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ABSTRACT
Topic models are used to group words in a text dataset into
a set of relevant topics. Unfortunately, when a few words
frequently appear in a dataset, the topic groups identified
by topic models become noisy because these frequent words
repeatedly appear in “irrelevant” topic groups. This noise
has not been a serious problem in a text dataset because the
frequent words (e.g., the and is) do not have much meaning
and have been simply removed before a topic model analysis.
However, in a social network dataset we are interested in,
they correspond to popular persons (e.g., Barack Obama and
Justin Bieber) and cannot be simply removed because most
people are interested in them.

To solve this “popularity problem”, we explicitly model
the popularity of nodes (words) in topic models. For this
purpose, we first introduce a notion of a “popularity compo-
nent”and propose topic model extensions that effectively ac-
commodate the popularity component. We evaluate the ef-
fectiveness of our models with a real-world Twitter dataset.
Our proposed models achieve significantly lower perplexity
(i.e., better prediction power) compared to the state-of-the-
art baselines.

In addition to the popularity problem caused by the nodes
with high incoming edge degree, we also investigate the ef-
fect of the outgoing edge degree with another topic model
extensions. We show that considering outgoing edge degree
does not help much in achieving lower perplexity.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—clustering ; D.2.8 [Software Engi-
neering]: Metrics—performance measures
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1. INTRODUCTION
Microblogging services such as Twitter are popular these

days because they empower users to broadcast and exchange
information or thoughts in realtime. Distinct from other
social network services, relationships on Twitter are unidi-
rectional and often interest-oriented. A user may indicate
her interest in another user by “following” her, and previ-
ous studies [16,23] show that users are more likely to follow
people who share common interests, even though “follow-
ing relationships” among users look unorganized and hap-
hazard at first glance. Thus, if we can correctly identify the
shared hidden interests behind users’ following relationships,
we can recommend more relevant users and group users shar-
ing common interests in the social network services.

In this paper, we refine topic models to correctly identify
the hidden interests behind users’ following relations (in-
stead of their tweets as in [30]). A topic model is a sta-
tistical model originally developed for discovering hidden
topics from a collection of documents. It postulates that
every document is a mixture of topics, and words in a doc-
ument are attributable to these hidden topics. Here, we
posit that the following relations are not random but are
interest-attributable. Then, we can discover the hidden in-
terest behind each following relation by regarding a user’s
following list as a document, and each person in the user’s
following list as a word. Now, topic models can easily help
us correctly identify the hidden interests and derive a low
dimensional representation of the observed following lists.

However, simply applying topic models to the follow-relation
analysis may cause some problems. Our previous study [7]
reported significant clustering quality degradation when the
authors directly applied Latent Dirichlet Allocation (LDA)
[5] to Twitter’s following relation dataset. As LDA is built
on an assumption that every word in a document should
be of roughly equal popularity, stop words like the and is
must be removed in preprocessing stages. However, keeping
popular persons like Barack Obama and Justin Bieber in a
user’s following list can be beneficial for the following rea-
sons: (1) These well-known users can work as an effective
labels of identified topic groups. For example, when a group
contains well-known politicians like Barack Obama, we may
immediately identify that the group is likely to be on poli-



tics.1 (2) Many new Twitter users do not know who is on
Twitter and who is not, so they often fail to follow popular
users of potential interest, not knowing their presence. If the
system can recommend interesting and well-known users of
interest, it can significantly improve the users’ return rate
and stickiness [31].

In this work, we propose refined topic models specialized
in handling the quality degradation caused by a limited num-
ber of popular users, which we call “popularity bias”. For
this, we introduce a notion of a “popularity component” and
explore various ways to effectively incorporate it. We also
evaluate the effectiveness of our proposed topic models with
the widely used “perplexity” 2 calculated over the real-world
Twitter following relation dataset.

Note that the popularity bias is not limited to social net-
work datasets. This bias often appears in datasets showing
user’s preference over some popular items (or nodes) such
as webpage visit logs, advertisement click logs, product pur-
chase logs, etc. We believe our proposed models can effec-
tively improve the quality of recommendations and cluster-
ings in the web services generating such logs.

In summary, we make the following contributions in this
paper:

• We propose topic models appropriate for social-network
analysis. We introduce a popularity component, which
explicitly models popularity of users, and explore var-
ious ways to incorporate it step by step.

• We conduct extensive experiments using a real-world
Twitter dataset. Through these experiments, we demon-
strate that our models are very effective in recom-
mending more relevant users with significantly lower
perplexity than the state-of-the-art baselines.

• We show that there is no clear relationship between
how many persons a user follows (i.e., outgoing edge
degree) and how topic sensitive she is. It is quite dif-
ferent from the popularity bias which shows that if a
user is followed many times (i.e., high incoming edge
degree), many users follow her because she is just pop-
ular.

2. RELATED WORK
In this section, we briefly review topic models related to

social-network analysis in three categories: topic models for
authorship, hypertexts, and edges.

