
CS143
Normalization

Professor Junghoo “John” Cho

Relational Design Theory
• How do we design “good” tables for a relational database?
• Typically, we start with E/R or UML and convert it into tables
• Still, there are many choices to make in E/R (or UML) that lead to different

tables. Which one is better? Which design should we choose?

• Relational design theory (Normalization theory)
• Theory on what are “good” table designs
• Tries to minimize “redundancy” in table design
• Algorithms that convert “bad” design into “good” design automatically

2

StudentClass Table
• Q: Is this a good table design?

sid name addr dept cnumtitle unit
301 James 11 West CS 143 Database 04
105 Elaine 84 East EE 284 Signal Processing 03
301 James 11 West ME 143 Mechanics 05
105 Elaine 84 East CS 143 Database 04
207 Susan 12 North EE 128 Microelectronics 03

StudentClass

3

Redundancies in StudentClass Table
• The same information is included multiple times
• Redundancy leads to potential “anomalies” down the road

1. Update anomaly: Information may be updated partially and inconsistently
• Q: What if a student changes the address?

2. Insertion anomaly: We may not include some information at all
• Q: What if a student does not take any class?

3. Deletion anomaly: While deleting some information, we may delete others
• Q: What if the only class that a student takes gets cancelled?

sid name addr dept cnum title unit
301 James 11 West CS 143 Database 04
105 Elaine 84 East EE 284 Signal Processing 03
301 James 11 West ME 143 Mechanics 05
105 Elaine 84 East CS 143 Database 04
207 Susan 12 North EE 128 Microelectronics 03 4

StudentClass Table
• Q: Is there a better table design? What table(s) will you use?

sid name addr dept cnumtitle unit
301 James 11 West CS 143 Database 04
105 Elaine 84 East EE 284 Signal Processing 03
301 James 11 West ME 143 Mechanics 05
105 Elaine 84 East CS 143 Database 04
207 Susan 12 North EE 128 Microelectronics 03

StudentClass

5

Coming up with Better Tables
• Q: Any way to arrive at the better design more systematically?
• Q: Where is the redundancy from?

sid name addr dept cnumtitle unit
301 James 11 West CS 143 Database 04
105 Elaine 84 East EE 284 Signal Processing 03
301 James ? ME 143 Mechanics 05
105 ? 84 East CS 143 ? ?
207 Susan 12 North EE 128 Microelectronics 03

StudentClass

6

Intuition behind Normalization Theory
• Functional Dependency (FD)
• Some attributes are “determined” by other attributes:

e.g., sid → (name, addr), (dept, cnum) → (title, unit)
• When there is a funtional dependency we may have redundancy

e.g., (105, Elaine, 84 East) is stored redundantly, so is (CS, 143, database, 04)

• Decomposition
• When there is a FD, no need to store multiple instances of this relationship.

Store it in a separate table
sid name addr dept cnum title unit
301 James 11 West CS 143 Database 04
105 Elaine 84 East EE 284 Signal Processing 03
301 James 11 West ME 143 Mechanics 05
105 Elaine 84 East CS 143 Database 04
207 Susan 12 North EE 128 Microelectronics 03

7

“Decomposing” StudentClass Table
• StudentClass(sid, name, addr, dept, cnum, title, unit)

FD: sid → (name, addr), (dept, cnum) → (title, unit)

• Basic idea of “normalization”
• Whenever there is FD, the table may be ”bad” due to redundancy

• We use FDs to split (or “decompose”) table and remove the redundancy

• We learn the functional dependency and decomposition theory as the next topic

8

Overview
• Functional dependency (FD)

• Definition
• Trivial functional dependency
• Logical implication
• Closure
• FD and key

• Decomposition
• Lossless decomposition

• Boyce-Codd Normal Form (BCNF)
• Definition
• BCNF decomposition algorithm

• Most theoretical part of the class. Pay attention!
• If you can’t follow the lecture, you are unlikely to get it by reading textbook

9

Functional Dependency

Functional Dependency (FD)
• Notation: u[X] – values for the attributes X of tuple u
• u = (sid: 100, name: James, addr: Wilshire)

u[sid, name] = (100, James)
• Functional dependency 𝑋 → 𝑌
• For any 𝑢!, 𝑢"∈ 𝑅, if 𝑢! 𝑋 = 𝑢" [𝑋], then 𝑢! 𝑌 = 𝑢" [𝑌]
• Informally, 𝑋 → 𝑌 means “no two tuples in R can have the same X values but

different Y values.”
• Example: StudentClass(sid, name, addr, dept, cnum, title, unit)

