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Abstract

An ever increasing amount of valuable information is stored in
Web databases, “hidden” behind search interfaces. To save the
user’s effort in manually exploring each database, metasearchers
automatically select the most relevant databases to a user’s
query [2, 5, 16, 21, 27, 18]. In this paper, we focus on the first of
the two technical challenges of metasearching, namely database
selection. Past research uses a pre-collected summary of each
database to estimate its “relevancy” to the query, and in many
cases make incorrect database selection. In this paper, we propose
two techniques: probabilistic relevancy modelling and adaptive
probing. First, we model the relevancy of each database to a
given query as a probabilistic distribution, derived by sampling
that database. Using the probabilistic model, the user can ex-
plicitly specify a desired level of certainty for database selection.
The adaptive probing technique decides which and how many
databases to contact in order to satisfy the user’s requirement.
Our experiments on real Hidden-Web databases indicate that our
approach significantly improves the accuracy of database selec-
tion at the cost of a small number of database probing.

1 Introduction
An ever increasing amount of information on the Web is avail-
able through search interfaces. This information is often called
the Hidden Web or Deep Web [1, 6] because traditional search en-
gines cannot index them using existing technologies [10, 24]. The
Hidden Web is estimated to be significantly larger and contain
much more valuable information than the “Surface Web” that is
indexed by search engines [1, 6]. However, accessing the Hidden
Web is often frustrating and time-consuming for average Internet
users who must manually query all potentially relevant Hidden
Web databases1 and investigate the query results.

To help users better access the Hidden Web, recent efforts have
focused on building a metasearcher that mediates many Hidden-
Web databases and provides a single access point for the user [2,
5, 14, 15, 16, 18, 21, 25, 26, 27]. Given a user’s query (e.g. “breast
cancer” as shown in Figure 1), the metasearcher determines which
databases are the most likely to be relevant, directs the user’s query
to those databases and collects the search results back to the user.
Given this scenario, we note that an effective metasearcher needs
to accomplish two challenging tasks:

1. Based on the user’s query, the metasearcher has to identify
a few databases that are the most relevant, so that it can di-
rect the query to those databases (the arrows labelled 1© in
Figure 1). This task is often referred to as database selection

1We call a collection of documents accessible through a Web search
interface as a Hidden-Web database. PubMed (http://www.ncbi.nlm.
nih.gov/entrez/query.fcgi) is one example.
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Figure 1: The metasearching process

or database discovery. In Figure 1, the metasearcher directs
the query “breast cancer” to two databases: “PubMed” and
“MEDLINEplus.2”

2. The metasearcher gathers the query results from the selected
databases, and selectively presents the results from multiple
sources to the user (The arrows labelled 2© in Figure 1). This
task is also known as result merging or result fusion.

In this paper, we mainly focus on the database selection prob-
lem (task 1). Note that the ultimate goal of the metasearcher is
to return a set of most relevant documents to the user. In order to
achieve this goal, a good solution to database selection is essential
for the efficiency and the effectiveness of the overall process: First,
without database selection, the metasearcher will have to issue ev-
ery query to all databases and merge the returned results. This
approach cannot scale to the hundreds of thousands of Hidden-
Web databases on the Internet [1, 6]. Database selection makes the
metasearching process scalable by prescreening all the Hidden-
Web databases and excluding the non-relevant ones, so that the
metasearcher only queries a few databases in the end. Second, the
accuracy of database selection directly affects the quality of the re-
sult from metasearching. Excluding a valuable data source in the
selection list may cause some of the most informative documents
missing in the final result.

To select the right set of databases given a query, we need to
identify the relevancy of each database and pick the databases
most relevant to the query (detailed definitions of database rel-
evancy are discussed in Section 2). In previous research, the
metasearcher uses a statistical summary of each database to es-
timate its relevancy to the given query [21, 26, 14, 15, 18]. For
example, Gravano et al. [14, 15, 18] use (keyword, number of
appearances) pairs to estimate the number of potentially relevant
documents in each database. One of the main weaknesses of the
existing approaches is that the estimation methods usually make
strong assumptions about the database statistics, and often intro-
duce errors into the relevancy estimation. As a result, the database
selection fails to pick up the most relevant databases and the user
ends up wasting a significant amount of time on the irrelevant
ones. Recent study shows that investigating irrelevant Web pages
is a major cause for users to waste time on the Web [19].

In this paper, we develop a probabilistic relevancy model in

2http://www.nlm.nih.gov/medlineplus/
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which the relevancy of each database follows a relevancy distribu-
tion, or RD. Using this relevancy distribution, we capture the error
of an estimation method for each database, so that we can take
this error into account when we select the final databases. As our
later experiment shows, probabilistic relevancy model improves
the “correctness” of database selection significantly (more than
38% in certain cases). Section 3.1 explains our relevancy model
in more detail.

Further, we propose an adaptive probing technique (issuing the
user query to the databases on the fly) in order to improve the “cor-
rectness” of database selection, so that the final quality of our an-
swer may satisfy the user’s anticipation. Intuitively, our adaptive
probing is based on the following idea: When the metasearcher
is not sure exactly what databases to select for a particular query,
the metasearcher issues the query to some databases to learn more
exact relevancy of those databases to the query. Based on this
“improved knowledge” on database relevancy, the metasearcher
can select databases more accurately. Since adaptive probing in-
creases the overall processing cost of database selection, the main
challenge is minimizing the number of databases to probe while
maximally improving the accuracy of database selection. The an-
swer to this challenge is presented in Section 5.

The rest of this paper is organized as follows: We review the
background of the database selection problem in Section 2. In
Section 3, we present our framework that incorporates both the
probabilistic relevancy model and adaptive probing. Section 4 fo-
cuses on sampling a database to generate error distributions. Sec-
tion 5 presents the adaptive probing technique. Our experimental
results are presented in Section 6 and related works are discussed
in Section 7. Section 8 concludes the paper and outlines future
research.

2 Database selection background
In this section, we first present various definitions of database rel-
evancy to a given query. We then review existing techniques that
use a statistical summary to estimate a database’s relevancy. We
also discuss the weaknesses of such estimation-based methods,
which motivate us to investigate probabilistic relevancy model and
adaptive probing.

2.1 Database relevancy

Intuitively, we consider a database relevant to a query if the
database contains enough documents pertinent to the query topic.
Different definitions have been proposed to formalize this notion
of relevancy.

• Document-frequency-based. A database’s relevancy is the
number of relevant documents inside that database [21, 18].
Since the notion of “relevant document” is a subjective mat-
ter and hard for a program to decide, researchers have been
using the number of matching documents (documents that
contain all the query keywords) as a surrogate to the orig-
inal definition [18], with the premise that databases tend to
have comparable fraction of relevant documents among their
matching documents.

• Document-similarity-based. A database’s relevancy is
the relevancy of the most relevant document in that
database [26]. Facing the same difficulty of measuring docu-
ment relevancy, researchers usually use the query-document

|db1|: 20,000 |db2|: 20,000
term t r(db1, t) term t r(db2, t)
breast 2,000 breast 2,600
cancer 10,000 cancer 5,000

... ... ... ...

Figure 2: Term vs. # of appearances table.

similarity computed by the cosine similarity of tf·idf vec-
tors [22] as a surrogate.

