
CS143: Joins
Professor Junghoo “John” Cho

Motivation
• Q: How do we process

SELECT * FROM Student WHERE sid > 30?

• Q: How do we process
SELECT * FROM Student S, Enroll E WHERE S.sid = E.sid?

𝑅 ⋈ 𝑆 ?

3

40 T1
60 T2
30 T3
10 T4
20 T5

10 T6
60 T7
40 T8
20 T9

R S
A A

Four Join Algorithms
• Nested-Loop Join (NLJ)
• Index Join (IJ)
• Sort-Merge Join (SMJ)
• Hash Join (HJ)

Nested-Loop Join (NLJ)
For each r Î R:

For each s Î S:
if r.A = s.A, then output (r,s)

5

40 T1
60 T2
30 T3
10 T4
20 T5

10 T6
60 T7
40 T8
20 T9

R S

Index Join (IJ)
(1) Create an index for S.A if needed
(2) For each r Î R:

X := lookup index on S.A with r.A value
For each s Î X, output (r,s)

6

40 T1
60 T2
30 T3
10 T4
20 T5

10 T6
60 T7
40 T8
20 T9

R

S

Sort-Merge Join (SMJ)
• Sort the relations first, then join

7

10 T4
20 T5
30 T3
40 T1
60 T2

10 T6
20 T9
40 T8
60 T7

R S

Sort-Merge Join (SMJ)
(1) if not, sort R and S by A
(2) i ¬ 1; j ¬ 1;

while (i £ |R|) Ù (j £ |S|):
if (R[i].A = S[j].A) then output (R[i], S[j]); i ¬ i+1; j ¬ j+1;
else if (R[i].A > S[j].A) then j ¬ j+1
else if (R[i].A < S[j].A) then i ¬ i+1

8

10 T4
20 T5
30 T3
40 T1
60 T2

10 T6
20 T9
40 T8
60 T7

R S

Hash Join (HJ)
• Hash function: h(v) ® [1, k]
• Q: Given (r Î R) and (s Î S), can r and s join if h(r.A) ≠ h(s.A)?
• Main idea
• Partition tuples in R and S based on hash values on join attributes
• Perform “joins” only between partitions of the same hash value

Hash Join (HJ)

• H(k) = k mod 3

10

0

1

2

R 0

1

2

S

40 T1
60 T2
30 T3
10 T4
20 T5

10 T6
60 T7
40 T8
20 T9

Hash Join (HJ)
Hash function: h(v) ® [1, k]
(1) Hashing stage (bucketizing): hash tuples into buckets

• Hash R tuples into G1,…,Gk buckets
• Hash S tuples into H1,…,Hk buckets

(2) Join stage: join tuples in matching buckets
• For i = 1 to k do

match tuples in Gi, Hi buckets

11

R

…

S

……

G1

G2

G3

H1

H2

H3

Comparison of Join Algorithms
• Q: Which algorithm is better?
• Q: What does “better” mean?

• Ultimate bottom line: Which algorithm is the “fastest”?
• Q: How does the system know which algorithm runs fast? Run all join

algorithms and pick the fastest one?

Cost Model
• A model to estimate the performance of a join algorithm
• Multiple cost models are possible depending on their sophistication

• Our cost model: # disk blocks that are read/written during join
• Not perfect: ignores random vs sequential IO differnce, CPU cost, …
• But simple to analyze
• And “good enough” to pick the best join algorithm

• Cost of join is dominated by disk IO
• Most join algorithms have similar disk access pattern

• Our cost model ignores the last IO for writing the final result
• This cost is the same for all algorithms

Running Example
• Join two tables: R ⋈ S
• |R| = 1,000 tuples, |S| = 10,000 tuples
• 𝑏!= 100 blocks, 𝑏" = 1,000 blocks (10 tuples/block)
• M = main memory “cache” 22 disk blocks

. . .

. . .

