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In this paper, we propose the Hybrid-Layer Index (simply, the HL-index) that is designed to
answer top-k queries efficiently when the queries are expressed on any arbitrary subset of
attributes in the database. Compared to existing approaches, the HL-index significantly
reduces the number of tuples accessed during query processing by pruning unnecessary tuples
based on two criteria, i.e., it filters out tuples both (1) globally based on the combination of all
attribute values of the tuples like in the layer-based approach (simply, layer-level filtering) and
(2) based on individual attribute values specifically used for ranking the tuples like in the
list-based approach (simply, list-level filtering). Specifically, the HL-index exploits the synergic
effect of integrating the layer-level filtering method and the list-level filtering method.
Through an in-depth analysis of the interaction of the two filtering methods, we derive a tight
bound that reduces the number of tuples retrieved during query processing while guaranteeing
the correct query results. We propose the HL-index construction and retrieval algorithms and
formally prove their correctness. Finally, we present the experimental results on synthetic and
real datasets. Our experiments demonstrate that the query performance of the HL Index
significantly outperforms other state-of-the-art indexes in most scenarios.
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1. Introduction

Computing top-k answers quickly is becoming ever more important as the size of databases grows and as more users access
data through interactive interfaces [1]. When a database is large, it may take minutes (if not hours) to compute the complete
answer to a query if the query matchesmillions of the tuples in the database. Most users, however, are interested in looking at just
the top few results (ranked by a small set of attribute values that the users are interested in) and they want to see the results
immediately after they issue the query.

As an example, consider a database of digital cameras, which has many attributes such as price, manufacturer, model number,
weight, size, pixel count, sensor size, etc. Among these attributes, a particular user is likely to be interested in a small subset when
they make a decision to purchase. For example, a user who wants to buy a cheap compact digital camera will be mainly interested
in the price and the weight and may issue a query like

SELECT * FROM Cameras ORDER BY 0.5*price+0.5*weight ASC LIMIT k.

Another user who primarily cares about the quality of the pictures will be more interested in the pixel count and sensor size and
issue a query like

SELECT * FROM Cameras ORDER BY 0.4*pixelCount+0.6*sensorSize DESC LIMIT k.
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To handle scenarios like the above, we propose the Hybrid-Layer Index (simply, the HL-index) that is designed to answer top-k
queries on an arbitrary subset of the attributes efficiently. There exist a number of approaches for efficient computation of top-k
answers. For example, in their seminal work, Fagin et al. [2,3] designed a series of algorithms that consider a tuple as a potential
top-k answer only if the tuple is ranked high in at least one of the attributes used for ranking. We refer to this approach as the
list-based approach because the algorithms require maintaining one sorted list per each attribute. While this approach shows
significant improvement compared to earlier work, it often considers an unnecessarily large number of tuples. For instance, when
a tuple is ranked high in one attribute but low in all others, the tuple is likely to be ranked low in the final answer and can
potentially be ignored, but the list-based approach has to consider it because of its high rank in that one attribute. As the size of
the database grows, this becomes an acute problem because there are likely to be more tuples that are ranked high in one
attribute but low overall.

To avoid this pitfall, Chang et al. [4] proposed an algorithm that constructs a global index based on the combination of all
attribute values and uses this index for top-k answer computation. We refer to this approach as the layer-based approach because
it builds an index that partitions the tuples into multiple layers. The layer-based approach avoids the pitfall of the list-based
algorithms, but it also has the opposite problem. Because the index is constructed on all attributes, it does not perform well when
the query ranks tuples by a small subset of the attributes. A tuple may be ranked high globally on many attributes, but it may be
ranked low for a particular subset of attributes used for a query.

One simple way to address the drawback of the layer-based approach is to build one dedicated index per subsets of attributes
and use the appropriate index for a query as in [5,6]. We refer to these approaches as the view-based approach. Clearly, view-based
approaches lead to high query performance if the “closest” answers to the query issued by a user has been precomputed.
Otherwise, they lead to low query performance. They can improve query performance by increasing the number of indexes, but
the space overhead increases in proportion to the number of indexes [7].

Our proposed HL-index tries to avoid all pitfalls of the existing approaches in the following ways. By careful integration of the
list-based and the layer-based approaches, it is able to filter out a tuple both by the global combination of all of its attribute values
(like in the layer-based approach) and by the individual consideration of the particular attribute values used for ranking (like in
the list-based approach). In addition, one HL-index can handle any queries on an arbitrary subset of the attributes avoiding the
space overhead of the view-based approach. More precisely, we make the following contributions in this paper.

• We propose the HL-index that can be used for answering top-k queries on an arbitrary subset of attributes. The HL-index can be
built for either (1) linear scoring functions (including monotone and non-monotone linear functions) or (2) monotone scoring
functions (including linear and non-linear monotone functions). The HL-index has significantly more pruning power than
existing approaches and does not require a separate index customized for each class of queries on different subsets of attributes.

• We present the algorithms for processing top-k queries using the HL-index. Through an in-depth analysis of the interaction of
the list-based and layer-based approaches, we derive a tight bound to minimize the number of tuples that are retrieved during
query processing and to guarantee the correctness of the computed results. We also provide formal proofs of correctness of
those algorithms.

• We conduct extensive experiments comparing the performance of the HL-index with those of existing approaches on both
synthetic and real data. The HL-index can exploit the synergic effect of the list-based approach and the layer-based approach by
meticulous integration of the two approaches. As a result, the HL-index shows better performance over existing approaches for
practically all settings in our experiments. In particular, our experiments show that the HL-index performs particularly well
when the size of the database is large, leading to a factor of three or more improvement for a database of million tuples in our
experiments.

The rest of the paper is organized as follows: We first go over related work in Section 2 and we formally define the top-k
queries that we handle in Section 3. Then, in Section 4, we describe the HL-index construction algorithm and, in Section 5, explain
the top-k query processing algorithm using the HL-index and prove its correctness. In Section 6 we present our experiments that
compare the performance of the HL-index to existing approaches. We conclude the paper in Section 7.

2. Related work

There have been a number of methods proposed to answer top-k queries by accessing only a subset of the database. We
categorize the existing methods into three classes: the list-based approach, the layer-based approach, and the view-based approach.
We briefly review each of these approaches in this section.

2.1. Layer-based approach

The layer-based approach constructs a global index based on the combination of all attribute values of each tuple. Within the
index, tuples are partitioned into multiple layers, where the ith layer contains the tuples that can potentially be the top-i answer.
Therefore, the top-k answers can be computed by reading at most k layers. ONION [4], PL-index [8], and AppRI [9] are well-known
methods of this approach.

ONION [4] builds the index by making layers with the vertices (or the extreme points [10]) of the convex hulls [11] over the set
of tuples represented as point objects in the multi-dimensional space. That is, it makes the first layer with the convex hull vertices
over the entire set of tuples, and then, makes the second layer with the convex hull vertices over the set of remaining tuples, and
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so on. As a result, an outer layer geometrically encloses inner layers. By using the concept of the optimally linearly ordered set,
Chang et al. [4] has shown that ONION answers top-k queries by reading at most k layers starting from the outmost layer.

