CS143: Disks and Files

Magnetic disk vs SSD

- Magnetic Disk
 - Stores data on a magnetic disk
 - Typical capacity: 1TB – 10TB
- Solid State Drive
 - Stores data in NAND flash memory
 - Typical capacity: 100GB – 1TB
 - Much faster and more reliable than magnetic disk
 - But, x10 more expensive and limited write cycles (~2000)

Structure of a Platter

- Track, cylinder, sector (=block, page)
Typical Magnetic Disk

- Platter diameter: 2.5-5.25 in
- Platters: 1 – 20
- Tracks: 1000 – 50,000
- Sectors per track: 1000 – 50,000
- Sector size: 512 – 50K
- Rotation speed: 1000 – 15000 rpm
- Overall capacity: 1TB – 10TB

Q: 2 platters, 2 surfaces/platter, 20,000 tracks/surface, 20,000 sectors/track, 1KB/sector. What is the overall capacity?

Capacity of Magnetic Disk

- Capacity keeps increasing, but what about speed?

Access Time

Access time = (seek time) + (rotational delay) + (transfer time)

Seek Time

- Time to move a disk head between tracks

 ![Graph showing seek time](image)

 - Track to track ~ 1ms
 - Average ~ 10 ms
 - Full stroke ~ 20 ms

Rotational Delay

- Typical disk:
 - 1000 rpm – 15000 rpm
- Q: For 6000 RPM, average rotational delay?
Transfer Rate

- Read blocks as the platter rotates

- 6000 RPM, 10,000 sectors/track, 1KB/sector
- Q: How long to read one sector?
- Q: What is the transfer rate (bytes/sec)?

(Burst) Transfer Rate

- (Burst) Transfer rate = (RPM / 60) \times (sectors/track) \times (bytes/sector)

Sequential vs. Random I/O

- Q: How long to read 3 sequential sectors?
- 6000 RPM
- 10,000 sectors/track
- Assume the head is above the first sector

Sequential vs. Random I/O

- Q: How long to read 3 random sectors?
- 6000 RPM
- 10,000 sectors/track
- 10ms seek time
- Assume the head is above the first sector

Random I/O

- For magnetic disks:
 - Random I/O is VERY expensive compared to sequential I/O
 - Avoid random I/O as much as we can

Magnetic Disk vs SSD

<table>
<thead>
<tr>
<th></th>
<th>Magnetic</th>
<th>SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random IO</td>
<td>~100 IOs/sec</td>
<td>~100K IOs/sec</td>
</tr>
<tr>
<td>Transfer rate</td>
<td>~100MB/sec</td>
<td>~500MB/sec</td>
</tr>
<tr>
<td>Capacity/$</td>
<td>~1TB/$50 (in 2015)</td>
<td>~100GB/$50 (in 2015)</td>
</tr>
</tbody>
</table>

SSD speed gain is mainly from high random IO rate
RAID
• Redundant Array of Independent Disks
 – Create a large-capacity "disk volumes" from an array of many disks
• Q: Possible advantages and disadvantages?

RAID Pros and Cons
• Potentially high throughput
 – Read from multiple disks concurrently
• Potential reliability issues
 – One disk failure may lead to the entire disk volume failure
 – How should we store data into disks?
• Q: How should we organize the disks and store data to maximize benefit and minimize risks?

RAID Levels
• RAID 0: striping only (no redundancy)
• RAID 1: striping + mirroring
• RAID 5: striping + parity block

Data Modification
• Byte-level modification not allowed
 – Can be modified by blocks
• Q: How can we modify only a part of a block?

Abstraction by OS
• Sequential blocks
 – No need to worry about head, cylinder, sector
• Access to non-adjacent blocks
 – Random I/O
• Access to adjacent blocks
 – Sequential I/O

Buffers, Buffer pool
• Temporary main-memory “cache” for disk blocks
 – Avoid future read
 – Hide disk latency
 – Most DBMS let users change buffer pool size
Reference

• Storage review disk guide

Files: Main Problem

• How to store tables into disks?

<table>
<thead>
<tr>
<th>Jane</th>
<th>CS</th>
<th>3.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susan</td>
<td>ME</td>
<td>1.8</td>
</tr>
<tr>
<td>June</td>
<td>EE</td>
<td>2.6</td>
</tr>
<tr>
<td>Tony</td>
<td>CS</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Spanned vs Unspanned

• Q: 512Byte block. 80Byte tuple. How to store?

Variable-Length Tuples

• How do we store them?

| T1 | T2 | T3 | T4 |

Reserved Space

• Reserve the maximum space for each tuple

| T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 |

• Q: Any problem?
Variable-Length Space

• Pack tuples tightly
• Q: How do we know the end of a record?
• Q: What to do for delete/update?
• Q: How can we “point to” a tuple?

Long Tuples

• ProductReview(
 pid INT,
 reviewer VARCHAR(50),
 date DATE,
 rating INT,
 comments VARCHAR(1000))
• Block size 512B
• How should we store it?

Sequential File

• Tuples are ordered by certain attribute(s) (search key)
<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaine</td>
<td>CS</td>
<td>3.7</td>
</tr>
<tr>
<td>James</td>
<td>ME</td>
<td>2.8</td>
</tr>
<tr>
<td>John</td>
<td>EE</td>
<td>1.8</td>
</tr>
<tr>
<td>Peter</td>
<td>EE</td>
<td>3.9</td>
</tr>
<tr>
<td>Susan</td>
<td>CS</td>
<td>1.0</td>
</tr>
<tr>
<td>Tony</td>
<td>EE</td>
<td>2.4</td>
</tr>
</tbody>
</table>
 – Search key: Name

Sequencing Tuples

• Inserting a new tuple
 – Easy case
Sequencing Tuples

Two options

1) Rearrange

<table>
<thead>
<tr>
<th>T1</th>
<th>T7</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>T6</td>
</tr>
<tr>
<td>T6</td>
<td>T8</td>
</tr>
</tbody>
</table>

2) Linked list

<table>
<thead>
<tr>
<th>T1</th>
<th>T7</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>T6</td>
</tr>
<tr>
<td>T6</td>
<td>T8</td>
</tr>
</tbody>
</table>

Sequencing Tuples

• Inserting a new tuple
 – Difficult case

```
T1
T4
T5
T8
T9
```

Sequencing Tuples

• Overflow page

```
Header
T1
T2
T4
T6
T7
```

• Reserving free space to avoid overflow
 – PCTFREE in DBMS

```
CREATE TABLE R(a int) PCTFREE 40
```

Things to Remember

• Disk
 – Platter, track, cylinder, sector, block
 – Seek time, rotational delay, transfer time
 – Random I/O vs Sequential I/O

• Files
 – Spanned/unspanned tuples
 – Variable-length tuples (slotted page)
 – Long tuples
 – Sequential file and search key
 • Problems with insertion (overflow page)
 • PCTFREE