
CS143: B+Tree
Professor Junghoo “John” Cho

B+Tree
• Most popular index structure in RDBMS
• Advantage
• Suitable for dynamic updates
• Balanced
• Minimum space usage guarantee

• Disadvantage
• Non-sequential index blocks

B+Tree (n=3)

20 30 50 80 90 70

50 80

70

Leaf

Non leaf
root

20 Susan 2.7
30 James 3.6
50 Peter 1.8
… … …

...

... ...

• n: # of pointer
spaces in a node

• Balanced: All leaf
nodes are at the
same level

Leaf Node (n=3)

• All pointers (except the last one) point to tuples
• At least half of the pointer spaces are used.

(more precisely, (𝑛 + 1)/2 pointers)

20 30 Last pointer: to the next leaf node

20 Susan 2.7
30 James 3.6
50 Peter 1.8
… … …

points to tuple

Non-leaf Node (n=3)

• Points to the nodes one-level below
- No direct pointers to tuples

• At least half of the pointer spaces used (precisely, 𝑛/2)
- except root, where at least 2 pointer spaces used

23 56

Tuples with
23£ key <56

Tuples with
56£ key

Tuples with
key <23

Space Usage Guarantee
• B+Tree nodes have at least
• Leaf (non-root): (𝑛 + 1)/2 pointers, (𝑛 + 1)/2 − 1 keys
• Non-leaf (non-root): 𝑛/2 pointers, 𝑛/2 − 1 keys
• Root: 2 pointers, 1 key

n=4 Minimum Full

Leaf

Non-leaf

5 8 5 8 10

5 5 8 10

Search on B+tree

• Find a greater key and follow the link on the left
(Algorithm: Figure 14.11 on textbook)

• Find 30, 60, 70?

20 30 80 90

70

50 80

7050

B+Tree Insertion
1. no overflow
2. leaf overflow
3. non-leaf overflow
4. new root

1. No Overflow
• Insert 60

20 30 80 90

70

50 80

7050 60

2. Leaf Overflow
• Insert 55

• No space to store 55

20 30 50 60 80 90

70

50 80

70
55

Overflow!

20 30 50 60 80 90

70

50 80

70

2. Leaf Overflow
• Insert 55

55

Overflow!

• Split the leaf into two. Put the keys half and half

20 30 50 55 80 90

70

50 80

7060

2. Leaf Overflow
• Insert 55

• Split the leaf into two. Put the keys half and half

• Copy the first key of the new node to parent

20 30 50 55 80 90

60

70

50 80

7060

2. Leaf Overflow
• Insert 55

20 30 50 55 80 90

• Q: After split, leaf nodes always half full?

No overflow. Stop

70

50 80

70

60

60

2. Leaf Overflow
• Insert 55

20 30 50 55

50 60

Leaf overflow. Split and copy the first key of the new node

60

70

3. Non-leaf Overflow
• Insert 52

20 30 50 52

50 60

55 60

70

3. Non-leaf Overflow
• Insert 52

20 30 50 52

50 60

55

55 60

70

3. Non-leaf Overflow
• Insert 52

20 30 50 52

50 55 60
Overflow!

55 60

70

3. Non-leaf Overflow
• Insert 52

20 30 50 52

50 55

Split the node into two. Move up the key in the middle.

60

55 60

70

3. Non-leaf Overflow
• Insert 52

20 30 50 52

55 Middle key

55

6050

60

70

3. Non-leaf Overflow
• Insert 52

20 30 50 52

55 70
No overflow. Stop

Q: After split, non-leaf at least half full?

55

6050

60

3. Non-leaf Overflow
• Insert 52

20 30 50 55

50 60

60

4. New Root
• Insert 25

20 25 50 55

50 60 30 Overflow!