ONION is capable of answering a query with an arbitrary (monotone or non-monotone) linear function because of the
geometrical properties of the convex hull [12]. On the other hand, the query performance is sometimes adversely affected due to
the relatively large sizes of layers [9], particularly when the number of attributes mentioned in the query is small, because it reads
all the tuples in a layer. In order to avoid the pitfall, PL-index [8] and AppRI [9] construct a database in more layers than ONION
does by taking advantage of the assumption that queries have monotone linear functions. PL-index reduces the layer size by
partitioning the single layer list into multiple layer lists and by using the convex skyline, which is a combination of the convex hull
and the skyline, as the layering scheme. AppRI constructs a list of layers by exploiting the domination relation of skylines.
However, to support an arbitrary linear function, PL-index and AppRI have to build 2d indexes due to the monotone assumption.
Here, d represents the number of attributes. In contrast, ONION builds only one index.

2.2. List-based approach

The list-based approach constructs a set of lists by sorting all tuples based on their values in each attribute. It then finds the
top-k tuples by merging as many lists as are needed [13,3]. For example, the threshold algorithm (TA) [3,14], a well-known
method of the list-based approach, sequentially accesses each sorted list mentioned in a query in parallel. That is, for all attributes
appearing in a query, it accesses the first element of each sorted list, then the second element, and so on, until a particular
threshold condition is met. For each tuple identifier seen under the sorted accesses, it also randomly accesses the other lists to get
its values of the other attributes to compute the tuple's score. In recent, a number of extensions of TA has been proposed for
processing top-k queries in a distributed environment (or in a disk-based environment), where sequential/random access cost
difference is not negligible [15,16,19].

Under the list-based approach, since the lists are independent of one another, top-k tuples are computed by accessing only
those lists corresponding to the attributes mentioned in the query. That is, it can filter out unnecessary tuples by individual
consideration of these attribute values. However, since TA does not exploit the relationship among the attributes when creating
the sorted lists, its performance gets worse as the number of attributes mentioned in the query increases.

2.3. View-based approach

The basic idea behind the view-based approach is to “precompute” the answers to a class of queries on subsets of attributes
and return the precomputed top-k answers given a query. When the exact answers to the query issued by a user has not been
precomputed, the “closest” precomputed answers are used to compute the answer for the query. PREFER [6] and LPTA [5] are
well-known methods of this approach. Since the view-based approach requires constructing a number of indexes in order to
improve query performance [6], its space and maintenance overhead often becomes an important issue in using this approach for
a practical system [7].

2.4. Other approaches

There exists a large body of work for efficient computation of skyline queries [17,18,20–22]. Because the skyline contains at
least one tuple that minimizes any monotone scoring function [23], this work can be used to deal with top-k queries under a
monotone scoring function for the special case of k=1. SUB-TOPK [21] is one extension of these methods that finds the top-k
results, but because it is still based on the skyline approach, it only deals with monotone scoring functions and is unable to handle
non-monotone linear functions. In addition, there also exists a body of work for extending the traditional top-k queries. First, to
handle uncertain data such as sensing data of sensors [24,25], this work models uncertainty of these data as a probability
distribution [24,26] and proposes methods that find k tuples with the highest probability to be the top-k results efficiently [25,27].
Second, to handle spatial objects having both text and location information, this work focuses on constructing indexes to
efficiently combine the text relevancy and the location proximity [28]. Third, to handle objects in a number of sources (or
subsystems) [29,30], this work identifies the costs of accessing each source and finds the cheapest plan for accessing the sources
where the top-k results can be. Last, this work handles reverse top-k queries that efficiently find preferences making a given tuple
to be ranked high instead of finding top k tuples [31,32].

Table 1 summarizes the top-k indexing methods that are compared in this paper and the functions they support.

Table 1
Top-k indexing methods compared and the functions they support.

Functions Linear Non-linear

Monotone TA, ONION, AppRI, PREFER, LPTA, SUB-TOPK, PL-index TA, PREFER, SUB-TOPK
Non-monotone ONION
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3. Problem definition

In this section, we formally define the problem of top-k queries when the tuples are ranked by an arbitrary subset of attributes. A
target relation R of N tuples has d attributes A1,A2,…,Ad. The value of each attribute Ai is assumed to range between [0.0,1.0], so every
tuple in the relation R can be considered as a point in the d-dimensional space [0.0,1.0]d. Hereafter, we call the space [0.0,1.0]d as the
universe, refer to a tuple t in R as an object t in the universe, and use the tuple and the object interchangeably as is appropriate. A
scoring function f(t):t→[−1.0,1.0] maps each object t ∈ [0.0,1.0]d to a real value in [−1.0,1.0]. Then, a top-k query is to find the k
objects in R that have the lowest (or highest) score under f(t). Without loss of generality, we assume that we are looking for the
lowest-scored objects in the rest of this paper. Therefore, our goal is to retrieve a sequence of objects [t1,t2,…tk] that satisfy
f(t1)≤ f(t2)≤…≤ f(tk)≤ f(tI), k+1≤ l≤N. Here, tj denotes the jth ranked object in the ascending order of their score, where 1≤ j≤N.

The scoring function for top-k queries is generally assumed to be either linear [4–6,8,9,30] or monotone [5,3,6,8,9,21,29,30,33].
A linear scoring function is a function of the following form

f �w tð Þ ¼
Xd

i¼1

w i½ � � t i½ � ð1Þ

where t[i] is the ith attribute value of t andw[i] is the “weight” of the ith attribute. The vector ofw[i] values, �w, is referred to as the
preference vector. Without loss of generality, the w[i] values are assumed to range between [−1.0,1.0] and are normalized to be
∑ i=1

d |w[i]|=1. A monotone scoring function satisfies the following condition [3]: if t[i]≤ t′[i] for all i=1,…d, then f(t)≤ f(t′).
Informally, monotony means that if an object has smaller scores than others in all attributes, then its overall score should also be
smaller. We note that a linear function f �w is monotone if and only if its w[i] values are all non-negative. Depending on the sign of
the w[i] values, a linear function may be non-monotone.

As we will explain, our HL-index can be designed to deal with either of the following classes: (1) all linear functions including
monotone and non-monotone linear functions; (2) all monotone functions including linear and non-linear monotone functions.
For clarity of our exposition, however, we mainly assume linear scoring functions (monotone or non-monotone) in the rest of this
paper and briefly deal with the variation for non-linear monotone functions in Section 5.5.

As we stated in Introduction, when R has many attributes, any particular top-k query is likely to have nonzero weights only for
a small subset of the attributes [21]. To emphasize this fact, we use SUB to denote the set of attributes with w[i]≠0 and call the
size of SUB the sub-dimension and the space consisting of these attributes the subspace. That is, SUB={i|w[i]≠0 for i=1,…,d}.
Under this notation, a subspace top-k query is to find the k lowest-scored objects [t1,…tk] given the query triple (SUB, f �w(), k). In
Table 2, we summarize the notation that we use throughout this paper. The symbols that have not been introduced yet will be
explained in Section 5.

4. Hybrid-layer index (HL-index)

We now explain how to construct an HL-index to efficiently handle subspace top-k queries. The primary goal of the HL-index
is to enable both layer-level filtering and list-level filtering: (1) the layer-level filtering prunes an object by the global combination
of all of its attribute values like in the layer-based approach. (2) The list-level filtering prunes an object by the individual
consideration of the particular attribute values with nonzero weights in the scoring function like in the list-based approach.

To enable the two types of filtering, an HL-index is constructed in two steps: (1) Layering step: In this step, objects in the
relation R are partitioned into a disjoint set of layers, {L1,L2,…,Lm}, where Li represents the ith layer. Every object belongs to one

Table 2
The notation.