The topic models in the first category were proposed to an-
alyze documents (texts) with their authors. As these mod-
els incorporate authors and their relationships in the model,
they can be viewed as early forms of social-network topic
models. They attempt to group documents and authors
by assuming that a document is created by authors shar-
ing common topics. The concept of authors (users) was ini-
tially introduced by Steyvers et al. [34] in the Author-Topic
(AT) model. With the additional co-author information,
they could successfully extract hidden research topics and
trends from CiteSeer’s abstract corpus. The AT model was

1Existing topic models simply identify a group of words (or
users) that belong to a topic group, not the semantic labels
of each group.
2It measures prediction power of a trained model. The def-
inition is given in Section 5.2

extended to the the Community User Topic (CUT) model by
Zhou et al. [41] to capture semantic communities. McCalum
et al. [24] also extended the AT model and proposed the
Author-Recipient-Topic (ART) model and the Role-Author-
Recipient-Topic (RART) model to analyze e-mail networks.
Pathak et al. [29] modified the ART model and suggested the
Community-Author-Recipient-Topic (CART) model, which
is similar to the RART model. In addition to these AT
model family, other LDA extensions and probabilistic topic
models were also proposed to analyze chat data [36], voting
data [38], annotation data [22], and tagging data [17].

The topic models in the second category are more closely
related to social-network analysis and analyze documents
with their citations (i.e., hypertexts). Cohn et al. [10] ini-
tially introduced a topic model combining PLSI [20] and
PHITS [9]. Later, PLSI in this model was replaced with
LDA [5] by Erosheva et al. [13]. Nallapati et al. [27] extended
Erosheva’s model and proposed Link-PLSA-LDA model which
applies PLSI and LDA to cited and citing documents, re-
spectively. Chang et al. [8] also proposed the Relational
Topic Model (RTM) which models a citation as a binary
random variable. Dietz et al. [12] proposed a topic model to
analyze topical influence of research publications. More so-
phisticated models were proposed by Gruber et al. [15] and
Sun et al. [35]. Hybrid approaches were also attempted. Mei
at al. [25] introduced a regularized topic modeling framework
incorporating a graph structure and Nallapati et al. [26]
combined network flow and topic modeling.

The topic models in the last category only uses linkage
(edge) information. Since they only focus on the graph
structure, they can be easily applied to a variety of datasets.
However, there has been relatively less research in this cate-
gory. Our work belongs to this category and focuses on solv-
ing the issue caused by popular nodes in the graph structure.
Airoldi et al. [3] proposed the Mixed Membership Stochastic
Block (MBB) model to analyze pairwise measurements such
as social networks and protein interaction networks. Zhang
et al. [40] and Henderson et al. [18] dealt with the issues
in applying LDA to academic social networks. The former
focused on the issue of converting the co-authorship infor-
mation into a graph, and proposed edge weighting schemes
based on collaboration frequency. The latter addressed the
issue of a large number of topic clusters generated due to
“low popularity” nodes in the network. The “high popular-
ity” issue was initially addressed by Steck [32]. He defined
a new metric called Popularity-Stratified Recall and sug-
gested a matrix factorization method optimizing it. In our
previous study [7], we investigated the issue in more detail
and proposed effective solutions based on probabilistic topic
models. However, our previous solutions are rather heuris-
tic and more about how to tune topic models to handle the
high popularity issue. In this paper, we take a more princi-
pled approach to this issue and propose more effective topic
models.

3. FOLLOW-RELATION ANALYSIS USING
LDA

In this section, we explain how to apply topic models to
social network analysis. After briefly explaining two proba-
bilistic topic models, Probabilistic Latent Semantic Indexing
(PLSI) and Latent Dirichlet Allocation (LDA), we introduce



the challenge of a “popularity bias” which we address in this
study.

3.1 Topic Models
Topic models are built on the assumption that there are

latent variable(s) behind each observation in a dataset. In
the case of a document corpus, the usual assumption is that
there is a hidden topic behind each word. PLSI [20] intro-
duced a probabilistic generative model to Latent Semantic
Indexing (LSI) [11], one of the most popular topic mod-
els. Equation (1) represents its document generation process
based on the probabilistic generative model:

p(d,w) = p(d)p(w|d) = p(d)
∑
z∈Z

p(z|d)p(w|z). (1)

p(d,w) denotes the probability of observing a word w in a
document d and can be decomposed into two parts: p(d),
the probability distribution of documents, and p(w|d), the
probability distribution of words given a document. This
equation describes a word selection process for a document,
where an author first selects a document then a word in that
document. By repeating this selection process sufficiently,
we can generate a full document and eventually a whole
document corpus. Based on the assumption that there is a
latent topic z for each word w, the equation above can be
rewritten with the multiplication of p(w|z), the probability
distribution of words given a topic, and p(z|d), the probabil-
ity distribution of topics given a document. In this way, an
additional topic selection step is added between the docu-
ment selection step and the word selection step. We sum the
multiplication over a set of all independent topics Z because
there exist a number of possible topics from which a word
may be derived.

