CS143 Notes: Relational Algebra

Book Chapters

(4th) Chapters 3.2
(5th) Chapters 2.2-3
(6th) Chapter 2.6

Things to Learn

- Relational algebra
 - Select, Project, Join, ...

Steps in Database Construction

1. Domain Analysis
2. Database design
3. Table creation: DDL
4. Load: bulk-load
5. Query and update: DML

Database query language

What is a query?

- Oxford English Dictionary: A question, especially one addressed to an official or organization
- Database jargon for question (complex word for simple concept)
- Questions to get answers from a database
 - Example: Get the students who are taking all CS classes but no Physics class
- Some queries are easy to pose, some are not
- Some queries are easy for DBMS to answer, some are not
Relational query languages

- Formal: Relational algebra, relational calculus, datalog
- Practical: SQL (← relational algebra), Quel (← relational calculus), QBE (← datalog)
- Relational Query:
 - Data sits in a disk
 - Submit a query
 - Get an answer

\[\text{Input relations} \rightarrow \text{query} \rightarrow \text{Output relation} \]

Executed against a set of relations and produces a relation

* Important to know
* Very useful: “Piping” is possible

Relational Algebra

\[\text{Input relations (set)} \rightarrow \text{query} \rightarrow \text{Output relation (set)} \]

- Set semantics. no duplicate tuples. duplicates are eliminated
- In contrast, multiset semantics for SQL (performance reason)

Examples to Use

- School information
 - Student(sid, name, addr, age, GPA)

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>addr</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>John</td>
<td>183 Westwood</td>
<td>19</td>
<td>2.1</td>
</tr>
<tr>
<td>303</td>
<td>Elaine</td>
<td>301 Wilshire</td>
<td>17</td>
<td>3.9</td>
</tr>
<tr>
<td>401</td>
<td>James</td>
<td>183 Westwood</td>
<td>17</td>
<td>3.5</td>
</tr>
<tr>
<td>208</td>
<td>Esther</td>
<td>421 Wilshire</td>
<td>20</td>
<td>3.1</td>
</tr>
</tbody>
</table>

- Class(dept, cnum, sec, unit, title, instructor)

<table>
<thead>
<tr>
<th>dept</th>
<th>cnum</th>
<th>sec</th>
<th>unit</th>
<th>title</th>
<th>instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>112</td>
<td>01</td>
<td>03</td>
<td>Modeling</td>
<td>Dick Muntz</td>
</tr>
<tr>
<td>CS</td>
<td>143</td>
<td>01</td>
<td>04</td>
<td>DB Systems</td>
<td>Carlo Zaniolo</td>
</tr>
<tr>
<td>EE</td>
<td>143</td>
<td>01</td>
<td>03</td>
<td>Signal</td>
<td>Dick Muntz</td>
</tr>
<tr>
<td>ME</td>
<td>183</td>
<td>02</td>
<td>05</td>
<td>Mechanics</td>
<td>Susan Tracey</td>
</tr>
</tbody>
</table>

- Enroll(sid, dept, cnum, sec)
<table>
<thead>
<tr>
<th>sid</th>
<th>dept</th>
<th>cnum</th>
<th>sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>CS</td>
<td>112</td>
<td>01</td>
</tr>
<tr>
<td>301</td>
<td>CS</td>
<td>143</td>
<td>01</td>
</tr>
<tr>
<td>303</td>
<td>EE</td>
<td>143</td>
<td>01</td>
</tr>
<tr>
<td>303</td>
<td>CS</td>
<td>112</td>
<td>01</td>
</tr>
<tr>
<td>401</td>
<td>CS</td>
<td>112</td>
<td>01</td>
</tr>
</tbody>
</table>

Simplest query: relation name

- **Query 1:** All students

SELECT operator

Select all tuples satisfying a condition

- **Query 2:** Students with age < 18

- **Query 3:** Students with GPA > 3.7 and age < 18

- **Notation:** $\sigma_C(R)$

 - Filters out rows in a relation

 - C: A boolean expression with attribute names, constants, comparisons ($>$, \leq, \neq, ...) and connectives (\land, \lor, \neg)