Symbols Definitions

R The target relation for top-k queries
N The cardinality of R
d The number of attributes of R or the dimension of the universe
Ai The ith attribute of R (1≤ i≤d)
t An object in R (t is considered as a d-dimensional vector �t that has t[i] as the ith element)
t[i] The value of attribute Ai in the object t (t∈R)
�w A preference vector (a d-dimensional vector that has w[i] as the ith element)
w[i] The weight of attribute Ai in the preference vector �w
Li The ith layer or the set of objects in the ith layer
Li,j The list of objects in Li sorted in the ascending order of their Aj values
omin(S) The minimum-scored object in the set S
H(i) o f �w oð Þ≤f �w omin Lið Þð Þfor o ∈L1∪L2∪…∪Lij gf
Si,j(n) The set of the first n objects from the head (or tail) of Li,j
Si(n) Si,1(n)∪Si,2(n)∪…∪Si,d(n)
Ui(n) Li−Si(n); the objects in Li that are not in Si(n)
ai,j(n) The Aj value of the nth object from the head (or tail) of Li,j
F i nð Þ f �w ai;1 nð Þ; ai;2 nð Þ;…; ai;d nð Þ� �

; no object in Ui(n) has a score lower than F i nð Þ.
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and only one layer. As we will see later, once the objects are partitioned into layers, the top-k objects can be obtained from at most
the first k layers; objects in all the other layers can be ignored, enabling the layer-level filtering. (2) Listing step: In this step, for
each layer Li, we construct d sorted lists {Li,1, Li,2,…,Li,d}, where Li,j represents the list of objects in Li sorted in the ascending order of
their jth attribute values.

As we mentioned earlier, our HL-index can be built for either all linear functions or for all monotone functions. Fig. 1 describes
the version of the HL-index construction algorithm for all linear functions.1 The input to the algorithm is the set R of the
d-dimensional objects, and the output is the set of layers L={L1,L2,…,Lm}, where the ith layer Li contains d sorted lists, Li={Li,1,…,
Li,d}. We explain the algorithm using Example 1.

Example 1. Let us assume that the input relation R has nine objects, t1,…t9, and two attributes, A1 and A2, as we show in Fig. 2(a).
Here, ID represents the identifier of the object. Given this input relation, in Line 3, the algorithm finds the convex hull and places
the objects at the vertices of this convex hull, {t1,t2,t4,t7,t9}, into R1 (Ri is the set that contains all objects in the ith layer Li) as
shown in the left-most rectangle in Fig. 2(c). The reason why we use the convex hull to partition R will be explained later in
Section 5. Then, in Lines 4 and 5, the algorithm constructs two sorted lists, L1,1 and L1,2, for the five objects in R1. More specifically,
L1,1 and L1,2 list the object IDs in R1 in the ascending order of their A1 and A2 values, respectively. For example, in Fig. 2(d) the first
object in L1,1 is t2 because t2 is the object with the smallest A1 value in R1. As the algorithm proceeds, it iteratively constructs a new
convex hull with the remaining objects until the input set R becomes empty. Eventually, the algorithm constructs three layers, L1,
L2 and L3, for the input relation R, as shown in Fig. 2(d). □

As mentioned by Chang et al. [4], the costs of computing the convex hull andmanaging the layer list such as inserting, deleting,
and updating objects are not negligible. Inherently, we can adopt the maintenance method that was suggested by Chang et al. [4].
That is, since a layer is not affected by inserting or deleting objects inside the layer [4], we can reconstruct layers and their sorted
lists over the objects only inside the layer. Due to the expensive computation cost, we suggest that the index reconstruction is
performed in the batch mode as Chang et al. [4] do. Reducing the convex hull computation and incremental maintenance cost is
not discussed in this paper since it is beyond the scope of this paper.

Before we proceed, we emphasize that, in our HL-index L={L1={L1,1,…,L1,d},…,Lm={Lm,1,…,Lm,d}}, each sorted list Li,j
contains only object identifiers, but not the full attribute values of the objects. We store their full attribute values in a separate
place. Therefore, once we obtain an object ID from the HL-index, we will have to retrieve the full values of its attributes separately
in order to compute the object score under a given scoring function as done by Chaudhuri et al. [34].

We now compute the storage cost of the HL-index. For ease of computing, we consider the storage cost of a numeric value asO 1ð Þ.
LetNi be the number of objects in Ri. We note that each Li contains d sorted lists, where each list hasNi object identifiers. For each Li, to
record the relationship between the layer and its sorted list, wemaintain the identifiers of the d sorted lists. Then, the storage cost of Li
is computed asO d � Ni þ dð Þ. In addition, to maintain the sequence of them layers, we use a list havingm layer identifiers (i.e., layer
numbers). Thus, the storage cost of the HL-index is computed as O d � N þ d �mþmð Þ ¼ O d � N1 þ…þ Nmð Þ þ d �mþmð Þ. Here,
the first term (i.e., O d � Nð Þ) is equal to the storage cost of the list-based approach, and the sum of the third one (i.e.,O mð Þ) and the
storage cost of N object identifiers O Nð Þ is equal to the storage cost of the layer-based approach (i.e., O N þmð Þ).

5. Query processing using the HL-index

We now discuss how we can use the HL-index for exploiting the synergic effect of layer-level filtering and list-level filtering in
computing the top-k objects. In Section 5.1, we start reviewing the ONION algorithm [4] to explain how the HL-index can be used
for layer-level filtering. Then in Section 5.2, we explain how we can extend the ONION algorithm to enable list-level filtering.

Fig. 1. The LayerbasedListBuilding algorithm for building the HL-index.

1 Again, the HL-index for all monotone functions are described briefly in Section 5.5.
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5.1. ONION algorithm: layer-level filtering

In the HL-index construction algorithm of Fig. 1, the input objects in R are partitioned into multiple layers by the repeated
extraction of the convex hull vertices. This layering strategy was proposed by Chang et al. [4], where the authors proved that the
top-k objects are guaranteed to be in the first k layers L1 through Lk. Therefore, in computing the top-k answers, all objects in the
layer Lk+1 and above can be ignored, making layer-level filtering possible. More precisely, Chang et al. [4] proved the following
important theorem.

Theorem 1. [4] (Optimally Linearly Ordered Set Property) Let L={L1,L2,…,Lm} be the set of layers constructed by the recursive
extraction of convex hull vertices. Let omin (Li) be the minimum-scored object in Li. Then, no object in the layers Li+1,…,Lm can have a
score less than omin (Li). That is, ∀o∈Lj (ib j≤m), f �w omin Lið Þð Þ≤f �w oð Þ under any preference vector �w.

Theorem 1 implies that if we have found k or more objects whose scores are lower than or equal to f �w omin Lið Þð Þ from the layers
L1 through Li, then we can ignore all objects in Li+1 through Lm. More precisely, Chang et al. [4] proved the following corollary.

Corollary 1. [4] Let omin (Li) be the minimum-scored object in the layer Li. Let H(i) be the objects in L1,L2,…, Li whose scores are
f �w omin Lið Þð Þ or less. That is, H ið Þ ¼ o f �w oð Þ≤f �w omin Lið Þð Þ for o∈L1∪L2∪…∪Lij gf .2 If H(i) contains k or more objects (i.e., if |H (i)≥k|),
H(i) contains the top k objects.