The goal of the topic model analysis is to accurately infer
p(w|z) and p(z|d). Given the probabilistic generative model
explained above, we can effectively infer p(w|z) and p(z|d)
by maximizing the log-likelihood function L of observing the
entire corpus as in Equation (2):

L = log[
∏
d∈D

∏
w∈W

p(d,w)n(d,w)]

=
∑
d∈D

∑
w∈W

n(d,w) log p(d,w), (2)

where n(d,w) denotes the word frequency in a document.
The inferred p(w|z) and p(z|d) measure the strength of as-
sociation between a word w and a topic z and that be-
tween a topic z and a document d, respectively. For ex-
ample, if p(wvehicle|zcar) > p(wtechnology|zcar), the word
vehicle is more closely related to the topic car than the
word technology, though they are all related to the topic
car. In this way, PLSI and other probabilistic topic models
support multiple memberships and produce more reasonable
clustering results.

Although PLSI introduced a sound probabilistic genera-
tive model, it showed a poor performance when predicting
unobserved words and documents. To solve this “overfit-
ting” problem, LDA [5] introduced Dirichlet priors α and β
to PLSI, to constrain p(z|d) and p(w|z), respectively. α is
a vector of dimension |Z|, the number of topics, and each
element in α is a prior for a corresponding element in p(z|d).
Thus, a higher αi implies that there are more frequent prior
observations of topic zi in a corpus. Similarly, β is a vector

of dimension |W |, the number of words, and each element
in β is a prior for a corresponding element in p(w|z). By
placing Dirichlet priors α and β on the multinomial distri-
butions p(z|d) and p(w|z), these posterior distributions are
smoothed by the amount of priors α and β, and the model
becomes safe from PLSI’s overfitting problem. As a con-
jugate prior for the multinomial distribution, the Dirichlet
distribution also simplifies the statistical inference and en-
ables the use of the collapsed Gibbs sampling [33]. It is
also known that PLSI emerges as a specific instance of LDA
under Dirichlet priors [14,19].

3.2 LDA on Recommending Who to Follow
In a social network service, a user r’s following another

user w can be intuitively interpreted as the user r (acting
as a “reader”) expresses her interest in tweets written by
the user w (acting as a “writer”). We believe this interest
plays a role in the establishment of the following relation (or
edge) as the topic does in the document generation process
explained in Section 3.1. In this study, we assume that there
exists a follow edge generative model: a reader first chooses
an interest, and based on the chosen interest, the reader
chooses a writer to follow. In this model, a document in a
corpus becomes a reader’s following list, and a word becomes
a writer in the list.

Analyzing Twitter follow edges using LDA delivers two
estimates: p(z|r) and p(w|z). p(z|r) indicates a reader r’s
interest distribution and p(w|z) indicates a writer w’s im-
portance in an interest group z. Thus, p(w|z) can be used
in clustering Twitter users having the same interest. From
Equation (1), we can easily estimate p(w|r), the likelihood
of a reader r’s following a writer w, which can be used for
recommendation.

When we apply topic models to a social network dataset,
we notice the following differences [7]:

1. In a document generative model, a word is sampled
with replacement. However, in our follow edge gener-
ative model, a reader cannot follow the same writer
twice. Thus, a writers should be sampled without re-
placement.

2. When analyzing a textual dataset, common entries like
the and is are simply ignored because they do not
have important meaning. Thus, they are called “stop
words”. However, in a social network dataset, these
entities correspond to “celebrities” like Barack Obama
and Justin Bieber who attract more followers than oth-
ers. Thus, they cannot be simply ignored but should
be carefully handled.

Because of the first difference, some probability distribu-
tions in our model follow multivariate hypergeometric dis-
tributions instead of multinomial distributions. This differ-
ence is important because LDA benefits from Dirichlet pri-
ors, which are conjugate priors of multinomial distributions.
However, it is known that a multivariate hypergeometric
distribution converges to a multinomial distribution as the
population size grows large [1]. Since millions of users are
included in our Twitter dataset, we can disregard the con-
sequence caused by the sampling without replacement.

The second difference affects the quality of a topic model
analysis. When celebrities are simply included without any
special handling, they appear even in irrelevant topic groups



and make the topic analysis severely biased to them. Such
a “popularity bias” can be seen everywhere, from purchase
logs to movie rating data. In the next section, we propose
refined topic models which address this popularity bias.

4. REFINED TOPIC MODELS
In this section, we introduce a notion of a “popularity

component” using a simple model, which acts as a base of
our later models. We propose three refined models, and
discuss how they may ease the popularity bias. At the end
of this section, we explore various extensions to these refined
models.

