
CS143: Transactions
Professor Junghoo “John” Cho

Motivation (1)
• Crash recovery

• Example: Transfer $1M from Susan to Jane

S1: UPDATE Account SET balance = balance - 1000000 WHERE owner = `Susan‘
S2: UPDATE Account SET balance = balance + 1000000 WHERE owner = `Jane‘

System crashes after S1 but before S2. What now?

Motivation (2)
t access to data

• Q: How can DBMS guarantee that these “bad” scenarios will never
happen?

T1 T2
A = balance
A = A - 10
Give out $10

balance = A

B = balance
B = B - 20
Give out $20
balance = B

balance
100

Transaction
• A sequence of SQL statements that are executed as “one unit”
• Two key commands related to transaction

• After a sequence of SQL commands, user can issue either COMMIT or
ROLLBACK

• COMMIT
• “I am done. Commit everything that I have done!”
• All changes made by the transaction must be stored permanently

• ROLLBACK
• “I changed mind. Ignore what I just did!”
• Undo all changes made by the transaction

Creating a Transaction
• All SQL commands until COMMIT/ROLLBACK become one transaction.

time

INSERT DELETE SELECT COMMIT DELETE ROLLBACK INSERT

ACID Property of Transaction
• DBMS guarantees ACID property on all transactions

• Atomicity: “all or nothing”
• Either ALL OR NONE of the operations in a transaction is executed
• If system crashes in the middle of a transaction, all changes are “undone”

• Consistency
• If the database was in a “consistent” state before transaction, it is still in a consistent

state after the transaction
• Isolation

• Even if multiple transactions run concurrently, the final result is the same as each
transaction runs in isolation in a sequential order

• Durability
• All changes made by “committed” transaction will remain even after system crash

Autocommit Mode
• Sometimes, it is too inconvenient to declare transactions explicitly
• Autocommit mode

• When ON: Every SQL statement automatically becomes one transaction
• When OFF: As usual

• All SQL commands through COMMIT/ROLLBACK become one transaction

Setting Autocommit Mode
• Oracle: SET AUTOCOMMIT ON/OFF (default is off)
• MySQL: SET AUTOCOMMIT = {0|1} (default is on. InnoDB only)
• MS SQL Server: SET IMPLICIT_TRANSACTIONS OFF/ON (default is off)

• IMPLICIT_TRANSACTION ON means AUTOCOMMIT OFF

• DB2: UPDATE COMMAND OPTIONS USING c ON/OFF (default is on)
• In JDBC: connection.setAutoCommit(true/false) (default is on)
• In Oracle, MySQL, and MS SQL Sever, “BEGIN TRANSACTION”

command temporarily disables autocommit mode until COMMIT or
ROLLBACK

SQL Isolation Levels
• By default, RDBMS guarantees ACID for transactions
• Some applications may not need ACID and may want to allow minor

“bad scenarios” to gain more “concurrency”
• By specifying “SQL Isolation Level,” app developer can specify what

type of “bad scenarios” can be allowed for their apps
• Dirty read, non-repeatable read, and phantom

Dirty Read

• T1: UPDATE Employee SET salary = salary + 100;
T2: SELECT salary FROM Employee WHERE name = ‘Amy’;
• Q: Under ACID, once T1 update Amy’s salary, can T2 read Amy’s salary?
• Some applications may be OK with dirty read

• Among 4 SQL isolation levels, READ UNCOMMITTED allows dirty read

name salary

Amy 1000

Eddie 1000

Esther 1000

John 1000

Melanie 1000

11

SQL Isolation Levels

Dirty read

Read uncommitted Y
Read committed N
Repeatable read N
Serializable N

12

Non-repeatable Read

• T1: UPDATE Employee SET salary = salary + 100 WHERE name = ‘John’;

T2: (S1) SELECT salary FROM Employee WHERE name = ‘John’;
...

(S2) SELECT salary FROM Employee WHERE name = ‘John’;
• Q: Under ACID, can T2 get different values for S1 and S2?
• Non-repeatable read: When Ti reads the same tuple multiple times,

Ti may get different value
• SQL isolation levels, READ UNCOMMITTED and READ COMMITTED,

allow non-repeatable read

13

SQL Isolation Levels

Dirty read Non-repeatable read

Read uncommitted Y Y
Read committed N Y
Repeatable read N N
Serializable N N

Phantom
• T1: INSERT INTO Employee VALUES (Beverly, 1000), (Zack, 1000);

T2: SELECT SUM(salary) FROM Employee;

• Q: Under ACID, what may T2 return?

name salary

Amy 1000

Eddie 1000

Esther 1000

John 1000

Melanie 1000

Phantom
• Phantom: When new tuples are inserted, statements may or may not

see (part of) them
• Preventing phantom can be very costly
• Exclusive lock on the entire table or a range of tuples

• Except the isolation level SERIALIZABLE, phantoms are allowed

16

SQL Isolation Levels

Dirty read Non-repeatable read Phantom

Read uncommitted Y Y Y
Read committed N Y Y
Repeatable read N N Y
Serializable N N N

Access Mode
• A transaction can be declared to be read only, when it has SELECT

statements only (no INSERT, DELETE, UPDATE)
• DBMS may use this information to optimize for more concurrency

Declaring SQL Isolation Level
• SET TRANSACTION [READ ONLY] ISOLATION LEVEL <level>

• e.g., SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
• More precisely “SET TRANSACTION [access mode,] ISOLATION LEVEL

<level>”
• access mode: READ ONLY/READ WRITE (default: READ WRITE)
• level:

• READ UNCOMMITTED
• READ COMMITTED (default in Oracle, MS SQL Server)
• REPEATABLE READ (default in MySQL, IBM DB2)
• SERIALIZABLE

• READ UNCOMMITED is allowed only for READ ONLY access mode
• Isolation level needs to be set before every transaction

Mixing Isolation Levels
• John’ initial salary = 1000

T1: UPDATE Employee SET salary = salary + 100; ROLLBACK;
T2: SELECT salary FROM Employee WHERE name = ‘John’;
• Q: T1: SERIALIZABLE and T2: SERIALIZABLE. What may T2 return?