Based on Corollary 1, Chang et al. [4] proposed the ONION algorithm. In Fig. 3 we show a slightly modified version of the
ONION algorithm.3 Starting from i=1, the ONION algorithm retrieves all objects in Li and evaluates their scores in Line 2. Once all
object scores are evaluated, it identifies omin (Li), the minimum-scored object in Li, in Line 3 and computes H(i), the set of objects
in L1 through Li with scores f �w omin Lið Þð Þ or less, in Line 4. Then, in Lines 5 and 6, the algorithm returns the top-k objects from H(i) if
H(i) contains k or more objects. Otherwise, it increases i by one and repeats the process.

We note that the ONION algorithm performs the layer-level filtering by retrieving objects only from the first few layers. In
particular, the i value in the algorithm never increases beyond k, so even in the worst case scenario, at most the first k layers are
retrieved [4]. However, the main drawback of the ONION algorithm is that all objects in these layers, which could be large, have to
be retrieved to evaluate their scores. In the next section, we explain how we can use the individual lists in the HL-index to
perform list-level filtering by retrieving only a subset of objects in each layer.

2 In the original definition, the inequality sign should have been “≥” instead of “>” [8], and for finding k objects with the lowest scores as the results, we use
“≤”.

3 We present a slightly modified algorithm from what was proposed by Chang et al. [4] in order to make our later discussion easier to follow.

(a) (b)

(c) (d)

Fig. 2. An example of constructing the layer lists and the HL-index in the two-dimensional universe.
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5.2. List-level filtering for the HL-index

In designing the algorithm that retrieves only a subset of objects from each layer, we first note that the only reason why the
ONION algorithm retrieves all objects from Li in Line 2 is to be able to identify omin (Li) and H(i) in Lines 3 and 4. In other words, as
long as we can identify omin (Li) and H(i) correctly, we do not have to retrieve all objects in Li. The main challenge for allowing the
list-level filtering is then to figure out the way to identify omin (Li) and H(i) without evaluating the score f �w for every object in Li.

To explain how we can achieve this using the HL-index, we first introduce relevant notation. Here, for ease of understanding, we
consider the notation to be used for handlingmonotone linear functions and extend it to handle non-monotone linear functions. We
use Si,j(n) to refer to the set of the first n objects at the head of the list Li,j. For example, S1,2 (3)={t2,t4,t7} in Fig. 2(d).We set Si(n) to be
Si,1(n)∪Si,2(n)∪…∪Si,d(n). Informally, Si(n) can be considered as the set of objects that we “see” by retrieving the first n objects from
the head of each list Li,j. For instance, S1, (2)={t1,t2,t4} in Fig. 2(d).We set Ui(n)=Li−Si(n). For example, U1 (2)=L1−S1 (2)={t1,t2,
t4,t7,t9}−{t1,t2,t4}={t7,t9}ss. Informally,Ui(n) can be considered as the set of the objects in Li that are not “seen” by retrieving the top n
objects from the head of each list Li,j. We use ai,j(n) to refer to the Aj attribute value of the nth object at the head of the list Li,j. For
example, in Fig. 2(d), a1,2 (3) is 0.5, the A2 value of the third object t7 in L1,2. Since each list Li,j is sorted by the Aj values, ai,j (m)
monotonically increases as n increases. Finally, we set F i nð Þ= f(ai,1(n),ai,2(n),…ai,d(n)). The meaning of the new set of symbols is
summarized in Table 2. Under this notation, Fagin et al. [3] proved the following important theorem:

Theorem 2. [3] Under any monotone (linear or non-linear) function f, every object in Ui(n) has a score larger than or equal to the
threshold value F i nð Þ. That is,

∀o∈Ui nð Þ; f oð Þ≥f ai;1 nð Þ; ai;2 nð Þ;…; ai;d nð Þ
� �

¼ F i nð Þ: ð2Þ

Now, we extend the notations to handle non-monotone linear functions. We note that a linear function, f �w tð Þ, consists of d
terms, w[1]∗ t[1],…,w[d]∗ t[d], as shown in Eq. (1). If w[ j]b0, the term w[ j]∗ t[ j] decreases as t[ j] increases. Otherwise, w[ j]∗ t[ j]
increases as t[ j] does. That is, if we access Li,j from the head (i.e., smallest Aj object first) without consideringw[ j]'s sign, we cannot
guarantee that the threshold value monotonically increases as we access more objects and, accordingly, cannot exploit
Theorem 2. Fortunately, we note that w[j]∗ t[j] increases as t[ j] decreases when w[j]b0. Thus, if we access Li,j from the tail (i.e.,
largest Aj object first) when w[ j]b0, the threshold value monotonically increases. To ensure that w[ j]∗ t[ j] monotonically
increases as we access more objects, we use alternative definitions of Si,j(n) and ai,j(n) in Table 2 depending on the sign of w[ j]. If
w[ j]≥0, we use the “head” versions of the definitions in Table 2. Otherwise, we use the “tail” versions. We call this updated access
mechanism monotone access. Using this notation, we naturally have the following corollary:

Corollary 2. Under any linear function f �w(), every object in Ui(n) has a score larger than or equal to the threshold value F i nð Þ.
That is,

∀o∈Ui nð Þ; f �w oð Þ≥f �w ai;1 nð Þ; ai;2 nð Þ;…; ai;d nð Þ
� �

¼ F i nð Þ:

Given Corollary 2, we can see that Corollary 3 in Section 5.2.1 and Corollary 4 in Section 5.2.2 are still true if we replace the
“monotone linear function f”with the “linear function f �w .”Wewill call themmodified Corollary 3 andmodified Corollary 4, respectively.

Fig. 4 shows the function getNextObjects() for the monotone access. In Line 3, for each Li,j (j � SUB), it checks the sign of the jth
attribute weight. If the sign is positive, it retrieves the next object of Li,j from the head. Otherwise, it retrieves that object from the
tail. Here, we assume that, since the zero-weight attributes do not affect the final object score, getNextObjects() needs to retrieve
objects only from the non-zero-weight attribute lists.

Example 2. Let us assume that w[1]=0.5 and w[2]=−0.5. Then, the first time getNextObjects() is called on L1 in Fig. 2(d), it
returns the top object t2 from the list L1,1 and the bottom object t1 from L1,2. The second time getNextObjects() is called on L1, it
returns the next objects, t1 and t9. □

5.2.1. Identifying omin (Li)
Theorem 2 provides an important clue on howwe can identify omin (Li) from Li without retrieving all objects in Li. In particular,

under a monotone (linear or non-linear) scoring function f, the theorem guarantees that after we retrieve Si(n), if omin (Si(n)) has

Fig. 3. The modified ONION algorithm.
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a score less than or equal toF i nð Þ, then omin (Si(n)) is the minimum-scored object in Li. More precisely, Fagin et al. [3] proved the
following corollary.

Corollary 3. [3] Let omin (Si(n)) be the minimum-scored object in Si(n). Under any monotone linear function f, if f (omin (Si(n)))≤
F i nð Þ, then f (omin (Si(n)))= f(omin (Li)).

Based on Corollary 3, Fagin et al. [3] proposed the TA algorithm. In Fig. 5 we show a modified version of the TA algorithm
identifying omin (Li) by retrieving the first few objects from each list Li,j. Starting from n=1n=1, the algorithm incrementally
builds Si(n) by retrieving the next objects in Li,j's in Line 4 until f (omin (Si(n))) becomes less than or equal to the threshold value
F i nð Þ. Then in Line 6, the algorithm returns omin (Si(n)) as omin (Li). Since the algorithm exits from the while loop only when f (omin

(Si(n)))≤F i nð Þ, from Corollary 3, we can see that the returned object is the minimum-scored object in Li.

