
CS143: SQL Query (2)

Book Chapters

(5th) Chapter 3.5-8, 3.11, 4.7-8
(6th) Chapter 3.6, 3.7, 3.9, 4.1, 5.4-5
(7th) Chapter 3.6, 3.7, 3.9, 4.1, 5.4-5

Things to Learn

� Aggregate function

� Window function

� Case function

� ORDER BY and FETCH FIRST

� SQL data modifications

� Null and three-valued logic

� Outer join

� Bag semantics

� SQL expressive power

Aggregates

� The operators so far check the condition “tuple-by-tuple”

� They never “summarize” multiple tuples into one.
For example, ’SUM’, ’AVG’ of GPA is not possible.

� Aggregate function (aggregate diagram)
tuples

Aggregate
Function one tuple

1

� Query 1: Find the average GPA

� Common aggregate functions: SUM, AVG, COUNT, MIN, MAX on single attribute or COUNT(*).

Problems of Duplicates

� Query 2: The number of students taking CS classes

� Query 3: The average GPA of the students taking CS classes

GROUP BY clause

� Sometimes, we want to get separate statistics for each group of tuples

Example: Age AVG(GPA)

17 3.7
19 2.1
20 3.1

But AVG() takes average over all tuples.

� Query 4: Find the average GPA for each age group

Q: Is the following query meaningful?

SELECT sid, age, AVG(GPA)

FROM Student

GROUP BY age

– SELECT can have only attributes that have a single value in each group or aggregates

2

� Query 5: Find the number of classes each student is taking

Q: What about the students who take no classes?

Comments: We will learn about outer join that can address this issue later.

HAVING clause

� Query 6: Find students who take two or more classes

– Conditions on aggregates should appear in the HAVING clause.

Q: Can we rewrite the query without HAVING clause?

– In general, we can rewrite a query not to have a HAVING clause.

Window Function

� Query 7: Per each result row, return a student’s name, their GPA, and the overall GPA average

– Q: Will this work?

SELECT name, GPA, AVG(GPA) FROM Student

� Window function:

3

– Syntax: FTN() OVER()

* Append OVER() to convert an aggregate function to a window function

– Introduced in SQL 2003

– Aggregate function merges all input tuples into a single output tuple

– Window function generates one output tuple per each input tuple, but the function is
computed over all input tuples

� PARTITION BY:

– Query 8: Per each result row, return a student’s name, their GPA, and the average GPA
within the student’s age group

– OVER(PARTITION BY attr)

– With PARTITION BY, window function is applied only within the same partition

Case Function

� Limited support of if-then-else

– Return different values depending on conditions

� Syntax: CASE
WHEN <condition> THEN <expr>

WHEN <contidion> THEN <expr>

ELSE <expr>

END

� Can be used anywhere a column name can be referenced

– SELECT, WHERE, GROUP BY, ...

� Query 9: Average GPA of the child vs adult group

4

� Q: What if we want to show “child” and “adult” as part of the output?

ORDER BY clause

� Sometimes we may want to display tuples in a certain order. For example order all students
by their GPA

� SELECT sid, GPA

FROM Student

ORDER BY GPA DESC, sid ASC

– All students and GPAs, in the descending order of their GPAs and the ascending order
of sids. Default is ASC if omitted.

– Does not change SQL semantics. Just makes the display easier to look at and understand

FETCH FIRST clause

� Query 10: Top-3 students ordered by GPA

– Sometimes, we just want a few rows from the result. Is there a way to limit result size?

� SQL 2008 Syntax: [OFFSET 〈offset〉 ROWS] FETCH FIRST 〈count〉 ROWS ONLY

– From the result, skip first offset rows and return the subsequent count rows

– Unfortunately, this was standardized only in SQL 2008. Many systems use their own
syntax, including MySQL.

� Variations:

– MySQL: LIMIT 〈count〉 OFFSET 〈offset〉
– Oracle used to use rownum, DB2 used to use SELECT TOP, but they both support FETCH

FIRST now

– MS SQL server requires ORDER BY clause and OFFSET to use FETCH FIRST

5

General SQL SELECT statement

� SELECT attributes, aggregates

FROM relations

WHERE conditions

GROUP BY attributes

HAVING conditions on aggregates

ORDER BY attributes, aggregates

FETCH FIRST n ROWS ONLY

� Evaluation order: FROM→WHERE→GROUP BY→ HAVING→ORDER BY→ FETCH
FIRST → SELECT

6

Data Modification in SQL (INSERT/DELETE/UPDATE)

� Insertion: INSERT INTO Relation Tuples

– Q: Insert tuple (301, CS, 201, 01) to Enroll?

– Q: Populate Honors table with students of GPA > 3.7?

