency X → Y

– Trivial functional dependency

– Logical implication

– Closure

� Decomposition

– Lossless join decomposition

� Boyce-Codd Normal Form (BCNF)

� BCNF decomposition algorithm

11