5.2.2. Identifying H(i)
The set H(i)={o|f(o)≤ f(omin(Li)) for o∈L1∪L2∪…∪Li} can be obtained similarly, based on the following corollary.

Corollary 4. Let f be an arbitrary monotone linear function, and f (omin (Li)) be the minimum score among all objects in the layer Li. For
each layer Lj (1≤ j≤ i), let nj be the minimum n that satisfies F j nð Þ> f(omin (Li)). Then H(i) is a subset of S1(n1)∪S2(n2)∪…∪Si(ni).

Proof. Let o be an object in H(i). From the definition of H(i), H(i) is a subset of L1∪…∪Li, so omust be in one of L1,L2,…,Li. Let o be
in Lj (1≤ j≤ i). From the definition of H(i), o satisfies f(o)≤ f(omin(Li)). From the definition of nj, Theorem 2, and the condition
F j nð Þ > f omin Lið Þð Þ, such an o cannot be in Uj(nj), so it must be in Sj(nj). Since Sj(nj)pS=S1(n1)∪…∪Si(ni), omust be in S. That is, all
the objects in H(i) exist in S. Thus, H(i)pS. □

From Corollary 4, we can compute the H(i) by retrieving the first few objects in each list Li,j from the layers L1 through Li
without retrieving all the objects in Lj. Now we are ready to introduce our algorithm that performs both layer-level filtering and
list-level filtering using the HL-index.

5.3. Basic algorithm

Fig. 6 shows BasicLayerbasedThresholdAlgorithm (simply, BasicLTA) for processing subspace top-k queries using the HL-index.
The inputs to BasicLTA are the HL-index and a query Q=(SUB, f �w(), k). The output is the k objects having the lowest scores for the

Fig. 4. A function for the BasicLayerbasedThresholdAlgorithm.

Fig. 5. A modified TA algorithm identifying omin(Li) from Li.
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scoring function f �w(). Starting from i=1, the algorithm first computes omin(Li) in Lines 2 through 6 (like the modified TA in Fig. 5).
Once the algorithm reaches Line 7, omin(Si(ni)) is omin(Li). Then, in Lines 8 through 13, the algorithm computes H(i): for each lower
layer Ll (1≤ lb i), it retrieves next objects from each Ll,j and incrementally builds Sl(nl) until the threshold value F l nlð Þ becomes
greater than f �w omin Si nið Þð Þð Þ (which is the same as f �w omin Lið Þð Þ). We note that when the function getNextObjects() is called on Ll in
Line 11, the function resumes where it left off. It does not start reading the first object from each list again. Then in Lines 15 and
16, the algorithm checks whether or not top-k objects are found. If S1(n1)∪…∪Si(ni) contains k or more objects whose scores are
lower than or equal to f �w omin Si nið Þð Þð Þ (i.e., if |H(i)|≥k), the algorithm returns the top-k objects in S1(n1)∪…∪Si(ni). Otherwise, it
increases i by one and repeats the process. We now prove the correctness of BasicLTA.

Theorem 3. For any linear scoring function f �w , the algorithm BasicLTA correctly finds k objects with lowest scores.

Proof. Let R be the set of all objects in the database. Since every returned object has a score f �w omin Si nið Þð Þð Þ or less, we can prove
correctness by showing that any object o in R but not in S1(n1)∪…∪Si(ni) at Line 16 satisfies f �w oð Þ≥f �w omin Si nið Þð Þð Þ. We first note
that, due to the condition in Line 6, f �w omin Si nið Þð Þð Þ≤F i nið Þ when the algorithm reaches Line 16. Given this inequality, we know
from modified Corollary 3 that

f �w omin Si nið Þð Þð Þ ¼ f �w omin Lið Þð Þ: ð3Þ

Consider three cases of o in R but not in S1(n1)∪…∪Si(ni):

(1) o∈Li: From Eq. (3), omin(Si(ni)) is the minimum-scored object in Li, so f �w oð Þ≥f �w omin Si nið Þð Þð Þ.
(2) o∈Ll for l> i: From Theorem 1, we know that f �w oð Þ≥f �w omin Lið Þð Þ, so from Eq. (3), f �w oð Þ≥f �w omin Si nið Þð Þð Þ.
(3) o∈Ll for lb i: Due to the condition in Line 9, nl is increased until

F l nlð Þ > f �w omin Si nið Þð Þð Þ: ð4Þ

Because o∉Sl(nl), o should be in Ul(nl) by the definition of Ul(nl)=Ll−Sl(nl). From Corollary 2, such an o satisfies

f �w oð Þ≥F l nlð Þ: ð5Þ

From Eqs. (4) and (5), we get f �w oð Þ > f �w omin Si nið Þð Þð Þ. □

Fig. 6. The BasicLayerbasedThresholdAlgorithm algorithm for processing subspace top-k queries using HL-index.

9J.-S. Heo et al. / Data & Knowledge Engineering 83 (2013) 1–19



5.4. Enhanced algorithm

In this section, we enhance the BasicLTA algorithm to further reduce the number of retrieved objects. In BasicLTA, once we
identify omin(Li) from layer Li, we retrieve more objects in layers L1 through Li−1 using f �w omin Lið Þð Þ as the bound of their scores.
Our following observation suggests that we may be able to use a smaller number as this bound and retrieve fewer objects from L1
through Li:

Lemma 1. During the execution of BasicLTA, the inequality min F i nið Þ; f �w omin Si nið Þð Þð Þð Þ≤f �w omin Lið Þð Þ always holds.

Proof. omin(Li) is in Si(ni) or Ui(ni). If omin(Li)∈Si(ni), then f �w omin Si nið Þð Þð Þ ¼ f �w omin Lið Þð Þ. If omin(Li)∈Ui(ni), then F i nið Þ≤
f �w omin Lið Þð Þ from Corollary 2. Thus, min F i nið Þ; f �w omin Si nið Þð Þð Þð Þ≤f �w omin Lið Þð Þ. □

From Lemma 1 and Theorem 1, it is easy to see that every object in layers Li+1 through Lm has a score
min F i nið Þ; f �w omin Si nið Þð Þð Þð Þ or higher. Therefore, if we can find k or more objects from layers L1 through Li with score
min F i nið Þ; f �w omin Si nið Þð Þð Þð Þ or less, they are guaranteed to be the top-k, because no object in Li+1 and above has a smaller score.
Since we can use the minimum between F i nið Þ and f �w omin Si nið Þð Þð Þ as the bound without having to identify omin(Li), we retrieve
fewer objects from L1 through Li to compute the top-k objects.

Fig. 7 shows EnhancedLayerbasedThresholdAlgorithm (simply, EnhancedLTA), which implements this idea. The inputs and the
output of EnhancedLTA are same to those of BasicLTA in Fig. 6. In BasicLTA, starting from i=1, we keep retrieving objects from Li
until we find the omin(Li) by repeatedly calling getNextObjects() until F i nið Þ > f �w omin Si nið Þð Þð Þ. Only then does it goes back to
previous layers to retrieve more objects with the score bound f �w omin Lið Þð Þ. In contrast, in EnhancedLTA, each time we call
getNextObjects() in Line 5, we immediately go back to the earlier layers and retrieve more objects with the score bound
min F i nið Þ; f �w omin Si nið Þð Þð Þð Þ (Lines 7 through 12). If there exists k or more such objects, we return the top-k objects in Line 16. We
now prove the correctness of EnhancedLTA.

Theorem 4. For any linear scoring function f �w , the algorithm EnhancedLTA correctly finds k objects with lowest scores.