4.1 Simple Model
As described in Section 3.2, in our follow edge generative

models, a reader first selects an interest (a topic) from a dis-
tribution p(z|r)(θ), and then selects a writer from a distri-
bution p(w|z)(φ). The θ and φ are constrained by Dirichlet
priors α and β, respectively. This process is depicted in a
plate notation in Figure 1(a). We formulate the probability
for a reader a to follow a writer b based on an interest z (or
za,b) as follows:

p(za,b|·) = p(z|ra)p(wa,b|z). (3)

Note that this equation is equivalent to Equation (1), and
we use wa,b to indicate a follow edge between a reader a to
a writer b. By considering the Dirichlet priors α and β, the
same probability can be represented in LDA as follows:

p(za,b|·) ∝
∫
p(z|θ)p(θ|α)dθ ×

∫
p(wa,b|z, φ)p(φ|β)dφ. (4)

In a simple model, we incorporate a “popularity compo-
nent” into LDA, as in Figure 1(b). The popularity compo-
nent (in a dotted box) consists of a multinomial distribution
π, which represents an in-corpus writer distribution, and a
Dirichlet prior γ constraining π. Note that γ is a vector of
length J , the number of unique writers, and each element
has a value of γw = fw

f∗
, where fw denotes an in-corpus fre-

quency of a writer w (i.e., the number of followers to the
writer), and f∗ denotes a total frequency (

∑
w fw). Thus, in

the simple model, when a reader follows a writer, the writer
selection probability φ is multiplied by π so that popular
writers are weighted accordingly. We formulate this change
(from Equation (4)) into the following equation:

p(za,b|·) ∝
∫
p(z|θ)p(θ|α)dθ

×
∫∫

p(wa,b|z, φ, π)p(φ|β)p(π|γ)dφdπ. (5)

4.2 Polya-Urn Model
Although the simple model incorporates the popularity

component in LDA, this incorporation is too simple. When-
ever a reader follows a writer, the model favors a popu-
lar writer according to her in-corpus distribution π. How-
ever, the in-corpus writer distribution can be largely differ-
ent from a in-topic writer distribution. For example, though
Barack Obama is more popular than Justin Bieber in general,
Justin Bieber is more popular than Barack Obama among
people who like music. Thus, the writer should be picked

up from the in-corpus distribution or the in-topic distribu-
tion. When every topic is assumed to be equally likely (as
in LDA’s symmetric prior assumption), the in-corpus writer
distribution is the sum of per-topic (in-topic) writer distri-
butions (p(w) =

∑
z p(w|z)p(z)), and we may consider the

former as a global writer distribution and the latter as a
local writer distribution. Since a writer is picked up from
her global (in-corpus) distribution or local (per-topic) distri-
bution, we may represent a popularity-incorporated writer
distribution as a mixture of the global distribution and the
local distribution. This interpretation leads us to a polya-
urn model depicted in Figure 1(c). In [2], the authors took a
similar approach for a topic distribution θ to capture global
topics as well as local topics.

Figure 1(c) depicts how the global and local distribution
are populated with the popularity component depicted in
the dotted box. In addition to the γ and π in the simple
model, the popularity component in the polya-urn model has
a concentration scalar λ. Initially, the multinomial distribu-
tion π is generated from the Dirichlet prior γ. Then, π works
as a Dirichlet prior for φ, together with the concentration
scalar λ. As λ works as a weight to the prior observation
π, φ becomes similar to π when λ has a high value. On
the other hand, φ deviates from π when λ has a low value.
Since π works as a base distribution and φ deviates from π
per topic, π can be considered as a global (in-corpus) writer
distribution, and φ can be considered as a local (per-topic)
writer distribution.

To derive a collapsed Gibbs sampling equation for the
polya-urn model, we define ck,m,j as the number of asso-
ciations between a topic zk and a writer wj followed by a
reader rm (or a follow edge from a reader rm to a writer wj)
as in Equation (6) [33]:

ck,m,j =

Nm∑
n=1

I(zm,n = k&wm,n = j). (6)

We also define c
−(a,b)
k,m,j as the count when we exclude the

edge from a reader ra to a writer wb. Then the collapsed
Gibbs sampling equation of LDA (derived from Equation
(4)) becomes:

p(za,b|·) ∝
c
−(a,b)
za,b,a,∗ + αza,b

c
−(a,b)
∗,a,∗ + α∗

×
c
−(a,b)
za,b,∗,wa,b

+ βwa,b

c
−(a,b)
za,b,∗,∗ + β∗

, (7)

where the symbol * denotes a summation over all possible
subscript variables. As we select a writer from a mixture of
a global and a local writer distribution, the topic assignment
probability of the polya-urn model should be extended to:

p(za,b|·) ∝
c
−(a,b)
za,b,a,∗ + αza,b

c
−(a,b)
∗,a,∗ + α∗

×

(
c
−(a,b)
za,b,∗,wa,b

c
−(a,b)
za,b,∗,∗

+ λ
c∗,∗,wa,b + γwa,b

c∗,∗,∗ + γ∗
). (8)

Note that the global distribution dominates in the mixture
as the concentration parameter λ increases. On the other
hand, as λ decreases, the local distribution dominates and
the whole equation becomes similar to that of LDA.