R (100 blocks)

S (1000 blocks)

Memory

22 blocks

. . .

. . .

10 tuples

Cost of Join Algorithms

Cost Formula (𝑏! < 𝑏")

NLJ

SMJ

HJ

IJ

Sort-Merge Join (SMJ)
(1) if not, sort R and S by A
(2) i ¬ 1; j ¬ 1;

while (i £ |R|) Ù (j £ |S|):
if (R[i].A = S[j].A) then output (R[i], S[j]); i ¬ i+1; j ¬ j+1;
else if (R[i].A > S[j].A) then j ¬ j+1
else if (R[i].A < S[j].A) then i ¬ i+1

16

10 T4
20 T5
30 T3
40 T1
60 T2

10 T6
20 T9
40 T8
60 T7

R S

Cost of Join Stage of Sort-Merge Join

. . .

. . . R (100 blocks)

S (1000 blocks)

M = 22

Q: Ignoring the final write of output, how many disk blocks
are read during join?

Q: We only used 3 memory blocks. Can we use the rest
to make things better?

What About?
• Q: Will this lead to fewer disk block reads?

. . .

. . . R (100 blocks)

S (1000 blocks)

M = 22 10 tuples

...

10 blocks

...

10 blocks

Cost of Join Algorithms

Cost (M=22,
𝑏! =100, 𝑏"=1000) Formula (𝑏! < 𝑏")

NLJ

SMJ

HJ

IJ

Nested-Loop Join (NLJ): R ⋈ S
For each r Î R:

For each s Î S:
if r.A = s.A, then output (r,s)

Scan S table once for every tuple of R

20

. . .

. . . R (100 blocks)

S (1000 blocks)

M = 22

Nested Loop Join
• Scan S table once for every tuple of R

• Q: Can we do better?

. . .

. . . R (100 blocks)

S (1000 blocks)

M = 22 10 tuples

Block Nested Loop Join
• Scan S table once for every block of R

• Q: Can we do even better? What is the maximum # of blocks that we
can read in one batch from R?

. . .

. . . R (100 blocks)

S (1000 blocks)

M = 22 10 tuples

Block Nested Loop Join
• Scan S table once for every 20 blocks of R

• Q: What if we read S first?

. . .

. . . R (100 blocks)

S (1000 blocks)

M = 22 10 tuples

...

20 blocks

Block Nested Loop Join
• Scan R table once for every 20 blocks of S

M = 22

. . . R (100 blocks)

. . . S (1000 blocks)

10 tuples

...

20 blocks

Cost of Join Algorithms

Cost (M=22,
𝑏! =100, 𝑏"=1000) Formula (𝑏! < 𝑏")

NLJ

SMJ

HJ

IJ

Nested Loop Join Summary
• Always use block nested loop join (not the naïve algorithm)
• Read as many blocks as possible for the left table in one iteration
• Use the smaller table on the left (i.e., outer loop)

Hash Join (HJ)
• Step (1): Hashing stage: h(v) → [1, k]

• Step (2): Join stage

27

... ...

Memory buckets

G1
G2

Gk

R

S

...

Memory

...

Gi Hi

R
H1
H2

G1
G2
G3

HJ: Bucketizing Stage
• Read R table and hash them into k buckets

• Q: Given M=22, what is the maximum k?
• Q: How many disk IOs to bucketize R?

M = 22

. . .

R (100 blocks)

. . .G1

. . .G2

. . .Gk

HJ: Bucketizing Stage
• Read S table and hash them into k buckets

• Q: In general, what is the cost for bucketizing R and S?

M = 22

. . .

S (1000 blocks)

. . .H1

. . .H2

. . .Hk

HJ: Join Stage
• Join tuples in Gi with those in Hi

• Q: How can we join tuples in G1 with H1? How should we use
memory?