The techniques that we develop in this paper can be used for
both relevancy definitions. In the remainder of this paper, we refer
to the relevancy of database db to query q as r(db, q) in general.

2.2 Relevancy estimation

Contacting all the Hidden-Web databases for their exact relevancy
values incurs too much network traffic and processing overhead.
In the past, researchers proposed to keep a local statistical sum-
mary of each database, and consult only the summary to estimate
the r(db, q) value for each database. Note that this estimation is
typically different from the actual relevancy of the database. We
refer to the estimated relevancy of database db to q as r̃(db, q).

We now briefly illustrate how we may compute r̃(db, q) under
the document-frequency-based relevancy definition (the first item
in Section 2.1). We use the following simple example to make
our discussion concrete. Our techniques can also be used for other
database-relevancy definitions and estimators.

In [14, 18], Gravano et al. compute r̃(db, q) (the estimated
number of matching documents in db) by assuming that the query
terms t1, ..., tm of q are independently distributed.

Example 1 A metasearcher is mediating two databases, db1 and
db2, and keeps a statistical summary for each database (Fig-
ure 2). For example, the first row in db1’s table shows that the
word “breast” appears in 2,000 documents of db1. We assume
that db1 and db2 each contain 20,000 documents. Given a user
query “breast cancer,” the metasearcher can estimate the number
of matching documents in each database as follows: From the
summary we know that 2,000

20,000
of the documents in db1 contain

the word “breast” and 10,000

20,000
of them contain “cancer.” Then, as-

suming that the words “breast” and “cancer” are independently
distributed, db1 will have 20, 000 · 2,000

20,000
· 10,000

20,000
= 1, 000 docu-

ments using both “breast” and “cancer.” Thus r̃(db1, q)=1,000.
Similarly, r̃(db2, q)=20, 000 · 2,600

20,000
· 5,000

20,000
=650. 2

In general, when we use this term-independence estimator,
r̃(db, q) is computed as:

r̃(db, q) = |db| ·
∏

ti∈q

r(db, ti)

|db|
(1)

where |db| is the size of db and r(db, ti) is the number of docu-
ments in db that use ti.3

Note that the term-independence assumption is often incorrect
and the estimated relevancy of a database can be very different
from its actual relevancy. In the following section, we discuss this
issue further.

3Reference [18] explains in detail how we may obtain this value from
Hidden-Web databases.
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Figure 3: The errors of relevancy estimation

2.3 Weaknesses of estimation-based database selection

Existing relevancy estimators make strong assumptions on the
database statistics (like the “term-independence assumption” in
Eq. 1, which is also used in [21, 26]), and often introduce errors
into relevancy estimation. This error, however, may or may not af-
fect the correctness of database selection. We illustrate this point
using a scenario similar to Example 1. As in the example, we
assume that the term-independence estimator predicts that the rel-
evancy of db1 and db2 to the query “breast cancer” is 1000 and
650, respectively.

• Uniform error: When the error of the estimator is uniform
(or nearly uniform) on all databases, we can select correct
databases even using the erroneous estimation.

For example, let us assume that the estimator uniformly un-
derestimates the relevancy of db1 and db2 by 100% (Fig-
ure 3(a)). The actual relevancy of db1 is 2000 while its es-
timated relevancy is 1000. The white bars in the figure rep-
resent the estimated relevancy and the shaded bars represent
the actual relevancy.

Note that when the errors are uniform, we can still correctly
select db1 as the most relevant database based on the estima-
tion, because db1’s estimated relevancy is still higher than
that of db2.

• Non-uniform error: When the errors of the estimator are
not uniform among the databases, we may select a wrong
database.

For example, let us consider the scenario of Figure 3(b). The
estimator has no error on db1’s relevancy, while it underes-
timates db2’s by 100%. Thus, we will incorrectly select db1

as the most relevant database because db1’s estimated rele-
vancy is higher than that of db2.

Our experimental results show that relevancy estimators often
have non-uniform errors for different databases. Because of this
non-uniformity, database selection can be wrong for as many as
50% of the queries under a typical setting when we use the term-
independence estimator. In the following section, we explain how
we can compensate non-uniform errors using a probabilistic rele-
vancy model.

3 A framework for probabilistic metasearch-
ing with adaptive probing

In this section, we develop a high-level framework for the tech-
niques that we propose. We will present the details of each tech-
nique in later sections.
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Figure 4: The ED of db1

3.1 Probabilistic relevancy model

In the previous section, we illustrated that non-uniform errors of a
relevancy estimator may lead to incorrect database selection. In-
tuitively, if we can somehow predict estimation errors for each
database and and take the errors into account when we select the
top-k databases, we may get more accurate database selection. In
this subsection, we first formalize the notion of “error,” and then
propose a probabilistic model to capture the different errors of dif-
ferent databases.

The error made by a relevancy estimator on a database dbi and
a query q is defined as:

err(dbi, q) =
r(dbi, q)− r̃(dbi, q)

r̃(dbi, q)
(2)

For example, in Figure 3(b), the error made by the term-
independence estimator on db2 and query “breast cancer” is
1300−650

650
= 100%. Note that we can compute the error value,

err(dbi, q), only when we know the actual relevancy r(dbi, q),
which is often unavailable. In the following paragraph, we ex-
plain how we can use a probabilistic distribution to predict the
error without knowing the actual relevancy.

Error Distribution. Given a use query q, our goal is to use a
probabilistic distribution to model the err(dbi, q) made by a rele-
vancy estimator on dbi. The basic idea is to use a small number of
sample queries to observe the error distribution before we handle
the user query q, and use the observed distribution to predict the
errors for q. We illustrate our idea using the following example.

Example 2 We want to predict the estimation error on db1 for
the user query q. For this purpose, we sample the database db1

with 100 sample queries (randomly chosen from, say, previous
query traces). For each sample query qs, we repeat the following
procedure:
• Compute the estimated relevancy of q to db1, r̃(db1, qs) (us-

ing, say, Eq. 1).

• Obtain the actual relevancy r(db1, qs) by issuing qs to db1

and analyzing the returned result.

• Compute the error err(db1, qs) using Eq. 2.
After we have accumulated the errors for the 100 sample queries
on db1, we may observe that 40 queries have an error of−50%, 50
queries have an error of 0% and the rest 10 queries have +50%.
We can then summarize this into a histogram type of distribution
shown in Figure 4: For 0.4 fraction of queries (40 out of 100), we
get -50% error, 0.5 of queries 0% error and 0.1 of queries 50% er-
ror. We refer to this observed distribution as an error distribution,
or ED of db1.

Given this ED obtained from a random sample, we may expect
that the error for the future user query q follows a similar distribu-
tion and has, say, 0.4 chance to be -50%. 2

Note that when the estimation errors are very different between
db1 and db2, the obtained ED’s will be very different. Therefore,
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Figure 5: RD-based database selection

by obtaining a separate ED for every database dbi, we can capture
non-uniform error behaviors that databases exhibit.

When we obtain an ED from random samples to model the
future errors for user queries, the following questions may arise:
Shall all queries exhibit similar error distribution? Wouldn’t a
query on topic A exhibit different error behavior from another
query on topic B? If so, how can we identify different “types”
of queries that exhibit different error behaviors and use a separate
error distribution for each “query type?” In Section 4 we inves-
tigate this issue more carefully. That is, we study various criteria
by which we can classify queries into different “types” so that we
can maintain a separate ED appropriate for each “query type.”