� Deletion: DELETE FROM R WHERE Condition

– Q: Delete all students who are not taking classes

� Update: Update R

SET A1 = V1, A2 = V2, ..., An = Vn

WHERE Condition

– Q: Increase all CS course numbers by 100

7

More Advanced SQL

We now go over a bit more esoteric yet important details of SQL

NULL and Three-valued logic

� Arithmetic operators and comparison

Q: SELECT name

FROM Student

WHERE GPA * 100/4 > 90

What should we do if GPA is NULL?

– Q: What should be the value for GPA * 100/4?

– Rule: Arithmatic operators with NULL input returns NULL

– Q: What should be NULL > 90?

– Rule: Arithmatic comparison with NULL value return Unknown

* SQL is Three-valued logic: True, False, Unknown

* SQL returns only True tuples

* GPA * 100/4 > 90 does not return a tuple if GPA is NULL

� Three-valued logic

– Q: GPA > 3.7 AND age > 18. What if GPA is NULL and age < 18?

– Q: GPA > 3.7 OR age > 18. What if GPA is NULL and age < 18?

8

– Truth table

* AND: U AND T = U, U AND F = F, U AND U = U

* OR: U OR T = T, U OR F = U, U OR U = U

– NOT Unknwon = Unknown. It’s not known

– SQL returns only True tuples

� Aggregates

– Q: ID GPA

1 3.0
2 3.6
3 2.4
4 NULL

SELECT AVG(GPA)

FROM Student

What should be the result?
What about COUNT(*)? COUNT(GPA)?

– Rule: Aggregates are computed ignoring NULL value, except COUNT(*).

* Too much information is lost otherwise.

* COUNT(*) considers a NULL tuple as a valid tuple

* When the input to an aggregate is empty, COUNT returns 0; all others return
NULL.

� Set operators (∪,∩,−)

– Q: What should be {2.4, 3.0, NULL} ∪ {3.6, NULL}?

– Rule: NULL is treated like other values in set operators

� Checking NULL

– IS NULL or IS NOT NULL to check if the value is null.

� COALESCE() function

– Return first non-NULL value in the list

– Example: COALESCE(phone, email, addr)

9

OUTER join

� Q: How many classes does each student take?

– Q: What about student 208, Esther? What should we print? What is the problem?

– Q: Anyway to preserve dangling tuples?

� OUTER JOIN operator in FROM clause:

– R LEFT OUTER JOIN S ON R.A = S.A

* Keep all dangling tuples from R by padding S attributes with NULL.

– R RIGHT OUTER JOIN S ON R.A = S.A

* keep all dangling tuples from S by padding R attributes with NULL

– R FULL OUTER JOIN S ON R.A = S.A

* keep all dangling tuples both from R and S with appropriate padding

� Q: How to rewrite the above query to include Esther?

� Other supported join syntax

– R NATURAL JOIN S

– R (INNER) JOIN S ON R.A = S.A

10

SQL and bag semantics

� What is a bag (multiset)?

– A set with duplicate elements

– Order does not matter

– Example: {a, a, b, c} = {a, c, b, a} 6= {a, b, c}

� SQL and bag semantics

– Default SQL statements are based on bag semantics

* We already learned the bag semantics

* Except set operators (UNION, INTERSECT, EXCEPT), which use set semantics

– We can enforce set semantics by using DISTINCT keyword

� Bag semantics for set operators

– UNION ALL, INTERSECT ALL, EXCEPT ALL

* MySQL supports only UNION ALL

– Q: {a, a, b} ∪ {a, b, c}?

– Q: {a, a, a, b, c} ∩ {a, a, b}?

– Q: {a, a, b, b} − {a, b, b, c}?

� What rules still hold for Bag?

– Q: Under bag semantics, R ∪ S = S ∪R? R ∩ S = S ∩R?
R ∩ (S ∪ T) = (R ∩ S) ∪ (R ∩ T)?

* Under bag semantics, some rules still hold, some do not

* Consider, R = {a}, S = {a}, T = {a} to check the distributive rule.

11

Expressive power of SQL

� Example: All ancestors
child parent

Susan John
John Andy
Andy Elaine
.

– Q: Can we find all ancestors of Susan using SQL?

� Example: All reachable destination
city 1 city 2

A B
B D
A C
E F
G H
.

– Q: Find all cities reachable from A?

� Comments: SQL92 does not support “recursion” and thus cannot compute the transitive
closure.

– Recursion is supported in SQL1999.

– WITH RECURSIVE R(A1, A2) AS ...

WITH RECURSIVE Ancestor(child, ancestor) AS (

(SELECT child, parent AS ancestor FROM Parent)

UNION

(SELECT A.child, P.parent

FROM Ancestor A, Parent P

WHERE A.ancestor = P.child))

SELECT * FROM Ancestor WHERE Ancestor.child = ’Susan’;

– MySQL introduced support for recursive common table expression in v8.0

12