6030

4. New Root
• Insert 25

20 25 50 55

50 60 30

Split and move up the mid-key.
Create new root

6030

4. New Root
• Insert 25

20 25 50 55 60

6030

30

50

4. New Root
• Insert 25
• Q: At least 2 pointers at root?

B+Tree Insertion
• Leaf node overflow
• The first key of the new node is copied to the parent

• Non-leaf node overflow
• The middle key is moved to the parent

• Detailed algorithm: Figure 14.17

B+Tree Deletion
1. No underflow
2. Leaf underflow (coalesce with neighbor)
3. Leaf underflow (redistribute with neighbor)
4. Non-leaf underflow (coalesce with neighbor)
5. Non-leaf underflow (redistribute with neighbor)
6. Tree depth reduction

In the examples, n = 4
• Underflow for non-leaf when fewer than 𝑛/2 = 2 pointers
• Underflow for leaf when fewer than (𝑛 + 1)/2 = 3 pointers
• Nodes are labeled as a, b, c, d, …

• Delete 25

20 25 30 40 50

20 40 60
a

b c d e

1. No Underflow

• Delete 25
• Underflow? Min 3 ptrs. Currently 3 ptrs

20 30

20 40 60
a

b c d e

Underflow?

40 50

1. No Underflow

• Delete 50

20 30 40 50

20 40 60

60
b c d

a

e

2. Coalesce Leaf with Neighbor

• Delete 50
• Underflow? Min 3 ptrs, currently 2.

20 40 60

60
b c d

a

Underflow?
4020 30

e

2. Coalesce Leaf with Neighbor

• Delete 50
• Try to merge with a sibling

20 40 60

60
b c d

a

underflow!

Can be merged?

4020 30
e

2. Coalesce Leaf with Neighbor

• Delete 50
• Merge c and d. Move everything on the right to the left.

20 40 60

60
b c d

a

Merge

4020 30
e

2. Coalesce Leaf with Neighbor

• Delete 50
• Once everything is moved, delete d

20 30 40

20 40 60

60
b c d

a

e

2. Coalesce Leaf with Neighbor

• Delete 50
• After leaf node merge,

• From its parent, delete the pointer and key to the deleted node

20 30 40

20 40 60

60
b c d e

a
2. Coalesce Leaf with Neighbor

• Delete 50
• Check underflow at a. Min 2 ptrs, currently 3

20 30 40

20 60

60
b c

a

Underflow? e

2. Coalesce Leaf with Neighbor

• Delete 50

20 40 60

60
b c d e

a

40 5020 25 30

3. Redistribute Leaf with Neighbor

• Delete 50
• Underflow? Min 3 ptrs, currently 2
• Check if d can be merged with its sibling c or e
• If not, redistribute the keys in d with a sibling

• Say, with c

20 40 60

60
b c d e

a

Underflow?

Can be merged?

4020 25 30

3. Redistribute Leaf with Neighbor

• Delete 50
• Redistribute c and d, so that nodes c and d are roughly

“half full”
• Move the key 30 and its tuple pointer to the d

20 40 60

60
b c d e

a

Redistribute

4020 25 30

3. Redistribute Leaf with Neighbor

• Delete 50
• Update the key in the parent

20 25

20 40 60

60
b c d e

a

30 40

3. Redistribute Leaf with Neighbor

3. Redistribute Leaf with Neighbor

• Delete 50
• No underflow at a. Done.

20 40 60

60
b c d e

a 30
Underflow?

20 25 30 40

• Delete 20
• Underflow! Merge d with e.

• Move everything in the right to the left

70

a

b c

d e f g

50 90

50 60

7030

30 4010 20

4. Coalesce Non-Leaf with Neighbor

• Delete 20
• From the parent node, delete pointer and key to the deleted node

70

a

b c

d e f g

50 90

50 60

7030

10 30 40

4. Coalesce Non-Leaf with Neighbor

• Delete 20
• Underflow at b? Min 2 ptrs, currently 1.
• Try to merge with its sibling.

• Nodes b and c: 3 ptrs in total. Max 4 ptrs.
• Merge b and c.

70

a

b c

d f g

underflow!

Can be merged?

50 90

50 60

70

10 30 40

4. Coalesce Non-Leaf with Neighbor

• Delete 20
• Merge b and c

• Pull down the mid-key 50 in the parent node
• Move everything in the right node to the left.

• Very important: when we merge non-leaf nodes, we
always pull down the mid-key in the parent and place it
in the merged node.