In summary, our exact error modelling is as follows: Before
we accept user queries, we obtain ED for each query type and for
each database dbi. Then when the user issues a new query q (e.g.
“breast cancer”), we classify q into the appropriate query type and
pick the ED appropriate for that query type. Using this ED, we
predict the error of the estimated relevancy of q to dbi.

Relevancy Distribution. Since we eventually need to compare
the relevancy of various databases for the selection purpose, we
use the error distribution (ED) as a “stepping-stone” to predict the
actual relevancy of those databases. More specifically, after we
have obtained the error distribution of a query q on dbi, we can de-
rive a distribution for the actual relevancy value r(dbi, q), referred
to as the relevancy distribution, or RD. Consider the following ex-
ample.

Example 3 We have obtained the ED of q = “breast cancer” on
db1 as shown on the left side of Figure 5(b). We now want to
derive the RD for db1. To derive RD, we first estimate r̃(db1, q)

using, say, the term-independence estimator. Suppose that the es-
timator indicates that r̃(db1, q) is 1000. From this estimation, we
can derive RD as follows:

From the middle bar of ED, we expect that there is a 0.5 prob-
ability to get a 0% error. Therefore, the actual relevancy r(db1, q)
will be the same as r̃(db1, q) =1000 with a 0.5 probability. Simi-
larly, we can derive that r(db1, q) has a 0.4 probability to be 500,
and a 0.1 probability to be 1500, which correspond to the other
bars of the RD. The derived RD is shown on the right side of Fig-
ure 5(b). 2

As we will explain later, we may select the top-k databases
more “correctly,” using the RD’s that we just obtained. To com-
pare the effectiveness of various database selection methods, we
need to define the correctness of the results returned by each
method. In the next section, we first formalize the notion of cor-
rectness. We then discuss how we may use the RD’s to improve
the correctness.

3.2 Correctness metric for database selection

To compare the effectiveness of various database selection meth-
ods, we need to define the correctness of the results returned by
each method. Generally speaking, the goal of database selec-
tion is to find k databases that are the most relevant to a query.
Here k is a number given by the user, e.g. 1 or 3. We use
DB ≡ {db1, db2, ..., dbn} to represent the entire set of Hidden-
Web databases, and use DBtopk to represent the set of k databases
that are actually the most relevant. Note that the correct answer
DBtopk is unknown to a database selection method. We refer to
the set of k databases selected by a particular method as DBk, and
evaluate the effectiveness of that method by comparing the DBk

it generates with DBtopk. The correctness of DBk can be defined
in one of the following ways.

• Absolute correctness, Cora(DBk): We consider DBk is
“correct” only when it contains all DBtopk.

Cora(DB
k) =

{

1 if DBk = DBtopk

0 otherwise
(3)

• Partial correctness, Corp(DBk): We give “partial credit”
to DBk if it contains some of DBtopk.

Corp(DB
k) =

|DBk ∩DBtopk|

k
(4)

For example, if an answer set DB3 contains 2 of the 3 most
relevant databases, its partial correctness is 0.67.

To help readers, the notations are summarized in Figure 6.
Some of the symbols will be discussed later.

3.3 RD-based database selection

We now explain how we may use relevancy distributions (RD)
to improve the correctness of database selection. The basic idea
is that the RD gives us more information on how relevant each
database is to the query and how much error we may get from
estimation. To illustrate, we use the examples shown in Figure 5.

Example 4 The term-independence estimator predicts that the
relevancy of db1 and db2 to the query “breast cancer” is 650 and
1000, respectively (Figure 5(a)).
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Symbol Meaning

DB {db1,...,dbn}, the entire set of Hidden-Web
databases

q The user’s query
r(dbi, q) The actual relevancy of dbi for q

r̃(dbi, q) The estimated relevancy of dbi for q

err(dbi, q) The estimator’s error on dbi for q

k The number of databases we need to select
DBtopk The actual set of top-k relevant databases
DBk A set of k databases selected by a

metasearching method
Cora(DBk) Absolute correctness metric for DBk

Corp(DBk) Partial correctness metric for DBk

E[Cor(DBk)] The expected correctness of DBk , here
Cor can be Cora or Corp

t The answer’s certainty level required by the
user

Figure 6: Notation used throughout the paper

From our sampling queries, we obtained the ED’s shown on the
left side of Figures 5(b) and (c). From these ED’s, we can see that
the term-independence estimator predicts relevancy of db1 reason-
ably well (we get zero error 50% of the time), while it consistently
underestimates the relevancy of db2 (the relevancy is underesti-
mated by 100% for 90% of the time).

Now suppose that we simply use the term-independence esti-
mator for database selection (Figure 5(a)). In this case, we will se-
lect db1 as the most relevant database, because r̃(db1, q) is higher
than r̃(db2, q). However, note that the estimator tends to under-
estimate the relevancy of db2 by 100%. Therefore, with a high
probability, the relevancy of db2 can be in fact 1300 (=650 ·200%)
and can be larger than that of db1 (since r̃(db1, q) = 1000).

We can accommodate this fact by considering RD’s of db1 and
db2. We show the RD of db1 on the right side of Figure 5(b)
(the shaded bars) and that of db2 in Figure 5(c) (the white bars).
Figure 5(d) shows both RD’s together. From these RD’s, we can
see that db2 has a high chance to be more relevant than db1. That
is, only in the following cases is db1 more relevant:

• r(db1, q) = 1500 or

• r(db1, q) = 1000 and r(db2, q) = 650

The first case occurs with 0.1 probability and the second case oc-
curs with 0.05 (= 0.5 · 0.1) probability. Since the sum of these
probabilities is only 0.15, we conclude that db2 is the most rele-
vant database (with 0.85 probability) and return it. 2

We refer to the database selection based on RDs as RD-based
database selection method. Note that the RD-based method may
generate quite different results from the term-independence esti-
mator. (In the above example, the independence estimator selects
db1 while RD-based method selects db2.) This difference is be-
cause RD-based method takes into account the errors that the esti-
mator typically makes on each database.

Also note that we may consider the probability computed in the
above example as the “certainty level” of the RD-based method:
With a 0.85 probability, the answer from RD-based method is
“correct.” This certainty is an indicator for the eventual correct-
ness of our answer. For example, suppose we select the top-1
database for 100 queries each with 0.85 certainty. In the end if we
check our answer against the correct answer, we can expect that
for around 85 queries we got the correct answer.

3.4 Adaptive probing

Our second technique is to use database probing to improve the
certainty level that we have described in the previous subsection.
Probing is an operation that issues the user’s query q to database
dbi and gathers the returned information in order to evaluate the
exact relevancy of dbi to q.

We note that implementing database probing under both of
the relevancy definitions (discussed in Section 2.1) is relatively
easy. Under the document-frequency-based definition for in-
stance, many databases report the number of matching documents
in their answer page. Therefore, by issuing the user query q to dbi

and obtaining the number of matching documents, we can learn
the exact relevancy of q to dbi. Similarly, under the document-
similarity-based relevancy definition, after we issue q to dbi, we
may download the top returned documents and analyze their con-
tent to compute the query-document similarity.