M = 22

. . . H1. . .G1
. . .G2

. . .Gk

. . . H2

. . . Hk

5 blocks 48 blocks

Cost of Join Algorithms

Cost (M=22,
𝑏! =100, 𝑏"=1000) Formula (𝑏! < 𝑏")

NLJ

SMJ

HJ

IJ

HJ: Join Stage
• Q: What if R is large, say 𝑏! = 1000, and Gi > 20?

• A: Exactly the same as standard join problem. Apply “hash join”
algorithm to join H1 and G1
• Apply “hash join” algorithm using a new hash function!

M = 22

. . . H1G1

G2

Gk

. . . H2

. . . Hk

48 blocks

. . .

. . .

. . .

48 blocks

HJ: Recursive Partitioning
• Use a new hash function h’(v) → [1, k] to recursively partition Gi and

Hi to even smaller partitions (until one of them fit in main memory)

• # of bucketizing steps needed for R: log#$%
&!
'$(

• In each bucketing steps, we perform 2(𝑏! + 𝑏") disk IOs

Cost of Join Algorithms

Cost (M=22,
𝑏! =100, 𝑏"=1000) Formula (𝑏! < 𝑏")

NLJ

SMJ

HJ

IJ

Index Join (IJ): R ⋈ S
For each r Î R:

X := lookup index on S.A with r.A value
For each s Î X, output (r,s)

• Cost = IOs for (R scan + index look up + tuple read from S)
35

. . .

. . . R (100 blocks)

S (1000 blocks)

M = 22

. . .

• 15 blocks for index
• 1 root 14 leaf

• On average, 1 matching S tuple per an R tuple
• Q: How many disk IOs? How should we use the memory?

IJ Example (1)

. . .

. . . R (100 blocks)

S (1000 blocks)

M = 22

. . .

1 block

14 blocks. . .

• Cost for R scan:
• Cost for Index look up:
• Cost for read matching S tuple:

IJ Example (1)

. . .

. . . R (100 blocks)

S (1000 blocks)

M = 22

. . .

1 block

14 blocks. . .

• 40 blocks for index
• 1 root 39 leaf

• On average, 10 matching S tuple per an R tuple
• Q: How many disk IOs? How should we use the memory?

IJ Example (2)

. . .

. . . R (100 blocks)

S (1000 blocks)

M = 22

. . .

1 block
. . .

18 blocks

39 block

• Cost for R scan:
• Cost for Index look up:
• Cost for read matching S tuple:

IJ Example (2)

. . .

. . . R (100 blocks)

S (1000 blocks)

M = 22

. . .

1 block
. . .

18 blocks

Cost of Join Algorithms

Cost (M=22,
𝑏! =100, 𝑏"=1000) Formula (𝑏! < 𝑏")

NLJ

SMJ

HJ

IJ

SMJ: Cost of Sorting
• Sort-Merge Join

1. Sort stage: Sort R and S
2. Join stage: Join sorted R and S

• Q: How many disk IOs during sort stage?

• Q: How can we sort R?

• Q: How many blocks can we sort in each batch?
• Do we need to allocate one block for output?

• Q: How many sorted runs?

SMJ: Cost of Sorting

. . .

R (100 blocks)

M = 22

. . .

. . .

. . .

. . .

. . .

Sorted runs

• Q: What to do with sorted runs?

• Q: How many disk IOs during the “merge step” of sort?
• Q: Total IOs for sorting R?

SMJ: Cost of Sorting

M = 22

. . .

. . .

. . .

Sorted runs

. . .

• Q: How can we sort S?

• Q: How many sorted runs are produced from S?

SMJ: Cost of Sorting

. . .

S (1000 blocks)

M = 22

. . .

. . .

. . .

. . .

. . .

Sorted runs

• Q: How many sorted runs can we merge at a time?

• Q: What to do with the produced sorted runs?

SMJ: Cost of Sorting

M = 22

. . .

. . .

Sorted runs
. . .

. . .

. . .

. . .

