
CS143: TRANSACTION

Book Chapters

(5th) Chapters 15.1-4, 15.7-8, 17.1-6
(6th) Chapters 14.1-5, 14.7-8, 14.10, 16.1-4
(7th) Chapter 17.1-5, 17.7-8, 17.10, 19.1-4

MOTIVATION FOR TRANSACTION

1. Crash recovery

� 〈eg, Transfer $1M from Susan to Jane〉 (example slide)

– S1: UPDATE Account SET balance = balance - 1000000 WHERE owner = ‘Susan’

– S2: Update Account SET balance = balance + 1000000 WHERE owner = ‘Jane’

– System crashes after S1 but before S2. What now?

2. Concurrency

� We do not want to allow oncurrent access from multiple clients. We do not want to
“lock out” the DBMS until one client finishes

〈explain with client/server diagram〉

� Can allow parallel execution while avoiding any potential problems from concurrency?
(we will see concurency problem examples soon).

TRANSACTION AND “ACID” PROPERTY

� TRANSACTION: A sequence of SQL statements that are executed as a “unit”

� ACID PROPERTY OF TRANSACTION: Atomicity, Consistency, Isolation, Durability

1. Atomicity: “ALL-OR-NOTHING”

1

– Either ALL OR NONE of the operations in a transaction is executed.

– If the system crashes in the middle of a transaction, all changes by the transaction
are “undone” during recovery.

2. Durability

– After a balance transfer is “done”, the transfer silently “disappears” due to system
crash. What will the customer think?

– COMMIT: If a transaction “committed”, all its changes remain permanently even
after system crash

* This guarantee may not be easy because some changes may be reflected only in
memory for performance reasons

3. Isolation: Even if multiple transactions are executed concurrently, the result is the same
as executing them in some sequential order.

– Each transaction is unaware of (is isolated from) other transaction running concur-
rently in the system
〈explain by time line diagram〉

〈– T1 –〉 〈– T3 –〉〈——– T6 ———〉
—————————————————————–
〈—T2 ——–〉 〈– T4 –〉 〈– T5 —–〉

4. Consistency: If the database is in a consistent state before a transaction, the database
is in a consistent state after the transaction

� DBMS guarantees the ACID property for all transactions

– With minor caveats that will be discussed later.

� Q: How can the database system guarantee these? Any ideas?

DECLARING A TRANSACTION IN SQL

� Two important commands:

– COMMIT: All changes made by the transaction is stored permanently

– ROLLBACK: Undo all changes made by the transaction

� AUTOCOMMIT MODE

1. With AUTOCOMMIT mode OFF

– Transaction implicitly begins when any data in DB is read or written

– All subsequent read/write is considered to be part of the same transaction

– A transaction finishes when COMMIT or ROLLBACK statement is executed
〈explain using time line diagram〉

2

X X

| | | | | | |
INSERT DELETE SELECT COMMIT DELETE ROLLBACK INSERT

2. With AUTOCOMMIT mode ON

– Every SQL statement becomes one transaction

� Setting Autocommit mode:

– In Oracle: SET AUTOCOMMIT ON/OFF (default is off)

– In MS SQL Server: SET IMPLICIT TRANSACTIONS OFF/ON (default is off)

* IMPLICIT TRANSACTIONS OFF means AUTOCOMMIT ON in MS SQL Server

– In MySQL: SET AUTOCOMMIT = {0|1} (default is on. InnoDB only)

– In DB2: UPDATE COMMAND OPTIONS USING c ON/OFF (default is on)

– In JDBC: connection.setAutoCommit(true/false) (default is on)

– In Oracle, MS SQL Server, and MySQL, BEGIN temporarily disables autocommit mode
until COMMIT or ROLLBACK

3

SQL ISOLATION LEVELS

� Motivation: In some cases, we may not need full ACID. We may want to allow some “bad”
schedule to achieve more concurrency

– SQL isolation levels allow a few “bad” scenarios for more concurrency

* dirty read, non-repeatable read, phantom

– We go over three scenarios in which “relaxing” the strict ACID may be desirable for
some applications

� 〈explain the isolation levels through examples and fill in the table〉

isolation level dirty read nonrepeatable read phantom

read uncommitted
read committed
repeatable read
serializable

� DIRTY READ may be OK

– 〈example〉
* T1: UPDATE Employee SET salary = salary + 100

* T2: SELECT salary FROM Employee WHERE name = ‘John’

– Q: Under ACID, once T1 update John’ s salary, can T2 read John’s salary?

* Sometimes, it may be okay for T2 to proceed.

– DIRTY READ: a transaction reads uncommitted values

– “READ UNCOMMITTED” isolation level allows dirty read.
(Fill in the dirty read column)

� NON-REPEATABLE READ may be OK

– 〈example〉
* T1: UPDATE Employee SET salary = salary + 100 WHERE name = ‘John’

* T2: (S1) SELECT salary FROM Employee WHERE name = ‘John’
. . .
(S2) SELECT salary FROM Employee WHERE name = ‘John’

– Q: Under ACID, can we get different values for S1 and S2?