After we probe a database dbi, we know the exact relevancy of
dbi to query q, i.e., r(dbi, q). Thus, the RD for r(dbi, q) changes
from a regular distribution to an impulse function. For example,
assuming that we probe db1 in Figure 5(d) and get the actual rel-
evancy as r(db1, q) = 500, then the RD for db1 becomes the
impulse function shown in Figure 5(e).

Probing a few databases raises the certainty level of database
selection. For example, before probing (Figure 5(d)), we only
have a 0.85 certainty level to return db2 as the top-1 database.
After the probing (Figure 5(e)), we know that the relevancy of db2

is always higher than db1, and the certainty of returning db2 as the
top-1 database becomes 1. Therefore, we increased the certainty
of our answer by 0.15.

We may consider this certainty level as a “knob” that the user
can turn in order to control the database selection “quality.” For
example, when the user requires that the answer to his query
should meet the certainty level of 0.7 (i.e., the answer should be
correct 70% of the time), then we can simply return db2 as the
top-1 database without probing db1. However, if the user-required
certainty level is 0.9, we need to probe db1 in order to increase
our certainty level. Thus, given the user-required certainty level,
we adaptively decides which and how many databases to probe in
order to meet the user’s requirement. Since probing is an expen-
sive operation during database selection, one important challenge
is how we can maximally increase the certainty level with a mini-
mal number of probing. Later in Section 5, we discuss our answer
to this challenge.

4 Generating error distribution (ED) via
sampling

In the framework section, we have explained that we should sep-
arate queries into several types according to their error behaviors
on a database, and sample the database to get an error distribution
(ED) for each query type. This section explains the criteria that we
use to identify these query types, and studies how many sampling
queries should be drawn from each type.

4.1 Specialized distributions for different types of
queries

In this subsection, we study how to separate queries that exhibit
different error behaviors into different types. The following are a
few criteria that may be use for query separation. In this part of
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discussion, we use the document-frequency-based relevancy def-
inition (Section 2.1), and the term-independence estimator as our
estimation method.

• Number of terms in the query. When estimating the
number-of-matching-documents in a database, the term-
independence estimator (Eq. 1) tends to make larger errors
on queries that have more terms. For example, the estima-
tor has larger errors on 3-term queries than it does on 2-term
queries, and therefore the error distribution of 3-term queries
differs from that of 2-term queries. Thus, we should explic-
itly separate queries with different number of terms.

• Value of the initial estimation r̃(dbi, q). Intuitively, a query
that is semantically related to the topic of database dbi may
exhibit quite different error behavior from a query that is not
related to dbi. Note that understanding the semantics of the
query and the databases is a difficult task. In our current
study, we have found that the value of r̃(dbi, q) (the esti-
mated number-of-matching-documents) provides a reason-
ably good heuristics to decide whether the topic of query q

is related to dbi. If r̃(dbi, q) is below a certain threshold, the
database might not cover that query topic at all, and thus the
actual number-of-matching-documents r(dbi, q) is typically
0. In this case, the error tends to be negative (according to
Eq. 2). On the other hand, if r̃(dbi, q) is above the threshold,
the database might have reasonable coverage on that query
topic. The actual number r(dbi, q) may turn out to be much
larger than r̃(dbi, q) because the query terms are in fact de-
pendent in the database. In this case, the error tends to be
positive. In this paper, we set this threshold as 1. That is,
on database dbi, we separate queries with r̃(dbi, q) < 1
from those with r̃(dbi, q) ≥ 1. Our experimental results
suggest that an empirical threshold of 1 gives us reasonably
good separation of different queries. We have studied other
thresholds for r̃(dbi, q) and include the results in [20].

Notice that this criterion is database dependent, because a
query with r̃(dbi, q) ≥ 1 on one database dbi may have
r̃(dbj , q) < 1 on another database dbj .

In summary, to sample a database dbi, we classify our sample
queries into the following types: 2-term queries with r̃(dbi, q)<1,
2-term queries with r̃(dbi, q)≥1, 3-term queries with r̃(dbi, q)<1,
etc. We generate a separate ED for each type of queries via sam-
pling. When a future query arrives, we first classify that query into
one of these types, and apply the corresponding ED.

Sampling size S 100 200 500 1000 2000
Avg goodness of S 0.48 0.46 0.52 0.55 0.53

Figure 8: Average goodness of different sampling sizes

4.2 Sampling size

After we have classify queries into different types, we sample a
database with each type and generate an error distribution (ED)
for that type. There are the following questions we want to study:
First, how many samples should we draw from each query type
to obtain a reasonably good ED? If we decide to draw, say 500
queries from each type, how well does the ED generated on this
sample size predict the ED of a future query in the same type?
To answer these questions, we design the following experiment to
test out various sampling sizes. The basic idea is, we first sample
a database dbi using all the queries that we can gather in one type,
and generate an “ideal” ED. Second, for a sampling size S (e.g.
500), we sample dbi with S queries to get a sample ED. Because
the “ideal” ED is the best we can use for any future queries, we
use a standard statistical test to compare how close the sample
ED is to the “ideal” ED. If the two are reasonably close, then the
sample ED is a reasonably good approximation to the ED of a
future query. The details of this experiment are as follows.

First, we construct 20 synthetic databases using newsgroup ar-
ticles. We download all the articles in the 20 largest newsgroups
on the UCLA news server during May, 2003, and group the ar-
ticles in each newsgroup as one database. The sizes of these
databases range from 28,900 articles to 81,400 articles. Note that
we cannot use real Hidden-Web databases in this experiment, be-
cause issuing the entire set of queries (in hundreds of thousands)
to a Hidden-Web database to get the “ideal” distribution is too ex-
pensive and time-consuming.

Second, on a database dbi (1≤i≤20), we classify all the Web
queries submitted to a search engine in one month into the follow-
ing types: 2-term queries with r̃(dbi, q) < 1, 2-term queries with
r̃(dbi, q) ≥ 1, etc. In the following discussion we focus on the
second type, i.e., 2-term queries with r̃(dbi, q) ≥ 1. To facilitate
the discussion we refer to all the queries in this type as Qtotal.
The size of Qtotal is typically 50,000 - 60,000 depending on dbi.
We issue all the queries in Qtotal to dbi and generate an “ideal”
error distribution called EDtotal.

Third, on the same dbi we try out five different sampling sizes,
100, 200, 500, 1000 and 2000. For one sampling size S, we ran-
domly pick S queries from Qtotal, issue them to dbi and gen-
erate an error distribution called EDS . We then use the stan-
dard Pearson-χ2 test [23] (10 bins and degree of freedom as 9)
to compare EDS with EDtotal. The test result is between 0 and
1. The closer the test result is to 0, the less likely that EDS equals
EDtotal. Typically we reject that EDS is the same as EDtotal if
the test result falls below 0.05. Intuitively, we can consider the test
result as a “goodness” measure of sampling size S. We repeat the
above procedure 10 times for each sampling size S, and in the end
compute an average goodness of S. Figure 7 shows the average
goodness of various sampling sizes on a few databases. For ex-
ample, on the particular database “rec.music.beattles,” the average
goodness of sampling size 100 is 0.28.

Fourth, to summarize the results, we further average the good-
ness of each sampling size S over the 20 databases, and present
the numbers in Figure 8. For example, the first column shows the
average goodness of sampling size 100 is 0.48, averaged over the
20 databases.