 - R can be either a relation or a result from another operator

PROJECT operator

- **Query 4:** sid and GPA of all students

- **Query 5:** All departments offering classes

 - Relational algebra removes duplicates (set semantics)
• SQL does not (multiset or bag semantics)

Notation: $\pi_A(R)$

- Filters out columns in a relation
- A: a set of attributes to keep

Query 6: sid and GPA of all students with age < 18

- We can “compose” multiple operators

Q: Is it ever useful to compose two projection operators next to each other?

Q: Is it ever useful to compose two selection operators next to each other?

CROSS PRODUCT (CARTESIAN PRODUCT) operator

- Example: $R \times S$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a_1</td>
</tr>
<tr>
<td></td>
<td>a_2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_1</td>
<td></td>
</tr>
<tr>
<td>b_2</td>
<td></td>
</tr>
<tr>
<td>b_3</td>
<td></td>
</tr>
</tbody>
</table>

$R \times S = \{(a_1, b_1), (a_1, b_2), (a_1, b_3), (a_2, b_1), (a_2, b_2), (a_2, b_3)\}$

- Concatenation of tuples from both relations
- One result tuple for each pair of tuples in R and S
- If column names conflict, prefix with the table name

Notation: $R_1 \times R_2$

- $R_1 \times R_2 = \{t \mid t = \langle t_1, t_2 \rangle \text{ for } t_1 \in R_1 \text{ and } t_2 \in R_2\}$

Q: Looks odd to concatenate unrelated tuples. Why use \times?

Query 7: Names of students who take CS courses
• Q: Can we write it differently?

– Benefit of RDBMS. It figures out the best way to compute.

• Q: If $|R| = r$ and $|S| = s$, what is $|R \times S|$?

NATURAL JOIN operator

• Example: Student \bowtie Enroll

– Shorthand for $\sigma_{\text{Student.sid}=\text{Enroll.sid}}$ (Student \times Enroll)

• Notation: $R_1 \bowtie R_2$

 – Concatenate tuples horizontally
 – Enforce equality on common attributes
 – We may assume only one copy of the common attributes are kept

• Query 8: Names of students who take CS classes (Same as before)

• Query 9: Names of students taking classes offered by “Carlo Zaniolo”

• Natural join: The most natural way to join two tables

THETA JOIN operator

• Example: Student $\bowtie_{\text{Student.sid}=\text{Enroll.sid}}$ GPA > 3.7 Enroll

• Notation: $R_1 \bowtie_C R_2 = \sigma_C(R_1 \times R_2)$
• Generalization of natural join
• Theta join does *NOT* enforce equality on common attributes
• Often implemented as the basic operation in DBMS

RENAME operator

• Query 10: Find the pairs of student names who live in the same address.
• What about \(\pi_{\text{name}, \text{name}}(\sigma_{\text{addr}=\text{addr}}(\text{Student} \times \text{Student})) \)?

• Notation: \(\rho_S(R) \) – rename \(R \) to \(S \)
• Notation: \(\rho_{S(A_1', A_2')}(R) \) for \(R(A_1, A_2) \) – rename \(R(A_1, A_2) \) to \(S(A_1', A_2') \)
• Q: Is \(\pi_{\text{Student.name}, \text{S.name}}(\sigma_{\text{Student.addr}=\text{S.addr}}(\text{Student} \times \rho_S(\text{Student}))) \) really correct?
 – How many times (John, James) returned?

UNION operator

• Query 11: Find all student and instructor names.
 – Q: Can we do it with cross product or join?

• Notation: \(R \cup S \)
 – Union of tuples from \(R \) and \(S \)
 – The schemas of \(R \) and \(S \) should be the same
 – No duplicate tuples in the result

DIFFERENCE operator

• Query 12: Find the courses (dept, cnum, sec) that no student is taking
 – How can we find the courses that at least one student is taking?

