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ABSTRACT
Recent studies show that a majority of Web page accesses
are referred by search engines. In this paper we study the
widespread use of Web search engines and its impact on the
ecology of the Web. In particular, we study how much im-
pact search engines have on the popularity evolution of Web
pages. For example, given that search engines return cur-
rently “popular” pages at the top of search results, are we
somehow penalizing newly created pages that are not very
well known yet? Are popular pages getting even more pop-
ular and new pages completely ignored? We first show that
this unfortunate trend indeed exists on the Web through an
experimental study based on real Web data. We then ana-
lytically estimate how much longer it takes for a new page
to attract a large number of Web users when search engines
return only popular pages at the top of search results. Our
result shows that search engines can have an immensely wor-
risome impact on the discovery of new Web pages.

1. INTRODUCTION
Since the arrival of the Web in early 90’s, the Web search

engines have become an indispensable tool in our everyday
life. When we seek information, we often go to our fa-
vorite search engine and look at the returned pages. Given
the sheer quantity of information available on the Web, the
widespread use of search engines is not surprising. An indi-
vidual simply cannot read billions of pages available on the
Web, so he gets help from search engines to zoom in to a
small number of pages worth looking at.

Despite search engines’ usefulness, we note that their wide-
spread use may introduce a significant bias to people’s per-
ception of the Web. For example, in a recent news article, a
Web commentator stated that “if your page is not indexed
by Google, your page does not exist on the Web [18].” While
this statement may be an exaggeration, it contains an alarm-
ing bit of truth. To find a page on the Web, many Web users
go to Google (or their favorite search engine) issue keyword
queries, and look at the results. If the users cannot find rel-
evant pages after several iterations of keyword queries, they
are likely to give up and stop looking for further pages on
the Web. Therefore, a page that is not indexed by Google
(or ranked at the bottom) is unlikely to be viewed by many
Web users.

The main question that we may ask is, then, how search
engines rank Web pages given a query. If search engines
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fairly judge the “quality” and “relevance” of every page and
return the pages of highest quality, this “search-engine bias”
may not be a significant problem. Unfortunately, the qual-
ity of a page is a very subjective notion and difficult to
measure in practice, so most existing search engines use a
“link-popularity” metric, called PageRank, to measure the
“quality” of a page [21]. Roughly speaking, the PageRank
metric considers a page “important” or of “high quality” if
the page is linked to by many other pages on the Web.1 For
example, Google puts a page at the top of a search result
(out of all the pages that contain the keywords that the user
issued) when the page is linked to by the most other pages
on the Web [5].2 In short, “currently popular” pages are re-
peatedly returned at the top of the search results by major
search engines.

The problem of this popularity-based ranking is that it
is inherently biased against unknown pages. That is, when
search engines constantly return popular pages at the top of
their search results, more Web users will “discover” and look
at those pages, increasing their popularity even further. In
contrast, a currently-unpopular page will not be returned by
search engines (or ranked at the bottom), so few new users
will discover those pages and create a link to it, pushing the
page’s ranking even further down. This “rich-get-richer”
phenomenon can be particularly problematic for the “high-
quality” pages that were recently created. Even if a page is
of high quality, the page may be completely ignored by Web
users simply because its current popularity is very low. This
situation is clearly unfortunate both for Web page authors
and the overall Web users. New and valuable pages are
ignored just because they have not been given a chance to
be noticed by people.

In this paper, we investigate the magnitude of this search-
engine bias through experimental and theoretical studies:

1. Experimental study (Section 3): We first study whether
the “rich-get-richer” phenomenon is happening in the cur-
rent Web by examining real Web data collected over 7 months.
The result strongly indicates that this phenomenon is indeed
happening. From our experimental data, we could observe
that the top 20% of the pages with the highest number of in-
coming links obtained 70% of the new links after 7 months,
while the bottom 60% of the pages obtained virtually no
new incoming links during that period.