There are two interesting observations on this result. First, for
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Figure 9: Separate EDs for four types of queries on a given
database

all sampling sizes, the goodness is much higher the bottom line
of the statistical test (0.05). In fact, we can get reasonably good
distributions using only 100 or 200 sample queries. Second, the
goodness of sampling gets slightly higher when we use larger sam-
pling sizes.

Recall that the results in Figure 8 are generated on 2-term
queries with r̃(dbi, q) ≥ 1. We have observed similar results on
other query types. In our experiments, we choose to be a little
bit conservative about the sampling size and use 500 queries to
sample each query type. The following example summarizes our
discussion in this section.

Example 5 On the synthetic database “rec.music.artists.spring-
steen,” we generate an ED for each of the four query types: 2-
term queries with r̃(dbi, q) < 1, 2-term queries with r̃(dbi, q) ≥
1, 3-term queries with r̃(dbi, q) < 1 and 3-term queries with
r̃(dbi, q) ≥ 1, as shown in the bottom part of Figure 9. For a
new query, we use a decision tree (the top part of Figure 9) to de-
cide which ED to use. For example, for the query “breast cancer,”
we first identify it as a 2-term query. Further, this query has an
estimated relevancy less than 1 on the current database, so we will
use the leftmost ED. 2

5 Adaptive probing
Using the distributions we have learned in the previous section, we
can select k databases DBk for a query q with a certainty level.
If this certainty is below a user-required level t, we will probe
a few databases so that we can eventually return a DBk with a
certainty higher than t. This section presents the adaptive probing
algorithm.

5.1 Expected correctness of DBk

Before discussing the algorithm, we need to formally define the
“certainty” of DBk so that the algorithm can use it in the stopping
condition. In this paper, we propose to use the expected correct-
ness of DBk as this certainty measure. Section 3.2 defined two
correctness metrics, i.e., the absolute and the partial correctness
of DBk. In the following, we explain the expected correctness of
DBk for both metrics.

Expected absolute correctness. The absolute correctness of
DBk, Cora(DBk) is 1 if DBk equals the correct answer
DBtopk, and 0 otherwise. Thus, the expectation of Cora(DBk),
denoted as E[Cora(DBk)], can be computed as:

E[Cora(DB
k)]

= 1 · Pr(Cora(DB
k) = 1) + 0 · Pr(Cora(DB

k) = 0)

= Pr(Cora(DB
k) = 1) (5)

The probability Pr(Cora(DBk) = 1) in Eq. 5 is the probabil-
ity that DBk equals the correct answer, DBtopk. For example, in
Figure 5(d), db1 has a 0.9 probability to be higher than db2. Thus,
db1 has a 0.9 probability to be the actual top-1 database between
the two. Hence, Pr(Cora(db1) = 1) = 0.9 and consequently
E[Cora(db1)] = 0.9.

Generally, for any k value, Pr(Cora(DBk) = 1) can be com-
puted using the relevancy distributions (RD) of all the databases.
Therefore, E[Cora(DBk)], which equals Pr(Cora(DBk) =
1), is a function of all the RDs: f({RDi; i = 1, ..., n}). Inter-
ested readers can refer to [20] for the detailed formula of this f

function.

Expected partial correctness. If DBk has l (0≤l≤k) databases
overlapping with the correct answer DBtopk, then the partial cor-
rectness of DBk, Corp(DBk) is l

k
. Thus, the expected partial

correctness of DBk, E[Corp(DBk)] is:

E[Corp(DB
k)] =

∑

0≤l≤k

l

k
· Pr(Corp(DB

k) =
l

k
) (6)

For example, let us consider an answer set of two databases,
DB2. Suppose the probability that DB2 equals DBtop2 is
0.5, the probability that DB2 has one database overlapping with
DBtop2 is 0.4, and the probability that DB2 has no overlap
with DBtop2 is 0.1. Thus, Pr(Corp(DB2) = 2

2
) = 0.5,

Pr(Corp(DB2) = 1

2
) = 0.4 and Pr(Corp(DB2) = 0

2
) = 0.1.

The E[Corp(DB2)] is 2

2
· 0.5 + 1

2
· 0.4 + 0

2
· 0.1 = 0.7. In other

words, a 0.7 fraction of DB2 is expected to be correct.
The probability Pr(Corp(DBk) = l

k
) in Eq. 6 can also

be computed using the RDs of all the databases. Thus,
E[Corp(DBk)] can be another function of all the RDs:
g({RDi; i = 1, ..., n}). Due to space limit, we will not present
the complex equation here. For readers who are interested in this
subject please refer to [20].

Our adaptive probing algorithm can be used for both the ab-
solute and the partial correctness metrics. Therefore, we use
E[Cor(DBk)] to generally denote the expected correctness of
DBk, where the correctness metric is either absolute or partial.

5.2 Probing cost

Probing a database is costly because it incurs network traffic and
query processing loads. In order to scale to many Hidden-Web
databases, the adaptive probing algorithm should incur little prob-
ing cost to reach the user-required certainty level. To simplify
the discussion, we assume an equal probing cost for all databases.
Thus, minimizing the probing cost is the same as minimizing the
total number of probing. Our methods, proposed later, can be ex-
tended to scenarios where different databases have different prob-
ing costs.

5.3 The adaptive probing algorithm

The algorithm takes four inputs: the entire set of databases DB, a
query q, a number k, and the user-required certainty level t. The
goal is to use a minimum number of probing to find k databases
DBk (DBk ⊆ DB) with E[Cor(DBk)] ≥ t. Figure 10 illus-
trates this adaptive probing process. At any intermediate step, DB

is divided into two groups: the probed group and the unprobed
group. Based on the impulse RDs of the probed databases and
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Figure 10: The adaptive probing process

Algorithm 5.1 APro(DB, q, k, t)
Input:

DB: the entire set of databases, {db1,...,dbn}
q: a given query
k: the number of databases to select
t: the user-required level for E[Cor(DBk)]

Output:
DBk with E[Cor(DBk)] ≥ t

Procedure
(1) FOR each dbi ∈ DB

(2) Compute r̃(dbi, q)
(3) Choose dbi’s ED for q

(4) Derive dbi’s RD from r̃(dbi, q) and the ED
(5) WHILE E[Cor(DBk)] < t for all DBk ⊆ DB

(6) dbi ← SelectDb(DB)
(7) Probe dbi with query q

(8) Change the RD of dbi from regular to an impulse
(9) RETURN the DBk with E[Cor(DBk)] ≥ t

Figure 11: The adaptive probing algorithm APro

the regular RDs of the unprobed ones, we check whether there is a
DBk with E[Cor(DBk)] ≥ t. If there is (the “YES” branch), the
adaptive probing halts and returns this DBk; otherwise it probes
one more database (the “NO” branch), moves it from the unprobed
group to the probed group, and checks the condition again.

Figure 11 provides the pseudo-code of the algorithm. In
Steps (1) to (4), we first derive the RD of query q for every
database dbi based on its ED and the estimated r̃(dbi, q) value.
At each iteration, we check if there is a qualified DBk that ex-
ceeds the user threshold (Step (5)). If no such DBk exists, we
pick an unprobed database (Step (6)), probe it (Step (7) and (8))
and check the condition again. When we find a qualified DBk,
we exit the WHILE loop and return it in the end (Step (9)).

