

CS143: Disk

Professor Junghoo "John" Cho

System Architecture

Magnetic disk vs SSD

- Magnetic Disk
 - Stores data on a magnetic disk
 - Typical capacity: 1TB 20TB
- Solid State Drive (SSD)
 - Stores data in NAND flash memory
 - Typical capacity: 100GB 10TB
 - Faster than magnetic disk
 - Particularly random disk access
 - But x5 more expensive and limited write cycles (~2000)

Structure of a Platter

- Track, cylinder, sector (=block, page)
- Data is transferred in the unit of "block" (not bytes) to amortize high access delay

Typical Magnetic Disk

- Platter diameter: 2.5-5.25 in
- Platters: 1 20
- Tracks: 1000 50,000
- Sectors per track: 1000 50,000
- Sector size: 512 50K
- Rotation speed: 1000 15000 rpm
- Overall capacity: 1TB 20TB

- Q: How long does it take to read a page of a disk to memory?
- Q: What needs to be done to read a page?

Access Time

• Access time =

(seek time) + (rotational delay) + (transfer time)

Seek Time

• Time to move a disk head between tracks

• Full stroke ~ 20 ms

Rotational Delay

- Typical disk:
 - 1000 rpm 15000 rpm
- Q: For 6000 RPM, average rotational delay? 5ms60m 6000 $\frac{1}{10}$ see 10ms

Transfer Time

- 6000RPM 10,000 sectors/track
- Q: How long to read one sector?

Access Time

- 6000RPM, 10,000 sectors/track

Transfer Rate

- The rate at which we can transfer data from disk
 - Measured in bytes/sec
- Q: 6,000 RPM, 10000 sectors/track, 1KB/sector what is the transfer rate?
 - Burst transfer rate vs Sustained transfer rate $IKB \times 0.0D = IOMB IOms$ IOMB/10ms = IOOOMB/10ms

(Burst) Transfer rate =
(RPM / 60) * (sectors/track) * (bytes/sector)

Random I/O

- For magnetic disks:
 - Random I/O is VERY expensive compared to sequential I/O
- For SSD disks:
 - Random I/O is still expensive but not as much as for magnetic disks
- Avoid random I/O to minimize delay

	Magnetic	SSD
Random IO	~100 IOs/sec	~100K IOs/sec
Transfer rate	~ 100MB/sec	~ 10GB/sec

Buffers, Buffer pool

- Temporary main-memory "cache" for disk blocks
 - Avoid future read
 - Hide disk latency
 - Most DBMS let users change buffer pool size

Abstraction by OS

(head, cylinder, sector)

- Sequential blocks
 - No need to worry about head, cylinder, sector
- Access to non-adjacent blocks
 - Random I/O
- Access to adjacent blocks
 - Sequential I/O

1

2

3

4

•

•

Things to Remember

- Platter, track, cylinder, block (sector)
- Access time = seek time + rotational delay + transfer time
- Random I/O vs Sequential I/O