Proof. This proof is very similar to our proof for Theorem 3. Let R be the set of all objects in the database. Since every returned object
has a score min F i nið Þ; f �w omin Si nið Þð Þð Þð Þ or less, we can prove the correctness by showing that any object o in R but not in
S1(n1)∪…∪Si(ni) at Line 15 satisfies f �w oð Þ≥min F i nið Þ; f �w omin Si nið Þð Þð Þð Þ. Consider three cases of o in R but not in S1(n1)∪…∪Si(ni):

(1) o∈Li: Since omin(Li) is the minimum-scored object in Li, f �w oð Þ≥f �w omin Lið Þð Þ≥min F i nið Þ; f �w omin Si nið Þð Þð Þð Þ from Lemma 1.
(2) o∈Ll for l> i: From Theorem 1, we know that f �w oð Þ≥f �w omin Lið Þð Þ≥min F i nið Þ; f �w omin Si nið Þð Þð Þð Þ.

Fig. 7. The query processing algorithm enhanced to use a tighter bound.
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(3) o∈Ll for lb i: Due to the condition in Line 8, nl is increased until

F l nlð Þ > min F i nið Þ; f �w omin Si nið Þð Þð Þð Þ: ð6Þ

Because o∉Sl(nl), o should be in Ul(nl) by the definition of Ul(nl)=Ll−Sl(nl). From Corollary 2, such an o satisfies f �w oð Þ≥F l nlð Þ >
min F i nið Þ; f �w omin Si nið Þð Þð Þð Þ from Eq. (6). □

5.5. HL-index for monotone functions

We now briefly explain how we can extend the HL-index to handle all monotone functions including both linear and
non-linear cases. In our earlier algorithms, the core part that makes the linearity assumption is the layering step of the index
construction algorithm. With a non-linear scoring function, top-k objects may not necessarily reside in the first k layers built
through the recursive extraction of convex hull vertices, making it impossible to apply layer-level filtering. To address this
problem for monotone non-linear functions, we build layers by recursively drawing skylines [23] instead of convex hulls. Since the
layer list consisting of skylines satisfies the optimally linearly ordered set property (extended for monotone functions) as proved
in Lemma 2 below, the same theorems and lemmas that we proved in Section 5 also apply to the skyline version with the
correctness of the algorithms proved. Therefore, this new version of the HL-index can use the identical algorithm in Fig. 7 except
that the layers are now constructed using skylines, not convex hull vertices.

Lemma 2. For a given set U of objects in the universe, a layer list constructed using skylines over U satisfies optimally linearly
ordered set property under any monotone function f.

Proof. Let L={L1,L2,…,Lm} be the list of layers constructed by recursive extraction of skylines. That is, L1∪…∪Lm is the entire
database, and Li is the set of objects in the skyline over Li∪…∪Lm. According to the definition of the skyline [23],4 when Li is the
skyline over Li∪…∪Lm, every object in Li+1∪…∪Lm is dominated by at least one object in Li. That is, for any o∈Li+1∪…∪Lm,
there exist o′∈Li such that o is dominated by o′. Then f(o′)≤ f(o) for any monotone function f according to the definition of
monotony. That is,

∀o∈Liþ1∪…∪Lm; ∃o′∈Li s:t: f o′ð Þ≤f oð Þ: ð7Þ
Therefore, f(omin(Li))≤ f(o) for any o∈Lj (ib j≤m). This proves the optimally linearly ordered set property of L. □

In addition, we can easily extend the HL-index to handle a monotone linear function only by using the convex skyline [8],
which is computed from the skyline and the convex hull, as the layering scheme. This is because the convex skyline contains at
least one object that minimizes an arbitrary monotone linear function, and the layer list consisting of convex skylines satisfies the
optimally linearly ordered set property [8]. Thus, we can also use the identical algorithm in Fig. 7.

From now on, if we need to differentiate these two new versions of the HL-index from the earlier one, we refer to the earlier
one as HL-index (convex), the first new one as HL-index (skyline), and the second new one as HL-index (convex skyline) (simply,
HL-index(cvxsky)).

6. Experiments

6.1. Experimental data and environment

We compare the index building cost and the query performance of the HL-index with the following existing methods: ONION
[4] (a layer-based method), TA [3] (a list-based method), PREFER [6] (a view-based method), and SUB-TOPK [21], and PL-index
[8].

We use the number of bytes as the measure of the index storage cost, the wall clock time as the measure of the index building
time, and the number of objects read from database, Num_Objects_Read, as the measure of the query performance.
Num_Objects_Read is a measure widely used in top-k research [4,6,9] because its results are not affected by the implementation
detail of the individual methods used in the experiments. In addition, this measure is useful in environments like main memory
DBMSs or the ones using flash memory (e.g., a solid-state drive(SSD)) because elapsed time is approximately proportional to the
number of objects accessed in these environments where sequential/random IO cost difference is not as significant as in disk.

We perform experiments using synthetic and real datasets. For the synthetic dataset, we generate uniform datasets
(UNIFORM) by using the generator used by Borzsonyi et al. [23] and correlation datasets (CORRELATION) by using the generator
used by Buruno et al. [35]. The datasets consist of three-, five-, and seven-dimensional datasets of 10 K, 100 K, and 1000 K objects.
For the real dataset, we use the regular season statistics5 of the NBA players that play over 10 min per year from 1951 to 2007
(NBA). The dataset consists of 19,364 objects with seven attributes: minutes played, total points, field goals attempted, free
throws attempted, total rebounds, total assists, and total personal fouls.

4 “The Skyline is defined as the set of those points that are not dominated by any other point. A point A dominates another point B if A is as good as or better than
B in all dimensions and better than B in at least one dimension.” [23]

5 http://www.basketballreference.com.
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For the experiments, we have implemented HL-index (including convex hull, skyline, and convex skyline based versions),
ONION, TA, SUB-TOPK, and PREFER using C++. For TA, we use the TA algorithm extended with our monotone access method (to
handle non-monotone linear functions). We call it TA(e). For PREFER, we translate the code of the PREFER system6 written in JAVA
into C++. To compute convex hulls for HL-index (convex and convex skyline), ONION, and PL-index, we used the Qhull library
[36]. To compute skylines for HL-index (skyline and convex skyline), we used the BNL algorithm [23]. We conducted all the
experiments on a Pentium-4 2.0 GHz Linux PC with 1GBytes of main memory.

6.2. Index building cost

We first compare the index storage cost and the index building time of HL-index, ONION, and TA(e). For the index storage cost,
we first show the results for the NBA data in Table 3. Then, we show the results for the UNIFORM data while varying the number
of objects (N=10 K, 100 K, 1000 K) and the dimension (d=3, 5, 7) in Tables 4 and 5. We used 4 byte integer to store an object
(or layer or list) identifier. In Tables 3, 4, and 5, objectID represents the storage cost of maintaining object identifiers; layerID the
storage cost of maintaining the relationship between the layers and their sorted lists; overhead the ratio of the base storage cost to
the index storage cost. Here, the base storage cost is defined as the storage cost of storing the object identifiers without
duplications, and the index storage cost is computed as the sum of objectID and layerID.

