In all of the following questions, assume that \(\vec{x}, \vec{y} \) and \(\vec{z} \) are the standard orthonomal basis vectors. It is okay to write down your answer as a multiplication of multiple matrices.

Basic linear algebra

1. Write down the matrix form of the linear transformation that maps the vector \(\vec{x} = (1, 0, 0) \) to \(\vec{x}' = (1, 3, 2) \), \(\vec{y} = (0, 1, 0) \) to \(\vec{y}' = (3, 2, 1) \), and \(\vec{z} = (0, 0, 1) \) to \(\vec{z}' = (1, 4, 2) \).

2. Write down the matrix that changes the coordinates of a vector under the standard basis \(\vec{x}, \vec{y}, \vec{z} \), to the coordinates under the new basis \(\vec{x}' = (4, 5, 0), \vec{y}' = (-3, 4, 0), \vec{z}' = (0, 0, 1) \).

 (a) Now consider the vector \(\vec{v} \) whose coordinates are \((3, 2, 1) \) under \(\vec{x}, \vec{y}, \vec{z} \). What are its coordinates under the new basis \(\vec{x}', \vec{y}', \vec{z}' \)?

3. Prove that the multiplication of two orthonormal matrices \(Q_1 \) and \(Q_2 \) is still orthonormal. That is, prove that \(Q_1 Q_2 \) is orthonormal if \(Q_1 \) and \(Q_2 \) are orthonormal.

Eigenvalues and eigenvectors

In all of the following questions, limit your attention only to the real positive eigenvalues and their associated eigenvectors.

1. Consider the \(3 \times 3 \) matrix \(T \) that rotates the input vector by 30 degree counter-clockwise along the \(z \)-axis. Write down all real eigenvalue and eigenvector pairs of \(T \).

2. Consider a \(3 \times 3 \) symmetric matrix \(T \) whose eigenvalues are \(8, 5, 2 \). Given a unit vector \(\vec{v} \) what are the minimum and maximum lengths of \(T\vec{v} \)?

3. Does an \(n \times n \) matrix always have \(n \) eigenvalues?

4. Consider an orthonormal matrix \(T \). What is the maximum number of distinct real positive eigenvalues of \(T \)?

5. Write down the matrix \(T \) that stretches the input vector by 3 along \(\left(\frac{4}{5}, \frac{3}{5}, 0 \right) \), by 4 along \(\left(-\frac{3}{5}, \frac{4}{5}, 0 \right) \) and by 2 along \((0, 0, 1) \).

 (a) How many unique eigenvalues does it have?

 (b) What are the smallest eigenvalue and the corresponding eigenvector of \(T \)?
Singular value decomposition

1. Consider the linear transformation \(T \) that does the following:
\(T \) first stretches the input vector by 3 along \((\frac{4}{5}, \frac{3}{5}, 0)\), by 4 along \((-\frac{3}{5}, \frac{4}{5}, 0)\) and by 2 along \((0, 0, 1)\). It then rotates the stretched vector by 90 degree counter-clockwise along the z-axis.

(a) Write down the matrix representation of \(T \) under the standard basis \(\vec{x}, \vec{y}, \vec{z} \).
(b) Write down the singular value decomposition of \(T \).

2. Consider matrix \(T \) whose singular value decomposition is as follows:
\[
\begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
5 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

(a) Describe the transformation represented by \(T \) in terms of rotations and stretching. To get the full credit, your description should be concise.
(b) Write down all real positive eigenvalues of \(T \) and their corresponding eigenvectors.
(c) Write down all eigenvalue and eigenvector pairs of \(T^T T \).