1More precise description of the PageRank metric is pro-
vided in Section 2.
2While Google takes more than 100 factors into account in
determining the final ranking of a page [12], the core of their
ranking algorithm is based on the PageRank metric.



2. Theoretical study (Sections 4 and 5): We then study
how much bias search engines can potentially introduce to
the popularity of Web pages by analyzing two theoretical
models on how users discover new Web pages.

1. Random-surfer model (Section 4): We assume that
Web users discover new pages purely by surfing ran-
domly on the Web, just following links. They never use
a search engine that recommends pages based on their
current popularity. This model, thus, roughly captures
the case when users are not influenced by search engine
ranking.

2. Search-dominant model (Section 5): We assume that
users always start exploring the Web by going to a
search engine and looking at the result. Search engines
are the only way for the users to discover new pages.
This model, therefore, represents the case when the
search engines dominate the browsing pattern of users.

By comparing the popularity evolution of Web pages un-
der these two models, we will be able to tell how much bias
search engines introduce to the popularity evolution of Web
pages. Our result shows that search engines can have an im-
mensely worrisome impact on new Web pages. Our model
predicts that it takes 60 times longer for a new page to be-
come popular under the search-dominant model than under
the random-surfer model. That is, if it took one year for a
page to become popular without search engines, it may take
more than 60 years for the same page to become popular
when search engines are heavily used!

In Section 2, we first provide a brief introduction to the
PageRank metric, the primary ranking metric used by Google,
to help the reader understand how search engines measure
the importance of a page. Then in Section 3 we present the
result from our Web experiments and examine how the pop-
ularity of Web pages evolves over time. Finally in Sections 4
and 5, we analyze the two theoretical models to investigate
how much an impact search engines have on the popularity
of Web pages.

2. PAGERANK AND POPULARITY
In this section, we explain the basic intuition of PageRank

and how it is related to a random-surfer model. A reader
familiar with PageRank may skip this section.

Intuitively, PageRank is based on the idea that a link from
page p1 to p2 may indicate that the author of p1 is interested
in page p2. Thus, if a page has many links from other pages,
we may conclude that many people are interested in the
page and that the page should be considered “important”
or “of high quality.” Furthermore, we expect that a link
from an important page (say, the Yahoo home page) carries
more significance than a link from a random Web page (say,
some individual’s home page). Many of the “important” or
“popular” pages go through a more rigorous editing process
than a random page, so it would make sense to value the
link from an important page more highly.

The PageRank metric PR(p), thus, defines the impor-
tance of page p to be the sum of the importance of the
pages that point to p. Thus, if many important pages point
to p, PR(p) will be high. More formally, consider page pi

that is pointed at by pages p1, . . . , pm. Let cj be the number

of links going out of page pj .
3 Then, the PageRank of page

pi is given by

PR(pi) = d + (1 − d) [PR(p1)/c1 + · · · + PR(pm)/cm]

Here, the constant d is called a damping factor whose intu-
ition is given below. Ignoring the damping factor for now,
we can see that PR(pi) is roughly the sum of PR(pj)’s that
point to pi. Under this formulation, note that we construct
one equation per Web page pi with the equal number of un-
known PR(pi) values. Thus, the equations can be solved
for the PR(pi) values. This computation is typically done
through iterative methods, starting with all PR(pi) values
equal to 1. At each step, the new PR(pi) values are com-
puted from the old PR(pi) values from the previous step
using the equation above, until the values converge.4

One intuitive model for PageRank is that we can think
of a user “surfing” the Web, starting from any page, and
randomly selecting from that page a link to follow.5 When
the user is on a page, there is some probability, d, that the
next visited page will be completely random. This damping
factor d makes sense because users will only continue clicking
on links for a finite amount of time before they get distracted
and start exploring something completely unrelated. With
the remaining probability 1 − d, the user will click on one
of the cj links on page pj at random. The PR(pi) values
we computed above give us the probability that our random
surfer is at pi at any given time.