From these results, we observe that the storage overhead of HL-index over TA(e) is negligible because the difference between
the HL-index and TA(e) is only up to 0.16% of TA(e) for all ranges of N and d. However, since the HL-index and TA(e) have d
duplicated object identifiers in their sorted lists, their storage overheads are larger than that of ONION by about d times.
Interestingly, Table 5 shows that the layerID costs of HL-index and ONION decrease as d increases. More precisely, the number of
the layers, m, decreases as d increases because the layer size (i.e., the number of convex hull vertices) increases as d does. That is,
m=61 when d=3, m=28 when d=5, and m=12 when d=7. Since the average layer size is computed as (ln N)d−1 [37], the
layer size will be equal to N when d is very large. Table 5 precisely reflects this trend.

For the index building time, we show the results for the UNIFORM data of the dimension d=5 while varying the number of
objects (N=10 K, 100 K, 1000 K) in Table 6. From these results, we observe that the index building times of ONION and TA(e) are
(almost) equivalent to the times of the layering step and the listing step, respectively. We also observe that for all ranges of N, the
layering step takes significantly longer than the listing step, and thus, the total index building time of HL-index is very close to the
building time of ONION. The results for other parameter settings are close to what we observe from Table 6. Similarly, the index
building times of the HL-index (skyline) (or the HL-index (cvxsky)) is close to the sum of the time for constructing the skyline (or
the convex skyline) layers and the time for building the lists of TA(e).

6.3. Performance of monotone or non-monotone linear queries

We now compare the query performance of the HL-index against other existing methods under both monotone and
non-monotone linear functions. Note that while ONION and TA(e) support all linear functions, PREFER, SUB-TOPK, and PL-index
support monotone or monotone linear functions and thus cannot handle non-monotone linear functions. In this section, therefore,
we only compare HL-index (that uses the convex hull layering), ONION, and TA(e). The comparison of all eight methods will be
done in the next section when we use monotone linear functions.

We measure the query performance of the three methods on the synthetic and real datasets while varying the sub-dimension
s (i.e., the size of SUB in Section 3), the number of results k, N, d, and the correlation factor cf.7 We measure Num _Objects _Read
for ten randomly generated queries having different preference vectors, and then, use the average value over all queries. We first
generate the set SUB, which is the subset of the sequence numbers of the attributes, for each size s (1≤s≤d). That is, we randomly
choose s unique elements from {1,2,…,d}. Then, we randomly choose the attribute preference w[i], which is the weight of the ith
attribute (i∈SUB) in the preference vector �w, from {−4,−3,−2,−1,1,2,3,4}, and normalize w[i]'s so that ∑ i∈SUB|w[i]|=1.

6.3.1. Comparison of basic and enhanced algorithm
Before we compare the HL-index with other approaches, we first show the improvement of EnhandedLTA compared to

BasicLTA. Fig. 8 shows the query performance of HL-index and HL-index(basic) as s is varied from 1 to 3, where HL-index(basic)

6 http://db.ucsd.edu/PREFER/application.htm.
7 The correlation factor cf represents degrees of correlation that range between −0.1 and 1.0. When cf is zero, attributes are independent of one another.

Higher value of cf represents positive correlation between the values of one attribute and those of the other attributes. If cf is 1.0, the values of all attributes are
equal. In contrast, when cfb0, the values of one attributes are negatively correlated with those of the other attributes [35].

Table 3
Index storage cost of a real data (NBA and d=7) (byte).

N ONION TA(e) HL-index

objectID layerID overhead objectID layerID overhead objectID layerID overhead

19,364 77,456 36 1.000465 542,192 0 7.0 542,192 288 7.003718
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and HL-index represent the results from BasicLTA and EnhancedLTA, respectively. HL-index improves performance by up to 20%
over HL-index(basic). Due to this better performance, we show only HL-index from EnhancedLTA in the rest of our experimental
results.

6.3.2. Experiment 1: query performance as N is varied
Fig. 9 shows the query performance of the HL-index, ONION, and TA(e) as N is varied from 10 K to 1000 K. From the result, we

observe that the HL-index outperforms ONION and TA(e) for all N values. For example, HL-index outperforms both ONION and
TA(e) by a factor of three or more at N=1000 K. Interestingly, we note that TA(e) performs quite well for a small N (it shows
performance close to HL-index for N=10 K), but its performance gets significantly worse than the two others beyond a certain
cross-over point. This is because the number of objects retrieved from each list of TA(e) grows linearly with N, while the number
of objects in each layer of ONION increases sublinearly (more precisely, in proportion to (ln N)c1 where c1 is a positive constant
[37]). Since the HL-index exploits the synergic effect of the layer-level filtering and the list-level filtering due to its meticulous
integration of the two filtering capabilities, the HL-index significantly outperforms both TA(e) and ONION for large N values,
making it particularly useful for a large database.

6.3.3. Experiment 2: query performance as s is varied
Fig. 10 shows the query performance of the HL-index, ONION, and TA(e) as s is varied from 1 to 5. When s=1, the query

performance of HL-index is worse than that of TA(e), but is much better than that of ONION. As mentioned in Section 4, in
HL-index, the elements within a layer are totally ordered, but elements in different layers are not. Thus, HL-index reads more than
k objects from the heads (or tails) of lists in some layers while TA(e) only reads k objects from the head (or tail) of one sorted list
because the elements of the list are totally ordered. However, when s≥2, HL-index begins to show better performance than the
other methods due to the synergic effect of the two filtering capabilities. HL-index improves by 1.4 to 166.2 times over ONION and
by 0.5 to 2.6 times over TA(e).

6.3.4. Experiment 3: query performance as k is varied
Fig. 11 shows the query performance of the HL-index, ONION, and TA(e) as k is varied from 1 to 100. The HL-index

outperforms the other methods for the entire range of k. The HL-index improves by 2.7 to 3.2 times over ONION and by 1.6 to 5.0
times over TA(e).

Table 4
Index storage cost as N is varied (UNIFORM and d=5) (byte).

N ONION TA(e) HL-index

objectID layerID overhead objectID layerID overhead objectID layerID overhead

10 K 40,000 52 1.0013 200,000 0 5.0 200,000 312 5.0078
100 K 400,000 112 1.00028 2,000,000 0 5.0 2,000,000 672 5.00168
1000 K 4,000,000 240 1.00006 20,000,000 0 5.0 20,000,000 1440 5.00036

Table 5
Index storage cost as d is varied (UNIFORM and N=100,000) (byte).

d ONION TA(e) HL-index

objectID layerID overhead objectID layerID overhead objectID layerID overhead

3 400,000 244 1.00061 1,200,000 0 3.0 1,200,000 976 3.00244
5 400,000 112 1.00028 2,000,000 0 5.0 2,000,000 672 5.00168
7 400,000 48 1.00012 2,800,000 0 7.0 2,800,000 384 7.00096

Table 6
Index building time as N is varied (UNIFORM and d=5) (sec).

N ONION TA(e) HL-index HL-index (skyline) HL-index (cvxsky)

Layering Listing Layering Listing Layering Listing

10 K 9.14 0.24 9.14 0.23 1.33 0.24 9.12 0.37
100 K 152.70 2.89 152.70 2.65 146.99 2.46 491.15 3.94
1000 K 2500.61 35.23 2500.61 31.57 17283.95 39.36 78416.25 48.18
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Fig. 8. Query performance of the basic and enhanced algorithms (NBA, d=7, N=19,364, and k=50).
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6.3.5. Experiment 4: query performance as d is varied
Fig. 12 shows the query performance of the HL-index, ONION, and TA(e) as d is varied from 3 to 7. Here, we use s=2when d=3,

s=3when d=5, and s=4when d=7. Since (ln N)d−1 is the average number of objects in convex hull vertices [37], the entire object
can reside in the first layer when d is very large aswementioned in Section 6.2. Thus, in that case, since the HL-index can exploit only
the list-level filtering like TA(e), the performance of theHL-indexwould converge to that of TA(e). However, within the experimental
range of d, the HL index outperforms TA(e). The HL-index improves by 2.5 to 3.2 times over ONION and by 1.2 to 3.0 times over TA(e).