4.3 Two-Path Model



(a) LDA (b) Simple model (c) Polya-urn model

(d) Two-path model (e) Weight model

Figure 1: LDA and proposed topic models

In the polya-urn model, when a reader follows a writer,
she first selects a topic, and then selects a writer from the
mixture of a global and a local writer distribution for the
selected topic. Although the mixture explains non-topic re-
lated (popularity-based) following relations as well as topic
related (interest-based) ones, the initial topic selection pro-
cess is common in both cases. In a two-path model, we clearly
separate the non-topic related following relations from the
topic related ones by assuming that there are two separate
paths from which a writer can come. This separation in
early stage is expected to help generate more clear topics.
For this separation, we introduce a new binary latent vari-
able t which indicates the path the writer comes from. t = 1
means that the writer comes from a “topic path” and t = 0
means that she comes from a “popularity path”. Now, we
do a “path-labeling” as well as a “topic-labeling” for a follow
edge, and our goal is to accurately infer t as well as z (when
t = 1).

Figure 1(d) depicts this two-path model. The variable t
follows a Bernoulli distribution τ which is constrained by a
Beta prior δ. As a more popular writer may have a higher
probability of being followed through the popularity path
than a less popular writer, we pose an asymmetric prior
according to the writer’s popularity. For example, larger
portion of edges to Barack Obama will be labeled with the
popularity path because he has lower δ and τ . We extend
Equation (6) with the new path indicator variable t:

ck,m,j,s =

Nm∑
n=1

I(zm,n = k&wm,n = j&tm,n = s). (9)

Then, the path-labeling and the topic-labeling probability
are derived as:

p(ta,b|·) ∝
c
−(a,b)
∗,∗,wa,b,ta,b

+ δwa,b,ta,b

c
−(a,b)
∗,∗,wa,b,∗ + δwa,b,∗

, (10)

p(za,b|·) ∝
(c
−(a,b)
za,b,a,∗,1 + αza,b

)

(c
−(a,b)
∗,a,∗,1 + α∗)

×
(c
−(a,b)
za,b,∗,wa,b,1

+ βwa,b
)

c
−(a,b)
za,b,∗,∗,1

+ β∗
.(11)

where δ is defined with a scaling constant C1 as:

δwn,1 =
C1

log fwn

, (12)

δwn,0 = max(0, 1− C1

log fwn

). (13)

The two latent variables are inferred simultaneously in every
Gibbs sampling iteration. The topic-labeling process is per-
formed only when ta,b = 1. When ta,b = 1 for all edges, the
two-path model becomes equivalent to the standard LDA.

4.4 Weight Model
In the two-path model, we assumed that there are two

paths from which a writer can come. Then, we introduced
the path indicator t to denote the path from which the writer
comes. While a writer from the topic path is assigned with
a topic, a writer from the popularity path is ignored and
not assigned with a topic. We generalize this binary topic
indicator t to a non-negative weight (confidence) in a weight
model. For example, when τobama = 0.7 in the two-path
model, seven out of ten wobama observations (follow edges),
likely come from the topic path and the three likely come
from the popularity path. Instead of probabilistically se-



lecting which wobama observation comes from which path,
we may uniformly assign the τobama value to each wobama
observation. This τ value can be viewed as a weight or a
confidence value. When we are very confident that a writer
observation comes from the topic path, we may assign a
value 1 to the writer observation. In the opposite case, we
may assign 0 to it. If we are 70% confident, we may assign
0.7 to each writer observation.

Figure 1(e) depicts the newly introduced weight value ρ in
the dotted box. ρ is associated with each writer observation
and has a non-negative real number. If we strongly believe
a writer is from the topic path, we may assign a high weight
(even bigger than 1). Otherwise, we assign a value close to 0
or 0. Equation (14) is a ρ-incorporated version of Equation
(6):

ck,m,j =

Nm∑
n=1

I(zm,n = k&wm,n = j) · ρn, (14)

where ρn is defined with a scaling constant C2 as:

ρn =
C2

log fwn

(15)

As in the two-path model, we believe that popular writers
more likely come from the popularity path and should be
assigned lower weights. When ρn = 1 for all writers, the
equation becomes equivalent to that of LDA. While the two-
path model requires the additional path-labeling process, the
weight model is free from it and has the same complexity as
LDA. The confidence and weight approach on observations
can be found in the literature on recommender systems [21,
28, 32]. Especially, Steck [32] defined a new metric called
Popularity-Stratified Recall by assigning lower weights to
popular items, and suggested a matrix factorization method
optimizing the metric. The term weighting scheme for LDA
was also proposed for cross-language retrieval [39].