• Q: sid → name?
• Q: dept, cnum → title, unit?
• Q: dept, cnum → sid?
• Whether FD holds or not depends on real-world semantics

11

Functional Dependency (FD)
A B C

𝑎! 𝑏! 𝑐!
𝑎! 𝑏" 𝑐"
𝑎" 𝑏! 𝑐#

A B C

𝑎! 𝑏! 𝑐!
𝑎! 𝑏" 𝑐"
𝑎" 𝑏! 𝑐!

A B C

𝑎! 𝑏! 𝑐!
𝑎! 𝑏! 𝑐"
𝑎" 𝑏! 𝑐#

Q: 𝐴𝐵 → 𝐶?

Q: 𝐴𝐵 → 𝐶?

Q: 𝐴𝐵 → 𝐶?

12

Trivial Functional Dependency
• Trivial FD: 𝑋 → 𝑌 is a trivial functional dependency when 𝑌 ⊆ 𝑋
• 𝑋 → 𝑌 is always true regardless of real-world semantics

• Non-trivial FD: 𝑋 → 𝑌 when 𝑌 ⊈ 𝑋

• Completely non-trivial FD: 𝑋 → 𝑌 when 𝑋 ∩ 𝑌 = ∅

X
Y

X Y

X Y

13

Logical Implication
• 𝑅(𝐴, 𝐵, 𝐶, 𝐺, 𝐻, 𝐼)
F = {𝐴 → 𝐵, 𝐴 → 𝐶, 𝐶𝐺 → 𝐻, 𝐶𝐺 → 𝐼, 𝐵 → 𝐻}
Q: Is 𝐴 → 𝐻 true given F?
• F logically implies 𝐴 → 𝐻
• Canonical database: a method to check logical implication

A B C G H I

𝑢! 𝑎! 𝑏! 𝑐! 𝑑! ℎ! 𝑖!
𝑢"

A B C G H I

𝑢! 𝑎! 𝑏! 𝑐! 𝑑! ℎ! 𝑖!
𝑢"

Q: 𝐴 → 𝐻?

Q: 𝐴𝐺 → 𝐼?

14

Closure
• Closure of functional dependency set F: F+
• F+: the set of all FD’s that are logically implied by F

• Closure of attribute set X: X+
• X+: the set of all attributes that are functionally determined by X
• Example: what is {sid, dept, cnum}+ given

sid → name, (dept, cnum) → (title, unit)?

15

16

Closure X+ Computation Algorithm
Start with X+ = X
Repeat until no change in X+:

If there is 𝑌 → 𝑍 with Y Ì X+, then X+ ← (X+ ∪ Z)

Attribute Closure Example
• 𝑅(𝐴, 𝐵, 𝐶, 𝐺, 𝐻, 𝐼)
F = {𝐴 → 𝐵, 𝐴 → 𝐶, 𝐶𝐺 → 𝐻, 𝐶𝐺 → 𝐼, 𝐵 → 𝐻}
• Q: {A}+?

• Q: {A, G}+?

17

Functional Dependency and Key
• 𝑅(𝐴, 𝐵, 𝐶, 𝐺, 𝐻, 𝐼)
F = {𝐴 → 𝐵, 𝐴 → 𝐶, 𝐶𝐺 → 𝐻, 𝐶𝐺 → 𝐼, 𝐵 → 𝐻}
• Q: Is {A, G} a key of R? Is {A, B} a key of R?

• X is a key of R if and only if
1. 𝑋 → all attributes of R (i.e., 𝑋* = 𝑅)
2. No subset of X satisfies the condition 1 (i.e. X is minimal)

18

Projecting Functional Dependency
• 𝑅(𝐴, 𝐵, 𝐶, 𝐷)
F = {𝐴 → 𝐵, 𝐵 → 𝐴, 𝐴 → 𝐶}
• Q: What FDs hold for 𝑅′(𝐵, 𝐶, 𝐷) which is a projection of 𝑅?