6.3.6. Experiment 5: query performance as cf is varied
Fig. 13 shows the query performance of the HL-index, ONION, and TA(e) as cf is varied from −0.9 to 0.9. From the result, we

observe that the query performance of the HL-index is not very sensitive to cf like ONION, but TA(e) is. This is because the
HL-index and ONION exploit the relationship among the attributes globally, but TA(e) does individually. HL-index outperforms the
other methods for all ranges of cf due to the synergic effect of the layer-level filtering and the list-level filtering. HL-index
improves by 1.4 to 3.2 times over ONION and by 1.8 to 3.1 times over TA(e).

6.3.7. Experiment 6: query performance as s is varied when using a real dataset
Fig. 14 shows the query performance of the HL-index, ONION, and TA(e) as s is varied from 1 to 7 when using NBA, a

seven-dimensional real dataset. The HL-index begins to outperform the other methods when s≥2. This tendency is similar to that
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of the synthetic dataset shown in Fig. 10. The HL-index improves by 1.4 to 138.9 times over ONION and by 0.6 to 1.6 times over
TA(e).

6.3.8. Experiment 7: query performance as k is varied when using a real dataset
Fig. 15 shows the query performance of the HL-index, ONION, and TA(e) as k is varied from 1 to 100 when using NBA. The

HL-index outperforms the other methods for the entire range of k. This tendency is similar to that of the synthetic dataset shown
in Fig. 11. The HL-index improves by 2.3 to 3.3 times over ONION and by 1.3 to 5.3 times over TA(e).

6.4. Performance of monotone linear queries

We now compare the performance of all eight methods, HL-index (convex), HL-index (skyline), HL-index (cvxsky), ONION,
TA(e), PREFER, SUB-TOPK, and the PL-index, under monotone linear functions. We limit the scoring function to monotone linear
functions because HL-index (skyline), PREFER, and SUB-TOPK are designed to handle monotone functions, and HL-index (cvxsky)
and PL-index are designed to handle monotone linear functions, and cannot deal with non-monotone linear functions.

In generating the queries, we use the same setting that we used in Section 6.3, except that we now choose the attribute
preference w[i] randomly from {1,2,3,4}, and normalize them to be ∑ i∈SUB|w[i]|=1. We note that, in the previous section, w[i]
were chosen from {−4,−3,−2,−1,1,2,3,4} to allow non-monotone linear functions. Again, we measure Num _Objects _Read
for ten randomly generated queries, and then, use the average value over them.

6.4.1. Experiment 8: query performance as s is varied when using only monotone linear scoring functions
Fig. 16 shows the query performance of HL-index (convex), HL-index (skyline), HL-index (cvxsky), ONION, TA(e), PREFER,

SUB-TOPK, and PL-index as s is varied from 1 to 5 when using monotone linear scoring functions. Since the query performance of
PREFER improves as the number of views increases, for a fair comparisonwith HL-index, we use five views generated randomly.8 The
comparison between the HL-index, ONION, and TA(e) shows similar results to what we observed earlier; the HL-index shows
significant improvement over ONION and TA(e) in almost all cases. HL-index (skyline) improves by up to 782.0 times over PREFER
and by up to 2.6 times over SUB-TOPK. HL-index (cvxsky) improves by up to 41.3 over the PL-index when sb3. In addition, for
monotone non-linear queries,9 HL-index (skyline) also shows similar results to what we observed in this experiment. HL-index
(skyline) improves by up to 1063.8 times over PREFER, by up to 2.5 times over SUB-TOPK, and by up to 3.7 times over TA(e).
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8 We simply consider one view as one list. Thus, PREFER with five views has five lists and HL-index has five lists when d=5.
9 We use a quadratic function, f(t)=∑ i=1

d w[i]∗ t[i]2, as the monotone non-linear scoring function.
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6.4.2. Experiment 9: query performance as k is varied when using only monotone linear scoring functions
Fig. 17 shows the query performance of HL-index (convex), HL-index (skyline), HL-index (cvxsky), ONION, TA(e), PREFER,

SUB-TOPK, and the PL-index as k is varied from 1 to 100 when using monotone linear scoring functions. Here again, PREFER uses
five views. The performance trends of the HL-index, ONION, and TA(e) are similar to what we observed in earlier experiments;
the HL-index shows significant improvement over ONION and TA(e). Compared to SUB-TOPK, HL-index (skyline) shows
approximately 10% (which should be higher with a higher sub-dimension such as s≥4) performance improvement in many cases.
Compared to PREFER, HL-index (skyline) shows up to 55.6 times performance improvement. Compared to the PL-index, HL-index
(cvxsky) shows up to 5.9 times performance improvement when k≤40. For monotone non-linear queries, HL-index (skyline)
shows similar results to what we observed in this experiment. HL-index (skyline) improves by up to 232.6 times over PREFER and
by up to 9.5 times over TA(e) and shows performance comparable to SUB-TOPK.

6.4.3. Experiment 10: query performance as cf is varied when using only monotone linear scoring functions
Fig. 18 shows the query performance of HL-index (convex), HL-index (skyline), HL-index (cvxsky), ONION, TA(e), PREFER,

SUB-TOPK, and the PL-index as cf is varied from −0.9 to 0.9 when using monotone linear scoring functions. Here again, PREFER
uses five views. From the result, we observe that the query performances of HL-index and ONION are not very sensitive to cf, but
TA(e) is. This trend is similar to that in Experiment 5. The HL-index shows significant improvement over ONION and TA(e).
Compared to SUB-TOPK, HL-index (skyline) shows 2.0 times performance improvement. Compared to PREFER, HL-index (skyline)
shows up to 19.6 times performance improvement. Compared to the PL-index, HL-index (cvxsky) shows up to 1.8 times
performance improvement.

7. Conclusions

In this paper, we proposed the HL-index that is designed to handle top-k queries on an arbitrary subset of attributes efficiently.
The HL-index has significantly more pruning power than any existing method because it exploits the synergic effect of the
integration of layer-level filtering and list-level filtering. We described top-k answer computation algorithms for the HL-index
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and formally proved their correctness. We also derived a tight bound for guaranteeing the correct query results through in-depth
analysis.

For the clarity of our exposition, we first presented the convex hull version of the HL-index that deals with linear scoring
functions. Since this version of HL-index does not put any restriction on the sign of the attribute weight 2d, it can handle both
monotone and non-monotone linear functions. We then briefly discussed the skyline version of the HL-index that can handle
monotone (linear or non-linear) functions.

Our extensive experiments demonstrate that the HL-index outperforms all existing methods in practically all scenarios, and its
improvement gets more noticeable for larger databases. Given that our HL-index retrieves significantly fewer objects than any
existing methods, we expect that it is particularly suitable for the environments like main memory DBMSs or the ones using flash
memory, which are being and will become more and more prevalent in the foreseeable future [38].

Finally, we note that the HL-index algorithms and their proofs can be applied to any layering methods that satisfy the
optimally linearly ordered set property. Finding a layering method that can handle both all linear functions and all monotone
functions while satisfying this property would be an interesting problem. We leave this as future study.
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