The key issue in this algorithm is how the function SelectDb
(Step (6)) picks the next database to probe, so that the algorithm
minimizes the total number of probing. In the extended version
of this paper [20], we describe the optimal policy that minimizes
the total number of database probing (in the probabilistic sense).
However, the optimal policy is computationally too expensive and
not practical for real applications (its complexity is O(n!) where
n is the number of databases that the metasearcher mediates). In
the following section, we describe our greedy policy that has less
computational cost while selecting reasonably good databases for
probing.
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Figure 12: Picking the first database to probe between db1 and
db2

5.4 A greedy probing policy for SelectDb

Our greedy policy is based on the following idea: The adaptive
probing algorithm (Figure 11) stops as soon as the expected cor-
rectness of a DBk, E[Cor(DBk)], exceeds the user-required
threshold t. Therefore, we can make the algorithm finish early
(thus reducing the probing cost) by increasing E[Cor(DBk)]
most in each database probing. That is, we probe the database
that is likely to increase E[Cor(DBk)] most.

More precisely, we note that our algorithm stops as soon as
one DBk satisfies: E[Cor(DBk)] ≥ t. Therefore, we can only
investigate the maximum E[Cor(DBk)] among all the possible
DBk ⊆ DB after each probing. To help our following discus-
sion, we refer to this maximum E[Cor(DBk)] among all the
DBk after probing dbi as the usefulness of probing dbi. Under
this terminology, our greedy policy probes the database that yields
the highest usefulness. We illustrate our greedy policy using the
following example.

Example 6 We need to select the top-1 database (k=1) among
{db1, db2}. The user requires that the expected correctness of the
answer to be 0.8 (t = 0.8). From our initial estimate of r̃(dbi, q)
and the ED’s of the databases, we have obtained the RDs of the
two databases in Figure 12(a) and (b). For clarity, we represent
each RD as a simple histogram. The shaded bars represent db1’s
RD and the white bars represent db2’s RD. For example, db1’s RD
in Figure 12(a) indicates that r(db1, q) has a 0.3 probability to be
500, a 0.4 probability to be 1000 and a 0.3 probability to be 1500.

In order to pick the next database to probe, we need to analyze
and compare the usefulness of probing db1 and db2. We first con-
sider db1. Given its RD, the probing of db1 will lead to one of the
following three outcomes:

• Case 1: r(db1, q) = 500 (Figure 12(d)). When the rele-
vancy of db1 is 500, db2 is definitely more relevant than db1,
because r(db2, q) is either 650 or 1300. Therefore, the ex-
pected correctness of returning db2 is 1 (E[Cor(db2)] =
1) and the expected correctness of returning db1 is 0
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α Pr(r(db1,q)=α) E[Cor(db1)] E[Cor(db2)] usefulness 
500 0.3 0 1 1 

1500 0.3 1 0 1 
1000 0.4 0.4 0.6 0.6 

(a) Possible outcomes of probing db1 
 

β Pr(r(db2,q)=β) E[Cor(db1)] E[Cor(db2)] usefulness 
650 0.4 0.7 0.3 0.7 

1300 0.6 0.3 0.7 0.7 
(b) Possible outcomes of probing db2 

Figure 13: Simulated probing on db1 and db2 under the greedy
policy

(E[Cor(db1)] = 0).4 This result is summarized in the first
row of Figure 13(a). Column 2 is the probability of this case.
Columns 3 and 4 show the expected correctness of returning
db1 or db2. The maximum between column 3 and 4 is high-
lighted, and copied to the last column as the usefulness of
probing db1. Remember that the usefulness of probing db1

is defined as the maximum expected correctness after prob-
ing it.

• Case 2: r(db1, q) = 1500 (Figure 12(e)). When the rele-
vancy of db1 is 1500, we know for sure that db1 is more rel-
evant than db2: E[Cor(db1)] = 1 and E[Cor(db2)] = 0.
Thus, the usefulness is again 1 in this case. The second row
of Figure 13(a) summarizes this result.

• Case 3: When r(db1, q) = 1000 (Figure 12(f)), db1 can
be more relevant than db2 with a 0.4 probability and db2

can be more relevant than db1 with a 0.6 probability. Thus,
E[Cor(db1)] = 0.4 and E[Cor(db2)] = 0.6. The useful-
ness is 0.6 in this case. The result is summarized in the last
row of Figure 13(a). 2

In summary, the usefulness of probing db1 (the maximum ex-
pected correctness after probing db1) is either 1, 1, or 0.6 with
probability 0.3, 0.3, and 0.4, respectively. Thus, the expected use-
fulness of probing db1 is 1 · 0.3 + 1 · 0.3 + 0.6 · 0.4 = 0.84.
We can similarly analyze the expected usefulness of probing db2

(Figure 13(b)) and get 0.7. Since the expected usefulness of prob-
ing db1 is higher, the greedy policy picks db1 to probe next: By
probing db1, we are likely to increase E[Cor(DBk)] more.

6 Experiments
This section reports our experimental results. Section 6.1 de-
scribes the experimental setup and the evaluation metric. Sec-
tion 6.2 shows the improvement on the correctness of database
selection using the relevancy distributions (RD) only, without any
probing. Sections 6.3 and 6.4 show the improvement of using
probing.

6.1 Experimental setup

Databases and query sets. We simulate a metasearching appli-
cation that mediates 20 medical or health-related databases. First,
from the “health” category of InvisibleWeb, we select 13 databases
which contain at least 3000 articles. We put this empirical require-
ment on database size because smaller databases typically return
zero documents for most of the queries, and we hypothesize that

4When we select the top-1 database, i.e. k = 1, Cora and Corp are
the same by definition. Thus in this example we use Cor to denote both
absolute and partial correctness of a database.

Database URL Size
MedWeb www.medweb.emory.edu ∼14,000
PubMed Central www.pubmedcentral.nih.gov ∼60,000
NIH www.nih.gov 163,799
Science www.sciencemag.org 29,652

Figure 14: Sample Web databases used in our experiment

such small databases are of little interest to the user. Second, we
include 4 database on broader science topics (e.g. Science and
Nature), and 3 daily news websites that have constant update on
health-related topics (e.g. CNN and NYTimes). We show some
sample databases and their sizes5 in Figure 14. The complete list
of our databases can be found in [20].

We build our query sets using real Web query traces (provided
by inventory.overture.com) collected during one month pe-
riod. Since our experiment focuses on the “health-care” subject,
we use the following procedure to ensure that our queries are also
“health-care” related. We start by building a health-care vocab-
ulary using single terms extracted from the health topic pages in
MedLinePlus (www.medlineplus.org, an authoritative medical
information website). Then from the Web query trace, we ran-
domly pick multiple-term queries that use at least two terms from
our health-care vocabulary.

To learn the distributions of the 20 databases, we prepare a
query set Qtrain with 1,000 2-term queries and 1,000 3-term
queries using the above procedure.6 Note that Qtrain is a train-
ing set only to learn the error distributions (ED) for each database
(Section 4). It is not used for performance comparison.

To evaluate the effectiveness of our proposed techniques, we
prepare another query set Qtest as our test set, also with 1,000
2-term queries and 1,000 3-term queries. We compare the perfor-
mance of our approach with past estimation-based approaches on
this set. In addition, Qtest does not overlap with Qtrain, so that
we can study how well the EDs learned on the training set apply
to the test set.