• Note
• In order to find FD’s after projection, we need to compute F+ and pick the FDs

from F+ that holds on the projected table

19

Decomposition

Decomposition
• Our previous “decomposition” example

StudentClass(sid, name, addr, dept, cnum, title, unit) →

A(sid, name, addr), B(sid, dept, cnum, title, unit)

• Hopefully, we can “remove redundancy” through a sequence of
decompositions using FD’s

21

General Decomposition
• Split 𝑅(𝐴", … , 𝐴#) → 𝑅" 𝐴", … , 𝐴$, 𝑅% 𝐴& , … , 𝐴#

𝐴", … , 𝐴# = 𝐴", … , 𝐴$ ∪ 𝐴& , … , 𝐴#

𝑅()𝑋 𝑌 𝑍

𝑋 𝑌𝑅"()

𝑌 𝑍𝑅%()

22

Lossless Decomposition
• Q: When we decompose 𝑅 to 𝑅" and 𝑅%, what should we watch out

for?
• A: Do not lose data!!!
• Lossless-Join Decomposition
• Decomposition of 𝑅 into 𝑅! and 𝑅" is lossless-join decomposition if and only if
𝑅 = 𝑅! ⋈ 𝑅"
• After a lossless-join decomposition, we can always get back the original table

R if needed!

• Q: When is a decomposition lossless-join?

23

Lossless-Join Decomposition

• Q: Decompositoin into S1(cnum, sid), S2(cnum, name). Lossless?

cnum sid name

143 1 James

143 2 Elaine

325 3 Susan

cnum sid

143 1

143 2

325 3

cnum name

143 James

143 Elaine

325 Susan

cnum sid name

143 1 James

143 1 Elaine

143 2 James

143 2 Elaine

325 3 Susan

S1 S2 S1 ⋈ S2

24

Lossless-Join Decomposition

• Q: Decompositoin into R1(cnum, sid), R2(sid, name). Lossless?

cnum sid name

143 1 James

143 2 Elaine

325 3 Susan

cnum sid

143 1

143 2

325 3

sid name

1 James

2 Elaine

3 Susan

cnum sid name

143 1 James

143 2 Elaine

325 3 Susan

R1 R2 R1 ⋈ R2

25

cnum sid

143 1

143 2

325 3

Lossless-Join Decomposition
• Q: Why is S1(cnum, sid), S2(cnum, name) lossy, but R1(cnum, sid),

R2(sid, name) is not?

cnum sid

143 1

143 2

325 3

cnum name

143 James

143 Elaine

325 Susan

cnum sid name

143 1 James

143 1 Elaine

143 2 James

143 2 Elaine

325 3 Susan

S1 S2

S1 ⋈ S2

sid name

1 James

2 Elaine

3 Susan

cnum sid name

143 1 James

143 2 Elaine

325 3 Susan

R1 R2

R1 ⋈ R2

26

Lossless-Join Decomposition
• Decomposition 𝑅 𝑋, 𝑌, 𝑍 → 𝑅" 𝑋, 𝑌 , 𝑅%(𝑌, 𝑍) is lossless-join if
𝑌 → 𝑋 or 𝑌 → 𝑍
• Shared attribute(s) are the key of one of the decomposed tables
• This condition can be checked using FDs

• Example
• StudentClass(sid, name, addr, dept, cnum, title, unit) →

R1(sid, name, addr), R2(sid, dept, cnum, title, unit)
using sid → (name, addr). Lossless-join?

27

Boyce-Codd Normal Form

FD, Key, and Redundancy
• Q: StudentClass(sid, name, addr, dept, cnum, title, unit). Does

FD sid → (name, addr) cause redundancy under StudentClass?

• Q: Student (sid, name, addr). Does FD sid → (name, addr) cause
redundancy under Student?

• Q: Why does the same FD cause redundancy in one case but not in
the other?

• FD 𝑋 → 𝑌 leads to redundancy only if 𝑋 does not contain a key
• Key insight behind the definition of “Boyce-Codd Normal Form”

29

Boyce-Codd Normal Form (BCNF)
• Relation R is in Boyce-Codd Normal Form (BCNF) with regard to the

set of functional dependencies F if and only if for every nontrivial
functional dependency 𝑋 → 𝑌 ∈ 𝐹', 𝑋 contains a key
• Informally, “normal form” means “good table design”
• BCNF ensures that there is no redundancy in the table due to FD

• When a table R is not in BCNF, we know that there is redundancy in
the table and the design is “bad.”
• When table R “violates” the BCNF condition, we will have to “redesign” the

table so that the new design is in BCNF: “BCNF decomposition algorithm”
• Decompose R until all decomposed tables are in BCNF

30

BCNF Example (1)
• Class(dept, cnum, title, unit). FD (dept,cnum) → (title, unit)
• Q: Intuitively, is it a good table design? Any redundancy? Any better

design?

