
CS143: Basic SQL Query

Book Chapters

(5th) Chapter 3.1, 3.3-4, 3.7
(6th) Chapter 3.1, 3.3-5, 3.8
(7th) Chapter 3.1, 3.3-5, 3.8

Things to Learn

� Basic SELECT query

� SQL set operator

� Subqueries

SQL

� Structured Query Language

� The standard language for all commericial RDBMS

� SQL has many aspects

– DDL: schema definition, constraints, index, . . .

– DML: query, update, . . .

– triggers, transaction, authorization, . . .

� In this lecture, we cover the DML aspect of SQL

– How to query and modify exsiting databases

� SQL and DBMS

– SQL is high-level description of user’s query

* No concrete procedure for query execution is given

– The beauty and success of DBMS

* The system understands the query and find the best way possible to execute it
automatically

1



Example to Use in the Class

� School information

– Student(sid, name, age, GPA, address, . . . )

– Class(dept, cnum, sec, unit, title, instructor, . . . )

– Enroll(sid, dept, cnum, sec)

Basic SELECT statement

� Query 1: Find the titles and instructors of all CS courses

� Semantics

– Interpret and write FROM → WHERE → SELECT

* FROM: the list of tables to look up

* WHERE: conditions to meet

* SELECT: the attributes to return

– Conceptual execution (table cursor diagram)

Check condition Return attr

General SQL statement

� SELECT A1, ..., An

FROM R1, ..., Rm

WHERE C

≡ πA1,...,An(σC(R1 × · · · ×Rm))

� SELECT *: all attributes

� SELECT is “projection” not “selection”: can be confusing

� SQL does not remove duplicates: Major difference between SQL and relational algebra

– More examples will follow

2



SQL join

� Query 2: Find the names and GPAs of all students taking CS classes

– Conceptually WHERE R, S

(Table join diagram)
R S

– For every pair of tuples from R and S, we check condition and produce output

Notes:

– S, E: tutple variable

* renaming operator

* We can consider that S and E are variables that bind to every pair of tuples

– Attribues can also be renamed

* GPA (AS) grade

– DISTINCT: remove duplicates in the results

WHERE conditions

� Query 3: All student names and GPAs who live on Wilshire

– %: any length (0–∞) string
: one character
’%Wilshire%’: Any string containing Wilshire

Q: What does ’ %’ mean?

� Other useful string functions: UPPER(), LOWER(), CONCAT(), ...

3



Set operators

� ∩: INTERSECT, ∪: UNION, −: EXCEPT

� Can be applied to the result of SELECT statements or to relations

� Query 4: All names of students and instructors

� Important points to note

– Set operators should have the same schema for operands

* In practice, it is okay to have just compatible types

– Set operators follow set semantics and remove duplicates

* Set semantics is well understood for set operations. Not many people know bag
semantics.

* Efficiency

– To keep duplicates, use UNION ALL, INSERSECT ALL, EXCEPT ALL

� Query 5: Find ids of all students who are not taking any CS courses.

� MySQL support:

– Standard MySQL does not support INTERSECT or EXCEPT.

– MariaDB v10.3 introduced supports for INTERSECT and EXCEPT.

4



Subqueries

� SELECT statement may appear in WHERE clause

– Treated the same as regular relations

– If the result is one-attribute one-tuple relation, the result can be used like a ’value’

Scalar-value subqueries

� Query 6: Find the student ids who live at the same addr as the student with id 301

� Q: Can we rewrite it without subquery?

� Notes:

– There is a whole theory about whether/how to rewite a subquery to non-subquery SQL

– The basic result is we can rewrite subqueries as long as we do not have negation.

– With negation, we need EXCEPT

– One of the reasons why relational model has been so successful

* Because it is easy to understand and model, we can design and prove elegant theo-
rems.

* Many efficient and provable algorithms.

Set membership (IN, NOT IN)

� Query 7: Find all student names who take CS classes.

Idea: Find the set of sids that take CS classes first. Then check whether any student’s id
belong to that set or not.

– IN is a set membership operator

* (a IN R) is TRUE if a appears in R

5



Q: Can we write the same query without subqueries?

Q: Are the above two queries equivalent?

Q: Why we care about duplicates so much?

� Query 8: Find the names of students who take no CS classes

Q: Can we rewrite it without subqueries?

Set comparison operator (> ALL, < SOME, . . . )

� Query 9: Find the ids of students whose GPA is greater than all students of age 18 or less

– ALL is the universial quantifier ∀

6



� Query 10: Find the IDs of students whose GPA is better than at least one other student of age ≤ 18

– SOME is the existential quantifier ∃

Other Set comparison operators: > ALL, <= SOME, = SOME, ..., etc.

– (<> ALL) ≡ (NOT IN), (= SOME) ≡ IN

Correlated subqueries

� Query 11: Find the names of the students who take any class

– EXISTS: WHERE EXISTS(SELECT ... FROM ... WHERE)

* True if SELECT .. FROM .. WHERE returns at least one tuple

– Correlated subquery interpretation:

* Outer query looks at one tuple at a time and binds the tuple to S

* For each S, we execute the inner query and check the condition

* This is just interpretation. DBMS executes it more efficiently but get the
same result (but not necessarily MySQL).

Subqueries in FROM clause

� Can be used like a regular relation

� Example: SELECT name

FROM (SELECT name, age FROM Student) S

WHERE age > 17

– A subquery inside FROM MUST be renamed

– Student names with age > 17

Common Table Expression

� Introduced in SQL1999

� Similar to subqueries in FROM, but makes it easier to reuse query results

� Syntax: WITH alias AS (query)

SELECT ...

7



� Example: WITH S AS (SELECT name, age FROM Student)

SELECT name FROM S WHERE age > 17

� Q: Do subqueries make SQL more expressive than relational algebra?

8