* Sometimes it may be okay to get different values

– NON-REPEATABLE READ: When Ti reads the same row multiple times, Ti may get
different values

– “READ UNCOMMITTED” or “READ COMMITTED” isolation levels allow NON-
REPEATABLE READ.
(Fill in the non-repeatable read column)

4

� PHANTOM may be OK

– 〈example〉
* Initially, SUM(Employee.salary) = $100,000

* T1: INSERT INTO Employee (e1, 1000), (e2, 1000)

* T2: SELECT SUM(salary) FROM Employee

– Q: Under ACID, what may T2 return?

* Sometimes, it may be OK for T2 to return $101,000

– Q: Under REPEATABLE READ, what if T2 is

SELECT SUM(salary) FROM Employee
. . .
SELECT SUM(salary) FROM Employee

What can T2 return?

– PHANTOM: When new tuples are inserted, once some of them are seen by statements,
or only some statements see the newly inserted tuples.

– Except for “SERIALIZABLE” isolation level, PHANTOM is always allowed.

� MIXED ISOLATION LEVELS

– 〈example on mixed isolation levels〉
* T1: UPDATE Employee SET salary = salary + 100

ROLLBACK

* T2: SELECT salary FROM Employee WHERE name = ‘John’

– Q: T1 - SERIALIZABLE, T2 - SERIALIZABLE. What may T2 return?

– Q: T1 - SERIALIZABLE, T2 - READ UNCOMMITTED. What may T2 return?

– COMMENTS:

* Only when all transactions are serializable, we guarantee ACID.

* The isolation level is in the eye of the beholding transaction.

� READ ONLY TRANSACTION

5

– Many, many transactions are read only.

– By declaring a transaction as READ ONLY, we can help DBMS to optimize for more
concurrency

� SQL ISOLATION LEVEL DECLARATION

– SET TRANSACTION options

– access mode: READ ONLY / READ WRITE (default: READ WRITE)

– isolation level: ISOLATION LEVEL

* READ UNCOMMITTED

* READ COMMITTED (Oracle default)

* REAPEATABLE READ (MySQL, DB2 default)

* SERIALIZABLE

– e.g) SET TRANSACTION READ ONLY, ISOLATION LEVEL REPEATABLE READ

* READ UNCOMMITTED cannot be READ WRITE

* Needs to be declared before EVERY transaction for non-default settings

6

RECOVERY AND LOGGING

� Motivation for logging. Consider T : read(A) write(A) read(B) write(B).

– Example 1: S = read(A) write(A) read(B) write(B) commit. New A and B values
are “cached” in main memory for performance reasons. Can DBMS commit T without
writing the new values permanently to the disk?
〈main-memory and disk diagram〉

– Example 2: S = read(A) write(A) read(B) abort. What should we do? How do we get
the old value of A?

– Example 3: S = read(A) write(A) !!!CRASH!!! What should DBMS do when it re-
boots?

� Rules for log-based recovery

1. For every action DBMS performs, a “log record” for the action should be generated.

– 〈Ti, start〉
– 〈Ti, Xj , old-value, new-value〉
– 〈Ti, commit〉
– 〈Ti, abort〉

2. Modification log record should be written to disk BEFORE the actual modified data is
written to the disk.

– All log records through 〈Ti, A, 5, 10〉 should be written to disk before the new value
of A, 10, is written to the disk data block.

3. Modification log record should be written to disk BEFORE the actual modified data is
written to the disk.

– All log records through 〈Ti, A, 5, 10〉 should be written to disk before the new value
of A, 10, is written to the disk data block.

4. Before commit of Ti, all log records through 〈Ti, commit〉 should be written to the disk.

– The actual data block may or may not be written to the disk at commit.

5. During abort, DBMS gets old values from the log

6. During recovery, DBMS does the following:

(a) “re-executes” all actions in the log from the beginning.

(b) “rolls back” all actions of “non-committed” transactions in the reverse order.

7

� Example:
〈Explain log records line by line〉

A: 100, B: 100, C: 100

T1 T2 Log
x = read(A) 1 〈T1, start〉
x = x - 50
write(A, x) 2 〈T1, A, 100, 50〉

z = read(C) 3 〈T2, start〉
z = z * 2
write(C) 4 〈T2, C, 100, 200〉
commit 5 〈T2, commit〉

y = read(B)
y = y + 50
write(B, y) 6 〈T1, B, 100, 150〉
commit 7 〈T1, commit〉

– Q: What should DBMS do during recovery when it sees up to log record 4?

– Q: What should DBMS do during recovery when it sees up to log record 5?

– Q: What should DBMS do during recovery when it sees up to log record 7?

� We can use CHECKPOINT to minimize recovery time.

8