• Q: Is it in BCNF?

31

BCNF Example (2)
• Employee(name, dept, manager).

F = { name→dept, dept→manager }
• Q: What is English interpretation of the two FDs?

• Q: Intuitively, is it a good table design? Any redundancy? Any better
design?

• Q: Is it in BCNF?

32

BCNF Violation and Table Decomposition
• Decompose tables until all tables are in BCNF
• For each FD 𝑋 → 𝑌 that violates BCNF condition, separate those attributes

out into another table to remove redundancy
• We also have to ensure that this decomposition is lossless

33

34

BCNF Decomposition Algorithm
For any R in the schema

If (non-trivial 𝑋 → 𝑌 holds on R AND X does not contain a key), then
1) Compute X+ (X+: closure of X)
2) Decompose R into R1(X+) and R2(X, Z)

// X becomes common attributes
// Z: all attributes in R except X+

Repeat until no more decomposition

BCNF Decomposition Example (1)
• ClassInstructor(dept, cnum, title, unit, instructor, office, fax)

F = { instructor→office, office→fax, (dept,cnum) →(title,unit),
(dept,cnum)→instructor }

• Q: What is English interpretation of instructor→office and
office→fax?

• Q: Is it in BCNF?

• Q: Is it a good table design intuitively? Any redundancy? Better
design?

35

BCNF Decomposition Example (1)
• ClassInstructor(dept, cnum, title, unit, instructor, office, fax)

F = { instructor→office, office→fax, (dept,cnum) →(title,unit),
(dept,cnum)→instructor }

• Normalize ClassInstructor into BCNF using the BCNF decomposition
algorithm:

36

BCNF Decomposition Example (2)
• 𝑅(𝐴, 𝐵, 𝐶, 𝐺, 𝐻, 𝐼)
F = {𝐴 → 𝐵, 𝐴 → 𝐶, 𝐶𝐺 → 𝐻, 𝐶𝐺 → 𝐼, 𝐵 → 𝐻}
• Q: Is it in BCNF?

• Normalize R into BCNF

37

38

Revisiting BCNF Decomposition Algorithm
For any R in the schema

If (non-trivial 𝑋 → 𝑌 holds on R AND X does not contain a key), then
1) Compute X+ (X+: closure of X)
2) Decompose R into R1(X+) and R2(X, Z)

// X becomes common attributes
// Z: all attributes in R except X+

Repeat until no more decomposition

Q: Does the algorithm ensures that it is lossless-join decomposition?

Uniqueness of BCNF Decomposition
• Q: Does the BCNF decomposition algorithm always lead to a unique

set of relations?

• Example: 𝑅 𝐴, 𝐵, 𝐶 , 𝐹 = {𝐴 → 𝐶, 𝐵 → 𝐶}
• Q: What if we start decomposition with 𝐴 → 𝐶?

• Q: What if we start decomposition with 𝐵 → 𝐶?

39

Checking BCNF Condition
• Q: 𝑅" 𝐴, 𝐵 , 𝑅% 𝐵, 𝐶, 𝐷 𝐹 = {𝐴 → 𝐶, 𝐵 → 𝐴}. Are 𝑅" and 𝑅% in

BCNF?

• We have to check BCNF compliance for all implied functional
dependencies in F+, not just for the ones explicitly listed in F.

40

Good Table Design in Practice
• Normalization splits tables to reduce redundancy.
• However, splitting tables has negative performance implication

• Example: Instructor: name, office, phone, fax
name → office, office → (phone,fax)

• (design 1) Instructor(name, office, phone, fax)
• (design 2) Instructor(name, office), Office(offce, phone, fax)
• Q: Retrieve (name, office, phone) from Instructor. Which design is better?

• As a rule of thumb, start with normalized tables and merge them if
performance is not good enough

41

What We Learned
• Relational design theory
• Functional dependency

• Trivial functional dependency
• Logical implication
• Closure

• Decomposition
• Lossless-join decomposition

• Boyce-Codd Normal Form (BCNF)
• BCNF decomposition algorithm

• There exist other definitions of “Normal forms”
• Third normal form, Fourth normal form, …
• BCNF is most useful and widely used

42