4.5 Other Extensions
We may further extend our models by considering reader-

side popularity (in a sense that edges from a reader are more
frequent in a dataset) as well as the writer-side popularity
discussed so far. The reader-side popularity shows how “ac-
tive” she is because it represents the length of her following
list. We expect that an active reader who follows more writ-
ers can be considered less “topic-sensitive” (topic-focused)
than one who follows fewer writers. If we include the reader-
side popularity in the previous models, Equation (8), (10),
and (15) should be accordingly extended into:

p(za,b|·) ∝ (
c
−(a,b)
za,b,∗,wa,b

c
−(a,b)
za,b,∗,∗

+ λ1

c∗,∗,wa,b + γwa,b

c∗,∗,∗ + γ∗
)

×(
c
−(a,b)
za,b,a,∗

c
−(a,b)
∗,a,∗

+ λ2

c∗,a,∗ + αza,b

c∗,∗,∗ + α∗
), (16)

p(ta,b|·) ∝
c
−(a,b)
∗,∗,wa,b,ta,b

+ δwa,b,ta,b

c
−(a,b)
∗,∗,wa,b,∗ + δwa,b,∗

×
c
−(a,b)
∗,a,∗,ta,b

+ εra,ta,b

c
−(a,b)
∗,a,∗,∗ + εra,∗

, (17)

ρm,n =
C3

log(fwn × frm)
, (18)

where ε is a prior for reader’s path indicator distribution and
defined as:

εrm,1 =
C4

log frm
, (19)

εrm,0 = max(0, 1− C4

log frm
). (20)

For the two-path model, we also try posing hyper priors
δ′ and ε′ over δ and ε, respectively, similar to the approach
in [37]. Then, Equation (17) should be extended to:

p(ta,b|·) ∝
c
−(a,b)
∗,∗,wa,b,ta,b

+ δ∗ ×
c∗,∗,∗,ta,b

+δ′ta,b

c∗,∗,∗,∗+δ′∗

c
−(a,b)
∗,∗,wa,b,∗ + δ∗

×
c
−(a,b)
∗,a,∗,ta,b

+ ε∗ ×
c∗,∗,∗,ta,b

+ε′ta,b

c∗,∗,∗,∗+ε′∗

c
−(a,b)
∗,a,∗,∗ + ε∗

. (21)

We also combine the polya-urn model with weight model.
There are many possible combinations in mixing two models.
We report only the meaningful results in the next section.

Before moving to the next section, we summarize the sym-
bols used in this paper in Table 1.

Table 1: Symbols used throughout this paper and
their meanings

Symbol Meaning

r Reader (follower)
w Writer (followed user)
z Topic (interest)
wa,b Writer b in reader a’s following list (follow edge)
za,b Topic assigned to edge from reader a to writer b
t Binary topic-path indicator
M Number of unique readers
J Number of unique writers
K Number of unique topics
Nm Number of writers reader m follows
fw In-corpus frequency of writer w

α, β, γ, δ, ε Dirichlet (Beta) priors
θ Topic distribution for reader (p(z|r))
φ Writer distribution for topic (p(w|z))
π In-corpus writer distribution (p(w))
τ Topic-path distribution for writer (p(t|w))
ρ Weight (confidence) on edge (observation)
λ Concentration scalar

5. EXPERIMENTS
In this section, we evaluate the proposed models based on

the perplexity value calculated using a real-world Twitter
dataset. As baselines, we use LDA and the best performer
in our prior work [7] 3. The experimental results show that
our proposed models are very effective in lowering perplexity.
We also discuss why and how they perform better than the
baselines.

5.1 Dataset and Experiment Settings
We use the Twitter dataset we used in our previous work

[7]. It has 10 million follow edges from 14, 015 reader to

3As perplexity is only available for probabilistic topic mod-
els, we limited our baselines to probabilistic topic models.



2, 427, 373 writers. The dataset is sampled to ensure that all
the outgoing edges from a randomly sampled reader are pre-
served. The average number of outgoing edges for a reader
is 713.52.

Table 2 summarizes the 12 representative experimental
cases we report in this section. We have two baselines:
base-lda 4, the standard LDA experiment, and base-f2step,
the best performer in our previous work [7]. polya-w/r/wr
denotes the polya-urn model experiment considering writer
popularity, reader popularity (activeness), and both side
popularity, respectively. 2path-w/r/wr are cases from the
two-path model experiments, and wlda-w/r/wr are from the
weight model experiments. p-w&w-r denotes a combination
of polya-w and wlda-r. Though we ran a lot more experi-
ments than reported ones here, we only report some mean-
ingful ones for clarity and to save space 5. Other cases
like the simple model, the two-path model with hyper pri-
ors, and various combination models did not show much im-
provements. For the weight model, we tested various weight-
ing schemes based on frequency, probability, PageRank [6],
pointwise mutual information (PMI) [39], etc. We only re-
port the best weighting schemes in this section. The best
weighting scheme might be different for a different corpus.
In all of our experiments, we ran 100 Gibbs sampling iter-
ations and generated 100 topic groups because they turned
out reasonable in our previous experiments [7]. We also
define a popular writer as a writer having more than 100
followers in our experiments 6. We ran multiple runs to find
the following optimal parameter values: λ = 0.1, λ1 = 0.2,
λ2 = 20.0, C1 = 4.2, C2 = 2.0, C3 = 2.0, and C4 = 8.6.