SMJ: Cost of Sorting
• Q: How many ”merging” steps are needed to sort S?
• 1 initial sorting
• 2 merging steps of sorted runs
• 2,000 disk IO’s per each sorting/merging step
• 6,000 total disk IO’s to sort S table

• In general, to sort R of 𝑏! blocks with M memory buffers, we need
• 1 initial sorting

• log#$%(
&!
#
) subsequent merging stages

• 2 𝑏! disk IO’s per each sorting/merging stage

• In total, 2𝑏! log#$%(
&!
#) + 1 disk IO’s are needed

Cost of Join Algorithms

Cost (M=22,
𝑏! =100, 𝑏"=1000) Formula (𝑏! < 𝑏")

NLJ

SMJ

HJ

IJ

Cost of Join Algorithms
Cost (M=22,

𝑏! =100, 𝑏"=1000) Formula (𝑏! < 𝑏")

NLJ 5,100 𝑏! +
𝑏!

𝑀 − 2
𝑏"

SMJ 7,500 (if unsorted)
1,100 (if sorted)

2𝑏! log'$%(
&!
'
) + 1 +

2𝑏" log'$%(
&"
'
) + 1 +(𝑏!+𝑏")

HJ 3,300 2(𝑏!+𝑏") log#$%
&!
'$(

+ (𝑏!+𝑏")

IJ 1,115 – 10,640 𝑏! + |𝑅|(𝐶 + 𝐽)
C: index lookup cost, J: # matching S tuples per R tuple

Summary of Joins
• Nested-loop join is OK for “small” relations (relative to memory size)
• Hash join is usually the best for equi-join
• If tables have not been sorted and with no index
• Consider merge join if tables have been sorted
• Consider index join if index exists

• To pick the best, DBMS needs to maintain data statistics

Query Optimization
• R(A, B) S(B,C) T (C,D):

SELECT * FROM R, S, T
WHERE R.B = S.B AND S.C = T.C AND R.A = 10 and T.D < 30
• Q: How can we process the above query?

R S T

⋈

⋈

𝜎!.#$%&

𝜎'.()*&

T S R

⋈
⋈

𝜎!.#$%&

𝜎'.()*&

R S T

⋈

⋈
𝜎'.()*&

𝜎!.#$%&

Query Optimization
• Q: Focusing on just 𝑅 ⋈ 𝑆 ⋈ 𝑇, how many different ways?

• In general, for 𝑛 way joins, ()$% !
)$% !

ways

• For 𝑛 = 10, %)!+! = 17×10+ different ways!!!

Query Optimization
• In reality, picking the very best is too difficult
• DBMS tries to avoid “obvious mistakes” using a number of heuristics

to examine only those plans that are likely to be good
• Put the smallest table on the left
• “Left-deep” tree
• Push selection as deep as possible
• …

• For 90% of queries, DBMS picks a good query execution plan
• To optimize the remaining 10%, companies pay big money to database

consultants

Looking at Query Plan
• Many systems allow users to look at query plan
• No SQL standard
• Different systems use different syntax

• Examples
• My SQL, PostgreSQL: EXPLAIN SELECT …
• Oracle: EXPLAIN PLAN FOR SELECT …
• MS SQL Server: SET SHOWPLAN_TEXT ON

Statistics Collection for DBMS
• “Cost-based optimizer”:
• DBMS uses statistics on tables/indexes to pick the best query execution plan
• Keeping correct stats is *very important.* Without correct stats, DBMS may

do stupid things
• Oracle
• ANALYZE TABLE <table> COMPUTE STATISTCS
• ANALYZE TABLE <table> ESTIMATE STATISTICS ---- cheaper than COMPUTE

• DB2
• RUN ON TABLE <userid>.<table> AND INDEXES ALL

• MySQL does not have a cost-based optimizer
• Rule-based optimizer: Use simple heuristics only without looking at the actual

data