Evaluation metric. In our experiments, we use the
document-frequency-based relevancy definition, and use the term-
independence estimator (Eq. 1) to compute an initial relevancy es-
timation (Section 2.1). To check the correctness of a database se-
lection method, we build the golden standard on Qtest as follows:
For each query in Qtest, we issue it to the 20 databases, get the
number-of-matching-documents of each database, and record the
top-k databases DBtopk as the correct answer. We will use this
golden standard throughout the rest of this section.

To evaluate the correctness of a specific database selection
method M, for every query in Qtest, we use M to select k

databases DBk. We check DBk against the golden standard
DBtopk, and use Eq. 3 and Eq. 4 to compute the absolute and
partial correctness of DBk. Thus, we can compute the absolute
and partial correctness ofM on all the queries in Qtest. By av-
eraging over the 2000 queries in Qtest, we get the average abso-
lute correctness Avg(Cora) and the average partial correctness
Avg(Corp) ofM.

Term-independence estimator as the baseline. To see how
much we can improve over the existing database selection meth-

5For databases that do not export their sizes, we roughly estimate the
size by issuing a query with common terms, e.g. “medical OR health OR
cancer ...”

6Note that Web queries contain 2.2 terms on average [19]. Therefore,
in this paper we focus on 2 and 3-term queries, which correspond to the
typical scenario of metasearching.
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k = 1 k = 3
M Avg(Cora), Avg(Cora) Avg(Corp)

Avg(Corp)
Term-independence
estimator (baseline) 0.471 0.301 0.699
RD-based,
no probing 0.651 0.478 0.815

Figure 15: RD-based database selection vs. the term-
independence estimator

ods, we apply the term-independence estimator on the Qtest

queries and generate a baseline. The Avg(Cora) and Avg(Corp)
of the term-independence estimator are shown in Figure 15. Note
that when k = 1, the absolute and partial correctness are the same
by definition.

For example, in the first row of Figure 15, when k = 3, the
term-independence estimator has an Avg(Cora) = 0.301. This
means in the absolute sense, the estimator correctly selects the
top-3 databases for 602 (= 0.301 × 2000) test queries. Also in
the same row when k = 3, Avg(Corp) = 0.699. This means for
an average query, roughly 2 (≈ 0.699× 3) out of the 3 databases
selected by the estimator are in the correct answer set DBtopk.

6.2 Correctness improvement by the RD-based
database selection

In this section, we study the effectiveness the RD-based database
selection method. In Section 3.3 when we present the method,
we explain that this method returns the DBk that has the highest
certainty. Since we have formalized the notion of “certainty” as
the expected correctness, in the implementation of this method we
select the DBk that has the highest E[Cor(DBk)]. Note that no
probing is involved in this process.

We test the RD-based method on the 2000 queries of Qtest,
compute the Avg(Cora) and Avg(Corp) of this method and list
the results in the second row of Figure 15. For example, when
k = 1, the Avg(Cora) of the RD-based method is 0.651, which
means the method is correct for 1302 (= 0.651 × 2000) of the
queries in Qtest. This represents a 38.2% improvement over the
baseline (0.471 by the term-independence estimator). Similar im-
provements can be observed in other columns under different set-
tings. These results indicate that RD effectively captures the er-
ror of the initial estimation, and thus improves the correctness of
database selection.

6.3 Correctness improvement by probing

In this experiment, we study the impact of adaptive probing on the
correctness of database selection. Our goal is to see how much im-
provement we achieve right after 1 probing, 2 probing, etc. More
specifically, for each test query, we ask the APro (Figure 11) to
report the DBk with the highest E[Cor(DBk] after each prob-
ing (even if the algorithm has not halted yet), and measure the
correctness of the returned DBk. We then compute the average
correctness over all the queries in Qtest, and summarize the re-
sults in Figure 16.

In the figure, the horizontal axis shows the number of probing
that APro has performed so far. The vertical axis shows the aver-
age correctness over the 2000 queries. For example in Figure 16(a)
when k = 1 (selecting the top-1 database), the average correctness
of APro is 0.735 after one probing. This means APro correctly se-
lects the top-1 database for 1470 (=0.735 × 2000) queries after
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Figure 16: Improvement of average correctness by APro
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Figure 17: The average number of probing used to reach the user-
required correctness level t

only one probing. We also include the baseline produced by the
term-independence estimator. Since the estimator is not affected
by probing, its average correctness remains constant.

Note that at the point of no probing (# of probing = 0), APro
is identical to the RD-based method in Section 6.2. For exam-
ple, in Figure 16(a), the average correctness of zero probing is
0.651, the same as in the second row of Figure 15 (k = 1). In
Figure 16(a), after the greedy policy has probed two databases
the average correctness reaches beyond 0.80. We can observe
similar increases of the average correctness in Figure 16(b) and
Figure 16(c). These results have two indications. First, adaptive
probing significantly improves the correctness of database selec-
tion. Second, the greedy probing policy performs reasonably well
in deciding which database to probe.

6.4 Adaptive probing under different user-required
threshold t

In this subsection, we study how many probings APro uses to re-
turn a DBk with E[Cor(DBk)] ≥ t, where t is the user-required
correctness level. We experiment on six t values: {0.7, 0.75, 0.8,
0.85, 0.9, 0.95}. The number of probing increases as t increases,
as shown in Figure 17. The x-axis shows the different t values.
The y-axis is the number of probing used by APro to reach each
level of t, averaged over the 2,000 queries in Qtest. For example,
when k = 1 (Figure 17(a)), on average APro uses 3 probing to
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Figure 18: The average correctness of APro vs. the user-
required correctness level t

reach t = 0.9.
In Figures 17(b) we run APro under two stopping conditions.

The first condition requires that the expected absolute correct-
ness of DBk, E[Cora(DBk)] reach t for every query. The sec-
ond condition requires the expected partial correctness to reach
t for every query. Note that less probing is required under the
partial correctness stopping condition, because when k > 1,
Corp(DBk) is always larger than or equal to Cora(DBk) on
any DBk. As a result, APro reaches the correctness threshold
faster under the partial correctness stopping condition and termi-
nates earlier.

In the last set of data, we examine whether APro guarantees
to reach the user-required level t. Figure 18 presents the actual
correctness of APro under different t settings. The x-axis shows
the different t values, and the y-axis is the average correctness
over the 2000 test queries. In Figure 18(a), for example, when
we set t = 0.7, adaptive probing achieves an average correctness
of 0.92. In the case of k = 3, we again run APro using the two
stopping conditions, E[Cora(DBk)] ≥ t and E[Corp(DBk)] ≥
t, and show the results in Figure 18(b) and (c) respectively. The
dotted lines in the figures represent the user’s requirement on the
answers’ correctness, Avg(Cora) = t or Avg(Corp = t). As we
can see in all of the three cases, the correctness of APro is always
higher than the dotted lines, which means the user’s requirement
is satisfied in all cases.