70

a

b c

d f g

merge
50 90

50 60

70

10 30 40

4. Coalesce Non-Leaf with Neighbor

• Delete 20
• Merge b and c

• Pull down the mid-key 50 in the parent node
• Move everything in the right node to the left.

• Very important: when we merge non-leaf nodes, we
always pull down the mid-key in the parent and place it
in the merged node.

70

b c

d f g
50 60

70

9050
a

10 30 40

4. Coalesce Non-Leaf with Neighbor

70

a

b c

d f g

90

50 60

50 70

• Delete 20
– Delete pointer to the merged node.

10 30 40

4. Coalesce Non-Leaf with Neighbor

70

a

b

d f g

90

50 60

50 70

• Delete 20
– Underflow at a? Min 2 ptrs. Currently 2. Done.

10 30 40

4. Coalesce Non-Leaf with Neighbor

• Delete 20
• Underflow! Merge d with e.

70

70 90 97

a

b c

d e f g
50 60

50 99

30

30 4010 20

5. Redistribute Non-Leaf with Neighbor

• Delete 20
• After merge, remove the key and ptr to the deleted node from the

parent

70

70 90 97

a

b c

d e f g
50 60

50 99

30

10 30 40

5. Redistribute Non-Leaf with Neighbor

• Delete 20
• Underflow at b? Min 2 ptrs, currently 1.
• Merge b with c? Max 4 ptrs, 5 ptrs in total.
• If cannot be merged, redistribute the keys with a sibling.

• Redistribute b and c

70

70 90 97

a

b c

d f g

underflow!

Can be merged?

50 60

50 99

10 30 40

5. Redistribute Non-Leaf with Neighbor

• Delete 20

Redistribution at a non-leaf node is done in two steps.
Step 1: Temporarily, make the left node b “overflow” by pulling

down the mid-key and moving everything to the left.

70

70 90 97

a

b c

d f g

redistribute

50 60

50 99

10 30 40

5. Redistribute Non-Leaf with Neighbor

• Delete 20

Step 2: Apply the “overflow handling algorithm” (the same
algorithm used for B+tree insertion) to the overflowed node
• Detailed algorithm in the next slide

70

50 70 90

a

b c

d f g

redistribute

97
temporary overflow

50 60

99

10 30 40

5. Redistribute Non-Leaf with Neighbor

• Delete 20

Step 2: “overflow handling algorithm”
• Pick the mid-key (say 90) in the node and move it to parent.
• Move everything to the right of 90 to the empty node c.

70

50 70 90

a

b c

d f g

redistribute

97

50 60

99

10 30 40

5. Redistribute Non-Leaf with Neighbor

• Delete 20
• Underflow at a? Min 2 ptrs, currently 3. Done

70

a

b c

d f g
50 60

90 99

9750 70

10 30 40

5. Redistribute Non-Leaf with Neighbor

70

a

b c

d e f g

50

50 60

7030

30 4010 20

6. Reduce Tree Depth

• Delete 20
• Underflow! Merge d with e.
• Move everything in the right node to the left

70

a

b c

d e f g
50 60

7030

10 30 40

6. Reduce Tree Depth

50

• Delete 20
• From the parent node, delete pointer and key to the deleted

node

70

a

b c

d f g

merge

50 60

70

10 30 40

6. Reduce Tree Depth

50

b

• Delete 20
• Merge b and c

• Pull down the mid-key 50 in the parent node
• Move everything in the right node to the left.

• Delete 20
• After merging b and c, remove empty root node
• Tree depth is decreased by one

70

b

d f g
50 60

70
c

50
a

10 30 40

6. Reduce Tree Depth

b

• Delete 20

70

b

d f g
50 60

7050

10 30 40

6. Reduce Tree Depth

b

Important Points
• Remember:
• For leaf node merging, we delete the mid-key from the parent
• For non-leaf node merging/redistribution, we pull down the mid-key from

their parent.

• Exact algorithm: Figure 14.21

Where does n come from?
• n determined by
• Size of a node
• Size of search key
• Size of an index pointer

• Q: 1024B node, 10B key, 8B ptr à n?

Range Search on B+tree
• SELECT *

FROM Student
WHERE sid > 60?

20 30 50 60 80 90

70

50 80

70