• Notation: \(R - S \)
- Schemas of \(R \) and \(S \) must match exactly

- **Query 13:** What if we want to get the titles of the courses?

 - Very common. To match schemas, we lose information. We have to join back.

INTERSECT operator

- **Query 14:** Find the instructors who teach both CS and EE courses
 - Q: Can we answer this using only selection and projection?

 - **Notation:** \(R \cap S = R - (R - S) \)
 - Draw Venn Diagram to verify

DIVISION operator

Use the boards very carefully keeping all examples.

- Division operator is not used directly by any one
- But how we compute the answer for division is very important to learn
- Learn how we computed the answer, not the operator

- **Query 15:** Find the student sids who take every CS class available
 - Q: What will be the answer?

 - Q: How can we compute it?

 Give time to think about

 - **Step 1:** We need to know which student is taking which class. Where do we get the student sid and the courses they take(sid, dept, cnum, sec)?
* **Step 2:** We also need to know all CS classes. How do we get the set of all CS courses (dept, cnum, sec)?

* **Step 3:** What does the relation from Step 1 look like if all students take all CS courses?

How can we compute this? Let us call this relation R

* **Step 4:** What does $(R \setminus \text{Enroll})$ look like? What’s its meaning?

* **Step 5:** What is the meaning of the projection of Step 4?

* **Step 6:** How can we get the student sids who take all CS courses?

- **Notation:** R/S.

- **Query 16:** Find all A values in R such that the values appear with all B values in S.

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>a_1</td>
<td>b_1</td>
</tr>
<tr>
<td>a_1</td>
<td>b_2</td>
</tr>
<tr>
<td>a_2</td>
<td>b_1</td>
</tr>
<tr>
<td>a_3</td>
<td>b_2</td>
</tr>
</tbody>
</table>

$R \approx \text{students and classes they take}$

$S \approx \text{all CS classes}$

$R/S \approx \text{All students who take all CS classes}$

- **Formal definition:**
 * We assume $R(A,B)$ and $S(B)$
 * The set of all $a \in R.A$ such that $\langle a, b \rangle \in R$ for every $b \in S$
 * $R/S = \{ a \mid a \in R.A \text{ and } \langle a, b \rangle \in R \text{ for all } b \in S \}$

- **Result for the example:**

<table>
<thead>
<tr>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
</tr>
</tbody>
</table>

- **Q:** How to compute it?
Ans: \(R/S = \pi_A(R) - \pi_A((\pi_A(R) \times S) - R) \)

All \((R.A, S.B)\) pairs

* \(\pi_A(R)\): All \(A\)'s
* \(S\): All \(B\)'s
* \(\pi_A(R) \times S\): all \(R.A\) and \(S.B\) pairs

\(\pi_A(R) \times S - R\): \((A, B)\) pairs that are missing in \(R\)

\(\pi_A(\pi_A(R) \times S - R)\): All \(R.A\)'s that do not have some \(S.B\)

- Analogy with integer division
 * In integer: \(R/S\) is the largest integer \(T\) such that \(T \times S \leq R\)
 * In relational algebra: \(R/S\) is the largest relation \(T\) such that \(T \times S \subseteq R\)

- The division operator is not used often, but how to compute it is important

More questions

- Q: sids of students who did not take any CS courses?
 - Q: Is \(\pi_{sid}(\sigma_{title \neq 'CS'}(Enroll))\) correct?
 - Q: What is its complement?

- General advice: When a query is difficult to write, think in terms of its complement.

Relational algebra: things to remember

- Data manipulation language (query language)
 - Relation → algebra → relation

- Relational algebra: set semantics, SQL: bag semantics

- Operators: \(\sigma, \times, \bowtie, \rho, \cup, -, \cap, /\)

- General suggestion: If difficult to write, consider its complement