7 Related work
Database selection is a critical step in the metasearching pro-
cess. Past research mainly focused on estimating how relevant
a database is to the user’s query. The databases with the highest
estimated relevancy are selected and presented to the user. The
quality of database selection is highly dependent on the accuracy
of the estimation method. In the early work of bGlOSS [14] that
mediates databases with boolean search interfaces, a metasearcher
estimates the relevancy of each database by assuming query terms
appear independently. vGlOSS [15] extends bGloss to support

databases with vector-based search interfaces, and uses a high-
correlation assumption or a disjoint assumption on query terms to
estimate the relevancy of a database under the vector-space-model.
[21] uses term covariance information to model the dependency
between each pair of terms, and achieve better estimation than
vGlOSS. An even better estimation is reported in [26] by incorpo-
rating document linkage information. There have been parallel re-
search in the distributed information retrieval context. In [2, 5, 25]
the relevancy of a database is modelled by the probability of the
database containing similar documents to the query. In [4], various
estimation methods discussed above are compared on a common
basis. Our method is orthogonal to this body of research in that we
are not proposing a new estimation method to improve the correct-
ness of database selection. Instead, we use a probabilistic model to
quantify the expected correctness of our answer, and use probing
to increase this correctness to a user-required level.

Database selection is related to a broader research area called
top-k query answering. Past research [11, 7, 8, 9] largely focused
on relational data, and use deterministic methods to find the abso-
lutely correct top-k answers. While in our context of Hidden-Web-
database-selection, enforcing the deterministic approach would
end up probing almost all the Hidden-Web databases. In our prob-
abilistic approach, we only probe the databases that would maxi-
mally increase our certainty of the top-k answers.

Mediating heterogenous databases to provide a single query
interface has been studied for years [17, 12]. While the existing
research focused on integrating relational data sources, in this pa-
per we study mediating Hidden-Web databases with unstructured
textual data.

8 Conclusion and future work
In this paper, we have presented a probabilistic approach to the
database selection problem together with adaptive probing. In our
approach, we leverage on the existing relevancy estimation meth-
ods. We first use a probabilistic model to capture the errors of
the relevancy estimation on different databases, and use the error
distribution (ED) to derive the relevancy distribution (RD) of each
database to a given query. Our experimental results reveal that RD
compensates the error in the original relevancy estimation, and
leads to more correct database selection.

Further, RD enables us to quantify the quality of our answer
using the expected correctness measure. Thus, the user can ex-
plicitly control the answer’s quality by specifying a desired level
of expected correctness. Our adaptive probing technique will then
based on the query and the user’s requirement dynamically decide
which and how many databases to probe. Our experimental re-
sults reveal that adaptive probing can satisfy the user’s correctness
requirement using a reasonably small number of probing.

In the experiments of this paper, we use the document-
frequency-based relevancy definition (the first item in Section 2.1).
As future work, we plan to study the effectiveness of the proba-
bilistic relevancy model and adaptive probing on other relevancy
definitions, e.g. document-similarity-based. We also plan to ex-
tend our dataset to include more Hidden-Web databases and testify
our method on a larger scale.

Acknowledgements
We thank Panagiotis G. Ipeirotis and Luis Gravano at Columbia
University for sharing their past research experiences in Hidden-

11



Web database selection and commenting on the draft of this paper.

References
[1] M.K. Bergman. The Deep Web: Surfacing Hidden Value. Accessible

at www.brightplanet.com/deepcontent/tutorials/
DeepWeb, 2000

[2] C. Baumgarten. A Probabilistic Solution to the Selection and Fusion
Problem in Distributed Information Retrieval. In Proc. of ACM SIGIR
’99, CA, 1999

[3] J.A. Borges, I. Morales, N.J. Rodrguez. Guidelines for Designing
Usable World Wide Web Pages. In Proc. of ACM SIGCHI ’96,
http://sigchi.org/chi96/, 1996

[4] Craswell, P. Bailey, and D. Hawking. Server Selection on the World
Wide Web. In Proc. of ACM Conf. Digital Library ’00, TX, 2000

[5] J. P. Callan, Z. Lu, and W. Croft. Searching Distributed Collections
with Inference Networks. In Proc. of ACM SIGIR ’95, WA, 1995

[6] K. Chang, B. He, C. Li, Z. Zhang. Structured Databases on the Web:
Observations and Implications. Technical report, UIUCDCS-R-2003-
2321, Department of Computer Science, UIUC, February 2003

[7] S. Chaudhuri and L. Gravano. Optimizing Queries over Multimedia
Repositories. In Proc. of ACM SIGMOD ’96, Canada, 1996

[8] S. Chaudhuri and L. Gravano. Evaluating Top-k Selection Queries. In
Proc. of VLDB ’99, Scotland, 1999

[9] K. Chang and S.Hwang. Minimal Probing: Supporting Expensive
Predicates for Top-k Queries. In Proc. of ACM SIGMOD ’02, WI,
2002

[10] A. Clyde. The Invisible Web. Teacher Librarian 29(4),
http://www.teacherlibrarian.com, 2002

[11] R. Fagin. Combining fuzzy information from multiple systems. In
Proc. of ACM PODS ’96, Canada, 1996

[12] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, et al. The TSIM-
MIS Project: Integration of Heterogeneous Information Sources. J.
Intelligent Information System 8(2):117-132, 1997

[13] M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman, 1990

[14] L. Gravano, H. Garcia-Molina, A. Tomasic. The Effectiveness of
GlOSS for the Text Database Discovery Problem. In Proc. of SIG-
MOD 94, MN, 1994

[15] L. Gravano, and H. Garcia-Molina. Generalizing GlOSS to Vector-
Space databases and Broker Hierarchies. In Proc. of VLDB ’95,
Switzerland, 1995

[16] L. Gravano, H. Garcia-Molina, A. Tomasic. GlOSS: Text-Source
Discovery over the Internet. ACM TODS 24(2):229-264, 1999

[17] A.Y. Halevy. Answering Queries Using Views: A Survey. VLDB
Journal 10(4):270-294, 2001.

[18] P.G. Ipeirotis, L. Gravano. Distributed Search over the Hidden Web:
Hierarchical Database Sampling and Selection. In Proc’ of VLDB 02,
China, 2002

[19] S. Kirsch. The Future of Internet Search: Infoseek’s Experiences
Searching the Internect. ACM SIGIR Forum 32(2):3-7, 1998

[20] V.Z. Liu, R.C. Luo, J. Cho, W.W. Chu. A Probabilistic Framework
for Hidden Web Database Selection Using Adaptive Probing. Techni-
cal report, Computer Science Department, UCLA, 2003

[21] W. Meng, K.L. Liu, C. Yu, et al. Determining Text Databases to
Search in the Internet. In Proc. of VLDB 98, NY, 1998

[22] G. Salton, M.J. McGill. Introduction to Modern Information Re-
trieval, 1983

[23] D.D. Wackerly, W. Mendenhall III, R.L. Scheaffer. Mathematical
Statistics with Applications. Sixth Edition. Duxbury Press, 2002

[24] K. Wiseman. The Invisible Web: Searching the Hidden Parts of
the Web. Learning Technology Review, Fall 1999 / Winter 2000,
http://www.apple.com/education/LTReview/fall99,
1999

[25] J. Xu and J. Callan. Effective Retrieval with Distributed Collections.
In Proc. of ACM SIGIR ’98, Australia, 1998

[26] C. Yu, W. Meng, W. Wu, K. Liu. Efficient and Effective Metasearch
for Text Databases Incorporating Linkages among Documents. In
Proc. of SIGMOD 01, CA, 2001.

[27] B. Yuwono, D.L. Lee. Server Ranking for Distributed Text Retrieval
System on the Internet. In Proc. of the 5th Int’l Conf. on Database
System for Advanced Applications, Australia, 1997

12