Table 2: Experimental cases and descriptions
Case Experiment Description

base-lda LDA
base-f2step Two-step labeling with filtering

polya-w/r/wr Polya-urn model for writer/reader/both
2path-w/r/wr Two-path model for writer/reader/both
wlda-w/r/wr Weight model for writer/reader/both

p-w&w-r polya-w + wlda-r

5.2 Perplexity Analysis
We evaluate our proposed models using the widely-used

perplexity metric [5, 7, 18,19,40] defined as:

perplexity(Wtest) = exp
−

∑
w∈Wtest log p(w)
|Wtest| , (22)

where Wtest denotes all the writers (edges) in a test dataset.
The perplexity quantifies the prediction power of a trained
model by measuring how well the model handles unobserved
test data. Since the exponent part of Equation (22)is a mi-
nus of the average log prediction probability over all the test
edges, a lower perplexity means stronger prediction power of
the model. In our previous study [7], slightly lower (3.27%)
perplexity led to significant (64%) improvement on human-

4We implemented our models based on the LDA implemen-
tation in [4].
5We tested simple/polya/2path/wlda-w/r/wr, p-w/r/wr&w-
w/r/wr, and hyperprior-w/r/wr.
6We also tested 50 and 500 as the boundary value instead
of 100 and the results were similar.

Figure 2: Perplexity comparison

perceived clustering quality 7. Thus, we believe that we can
significantly improve the clustering quality of the model by
further lowering its perplexity. We calculated the perplex-
ity for two separate 10% randomly held-out datasets after
training a model on the remaining 80% dataset. We av-
eraged results from ten runs (five runs for each held-out
dataset with different random seeds). As the standard LDA
(base-lda) is designed to minimize perplexity, it is not easy
to achieve lower perplexity than base-lda.

We report the perplexity values from the 12 representative
test cases in Figure 2, where we observe:

1. All our proposed models seem very effective in achiev-
ing lower perplexity than base-lda. However, the reader-
side models of the polya-urn model and the two-path
model show quite high perplexity compared to their
counterparts (writer-side models).

2. 2path-w shows the lowest perplexity. It shows 9.41%
lower perplexity than base-lda (6.35% lower than base-
f2step). However, 2path-r and 2path-wr show no im-
provements.

3. Different from the polya-urn model and the two-path
model, the weight model shows low perplexity when
the reader-side popularity is considered. It seems to
conflict with our explanation that the weight model
can be viewed as an extension to the two-path model
in Section 4.4. We discuss this issue in Section 5.4

4. The combination models do not perform better than
other models. Even p-w&w-r, the best performer among
various combination models, shows higher perplexity
than the two-path model and the weight model

If we pick the best performers in each group, the per-
formance order would be: two-path model > weight model
> combination model > polya-urn model > base-f2step >
base-lda. In the two following sections, we investigate the
two-path model and the weight model in detail.

5.3 Popularity vs. Activeness
To visualize the effect of the path-labeling, we compare

the top-10 writers in two example topic groups related to
technology from base-lda and 2path-w in Figure 3. In the left

7The correlation between the perplexity and the human-
perceived clustering quality was −0.806 in our previous work
(excluding HLDAs).



(a) Example topic group from two-path model (b) When popularity-path edges are re-labeled with topics

Figure 3: Effect of path-labeling

figure, we see two highlighted writers who are not related
to technology: barackobama and stephenfry. These celebri-
ties are included in this group because they are so popu-
lar and followed by the people who are interested in tech-
nology as well. The standard LDA labels the follow edges
from these people as technology-related even though those
edges are purely generated from the popularity path. On
the other hand, all the writers in the right figure are closely
related to technology. The path-labeling reduces the chance
of celebrities’ appearing in irrelevant topic groups by label-
ing non-topic-driven follow edges with the popularity path
as explained in Section 4.3.

Table 3: Path-labeling result from 2path-w
Edge (from r to w) Group-p Group-t G-p/G-t

Portion of edges 8.72% 91.28% -
Avg. num. of edges to w 387.41 71.94 5.39

Avg. num. of edges from r 509.90 846.06 0.60
Avg. entropy of p(z|w) 2.86 1.60 1.79
Avg. entropy of p(z|r) 3.78 4.01 0.94

To measure the effect of the path-labeling, we gathered
some statistics from 2path-w and report them in Table 3.
We observe that 8.72% of the test edges were processed by
the popularity component (group-p) and 91.28% of them
were processed by the topic component (group-t). We also
calculated the average writer/reader popularity (number of
incoming/outgoing edges) for the edges in both groups. The
second and the third row of Table 3 tell us that each edge
in group-p is from a reader following 509.90 writers on av-
erage 8 to a writer having 387.41 followers on average. We
observe that the edges in group-p belong to much more pop-
ular writers than those in group-t. However, the edges in
group-p seem to belong to less active readers. This finding
contradicts our initial expectation on the “activeness”, ex-
plained in Section 4.5, that a more active reader would be
less topic sensitive. To more closely investigate this contra-
diction, we measured average entropy of p(z|r) and p(z|w).
The intuition behind this measurement is that the higher

8We excluded the readers who follow less than 10 writers
from our dataset because they may contain follow edges gen-
erated by pure curiosity and reciprocity. The same approach
was used in [30].