• Q: T1: SERIALIZABLE and T2: READ UNCOMMITTED. What may T2
return?

• Isolation level is in the eye of the beholding operation
• Global ACID is guaranteed only when all transactions are SERIALIZABLE

Guaranteeing ACID
• T1: UPDATE Student SET GPA = 3.0 WHERE sid = 30;

• DBMS does not immediately writes the updated disk block back to
disk for performance reasons

• Q: What happens if the system crashes before the block is written back?

(20, Elaine, 2.0)
(30, James, 4.0)

Main memory

Disk(20, Elaine, 2.0)
(30, James, 4.0)

(20, Elaine, 2.0)
(30, James, 4.0)

...

(20, Elaine, 2.0)
(30, James, 4.0)

3.0

3.0

Rolling Back to Earlier State
• 𝑇: read A write A read B write B

Q: What if we execute up to “read A write A read B ” and decide
to ROLLBACK? How can we go back to the “old value” of 𝐴?

Partial Execution
• 𝑇: read A write A read B write B

Q: What if system executes up to “read A write A ”, and system
crashes? What should the system do when it reboots? How does the
system know whether 𝑇 did not finish?

Logging: Intuition
• In a separate log file, save the following log records before 𝑇! takes

any action:

• These records are used during ROLLBACK or during crash recovery

Log record When

<𝑇!, start> Before transaction 𝑇! starts

<𝑇!, commit/abort> Before transaction 𝑇! is committed/aborted

<𝑇!, 𝑋, old-value, new-value> Before a statement in 𝑇! changes value of 𝑋
from “old-value” to “new-value”

Logging Example

T1 T2
x = read(A)
x = x - 50
write(A, x)

z = read(C)
z = z * 2
write(C, z)
commit

y = read(B)
y = y + 50
write(B, y)
commit

Memory Disk

A: 100 B: 100 C: 100

1 <T1, start>
2 <T1, A, 100, 50>
3 <T2, start>
4 <T2, C, 100, 200>
5 <T2, commit>
6 <T1, B, 100, 150>
7 <T1, commit>

A: 100

Log file
1 <T1, start>
2 <T1, A, 100, 50>
3 <T2, start>
4 <T2, C, 100, 200>
5 <T2, commit>
6 <T1, B, 100, 150>
7 <T1, commit>

Log file

50

C: 100
200

B: 100
150

Rules for Log-Based Recovery
1. DBMS generates a log record before start and end and modification by 𝑇!
2. Before 𝑇! is committed, all log records until 𝑇!’s commit must be flushed

to disk
3. Before any modified tuple is written back to disk, all log records through

the tuple modification must be flushed to disk first
• Example: the log record <𝑇!, 𝐴, 5, 10> should be written to the disk before the tuple
𝐴 is updated to 10 in disk

4. During ROLLBACK, DBMS reverts to old values of tuples using log records
5. During crash recovery, DBMS does:

a) “re-execute” all actions in the log file from the beginning to the end and
b) “rolls back” all actions from non-committed transactions in the reverse order

Example: Recovery

T1 T2
x = read(A)
x = x - 50
write(A, x)

z = read(C)
z = z * 2
write(C, z)
commit

y = read(B)
y = y + 50
write(B, y)
commit

Disk

A: 100 B: 100 C: 100

1 <T1, start>
2 <T1, A, 100, 50>
3 <T2, start>
4 <T2, C, 100, 200>

Log file

Example: Recovery

T1 T2
x = read(A)
x = x - 50
write(A, x)

z = read(C)
z = z * 2
write(C, z)
commit

y = read(B)
y = y + 50
write(B, y)
commit

Disk

A: 50 B: 100 C: 100

1 <T1, start>
2 <T1, A, 100, 50>
3 <T2, start>
4 <T2, C, 100, 200>
5 <T2, commit>

Log file

Example: Recovery

T1 T2
x = read(A)
x = x - 50
write(A, x)

z = read(C)
z = z * 2
write(C, z)
commit

y = read(B)
y = y + 50
write(B, y)
commit

Disk

A: 100 B: 100 C: 100

1 <T1, start>
2 <T1, A, 100, 50>
3 <T2, start>
4 <T2, C, 100, 200>
5 <T2, commit>
6 <T1, B, 100, 150>
7 <T1, commit>

Log file

Summary
• DBMS uses a log file to ensure ACID for transactions

• Helps rolling back partially executed transactions
• Helps recovery after crash

• Before modifying any data, DBMS generates a log record
• Before commit, DBMS flushes log records to disk to ensure durability
• During recovery, records in the log file are “replayed” to put the

system in the supposed state