Figure 4: Reader weight vs. writer weight

entropy (uncertainty) of p(z|r) or p(z|w) of an edge (from
reader r to writer w) may indicate that the edge has a lower
probability to be labeled with a specific topic. Thus, it may
have a higher chance of being labeled with the popularity
path than one with a lower entropy. The fourth row of
Table 3 9 reports that the edges in group-p belong to the
writers having much higher topic uncertainty. On the other
hand, both groups show similar topic uncertainty in terms
of reader-side topic entropy 10. Thus, the reader-side popu-
larity (activeness) does not seem to be useful in the correct
path/topic-labeling. This finding also explains why polya-
r and 2path-r produced results with higher perplexity than
their counterparts. However, we see the opposite results in
the weight model experiments. The writer-side model (wlda-
w) performs worse than the reader-side model (wlda-r). We
discuss more about this anomaly in the next section.

5.4 Two-Path Model vs. Weight Model
To explain the reason why the anomaly explained in the

9We used a reduced 1M-edge dataset to calculate entropy
due to the limited memory size of our machine.

10We also observe that the reader-side entropy is much higher
than the writer-side entropy.



previous section happens in the results from the two-path
model and the weight model, we devise a very simple social
network edge-labeling example. The upper section of Fig-
ure 4 illustrates following edges among two readers and three
writers. We assume that, among the four following edges,
two of them are labeled with topic z1 (darker one), and the
other two are labeled with topic z2 (lighter one). We also
assume that edges have different weights and denote an edge
with a weight 1 as a narrow edge and an edge with a weight 2
as a thick edge. Thus, the bi-partite graph in the left shows
the standard LDA and the one in the center shows a wlda-r
case where edges from a reader r2 have higher weights. The
bi-partite graph in the right shows a wlda-w case where edges
to a writer w2 have higher weights. Each pair of tables in the
middle section show a pair of count matrices (reader-topic
and topic-writer) for each bi-partite graph. Each value in a
count matrix is a weight assigned to each edge. Now, let’s
think about the case we want to label a new edge from the
reader r2 to the writer w2 (the dotted arrow) 11. Each bot-
tom section shows the probability of labeling the new edge
with topic z1 or z2 for each case according to Equation (7)
12. Unlike the standard LDA in the left, the probabilities
between topic z1 and z2 are different in the dotted boxes
in the bottom section. Interestingly, when we assign differ-
ent weights to edges from different “readers” (wlda-r in the
center) we find that the right part of the topic-labeling prob-
ability, which corresponds to the “writer” distribution for a
topic (p(w|z)), changes instead of the topic distribution for
a reader (p(z|r)), and vice versa. In the topic-labeling for-
mula given in Equation (7), the numerator in the right part
is a sum of weights of the edges from many readers to a cer-
tain writer. Thus, if the weights of the edges from a reader
are changed, topics associated with those edges get different
association probability. However, since the numerator in
the left part is a sum of weights of edges from a reader, even
though those weights are changed, the sum remains the same
for all topics. This aspect explains why wlda-r performs bet-
ter than wlda-w. While wlda-w affects the topic distribution
for a reader (p(z|r)), wlda-r changes the writer distribution
for a topic (p(w|z)), which is related to writer’s popularity
distribution.

Though the weight model produces results with higher per-
plexity, it has the same computational complexity as the
standard LDA since it does not introduce a new hidden
variable. Also, we may use various weighting schemes ac-
cording to the nature of application domains. Though we
only reported the result from the best weighting scheme in
this paper, there were many candidate weighting schemes
producing results with competitive perplexity values.

6. CONCLUSION
In this paper, we proposed topic models appropriate to

analyze social network graphs. Different from a textual
dataset, a popular user has very important meaning in a
social network dataset and should be carefully handled. We
started with the simple model which introduces the concept
of the popularity component and explored various ways to
effectively incorporate it in probabilistic topic models.

In extensive experiments with a real-world Twitter dataset,
our models achieved significant improvements in terms of

11We allow multiple edges in this example to make it simple.
12For simplicity, we ignored −(a, b) and priors (α and β).

lowering perplexity. Particulary, our two-path model showed
9.41% lower perplexity than that of LDA. Given that a
3.27% lower perplexity led to 64% higher human-perceived
clustering quality in our previous work [7], we believe that
our two-path model can also significantly improve the clus-
tering quality. With the two-path model, we also showed
that the reader-side popularity (activeness) is not effective
in judging the reader’s topic sensitivity. We extended the
two-path model into the weight model and explained why
the latter behaves differently from what we have expected.
The weight model is very flexible in selecting its weighting
schemes and does not increase the complexity of LDA.

Since the popularity bias is universal in various datasets
including webpage visit logs, advertisement click logs, and
product purchase logs, our models can effectively provide
more relevant recommendations in many web services.
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