Given the definition, we can interpret the PageRank of a
page as its popularity on the Web. High PageRank implies
that 1) many pages on the Web are “interested” in the page
and that 2) more users are likely to visit the page compared
to low PageRank pages. PageRank has proven to be a very
effective ranking metric for Web pages. Google was the first
search engine that used PageRank as the primary ranking
metric [5], but after the huge success of Google, it has been
incorporated into most major search engines [21].

3. POPULARITY EVOLUTION: EXPERIMEN-
TAL STUDY

We now continue our main discussion on how the popu-
larity of Web pages evolve over time and how search engines
impact the evolution. Our main goal of this section is to see
whether the “rich-get-richer” phenomenon is actually hap-
pening in the current Web by conducting experiments.

In our experiments, we use both 1) the total number of
incoming links to a page and 2) PageRank as the measure of
popularity. To obtain these numbers, we need to know the
link structure of the Web and its change over time. For this
purpose, we capture two snapshots of the Web at different
times, compute the PageRank (and the number of incoming
links) for each page, and measure the difference between
the snapshots. From this comparison, we can tell how much
more popular a page has become between the snapshots.
We explain our experimental setup in more detail in the
next section.

3If a page has no outgoing link, we assume that it has out-
going links to every single Web page.
4This calculation corresponds to computing the principal
eigenvector of the link matrix. For more details on PageR-
ank, see reference [19].
5When the user reaches a page with no outlinks, he jumps
to a random page.



3.1 Experimental Setup
Due to our limited network and storage resources we had

to restrict our experiments to a relatively small subset of
the Web. For our experiments we downloaded pages of 154
Web sites twice over a period of seven months. The list
of the Web sites were collected from the Open Directory
(http://dmoz.org). Our snapshots were complete mirrors of
the 154 Web Sites. We downloaded pages from each site
until we could not reach any more pages from that site or
we downloaded the maximum of 200,000 pages. Only 4 Web
sites had over 200,000 pages. The number of pages that were
downloaded in each snapshot varied from 4.6 million to 5
million.

We analyzed the contents of these downloaded pages to
obtain the outgoing links from each page. Using these out-
going links we obtain a directed graph of the Web for each
snapshot. Each node in the graph corresponds to a unique
Web page and an edge from the ith to the jth node signifies
that there is an outgoing link from the ith to the jth Web
page. While we downloaded fewer than 5 million pages in
each snapshot, note that our Web graph may contain more
than 5 million nodes. That is, if a page p1 (that we have
downloaded) has an outgoing link to p2, even if we have not
downloaded p2, we can still include p2 in our Web graph to-
gether with the link from p1 to p2.

6 We decide to elect this
option. Thus, our Web graph for the 1st snapshot contains
13 million nodes and the Web graph for the 2nd snapshot
contains 15 million nodes. We will refer to our first snapshot
as S1 and the second snapshot as S2.

For each snapshot described above, we compute the PageR-
ank and the total number of incoming links for each page.
In computing PageRank, we use 0.3 as the damping factor
(Section 2) and use 1 as the initial PageRank value of each
page. Since we are interested in how the popularity of a page
changes over time, we then identify the set of pages that are
common in both snapshots and compare their PageRank (or
the total number of incoming links) between the snapshots.
There are around 7.8 million common nodes in both snap-
shots. The results presented below are based on these 7.8
million pages.

3.2 Popularity evolution
We first report our results when we use the number of

incoming links as the measure of popularity. Since we are
interested in knowing whether popular pages get even more
popular, we divide our 7.8 million pages into ten groups
based on their popularity in the first snapshot (0.78 million
pages in each group). For example, we put the bottom 10%
pages with the least incoming links into the first group, and
the the next 10% into the second group, etc. We then exam-
ine how the popularity of each group changes between the
two snapshots. If popular pages get more popular, the pages
in the tenth group (top 10%) will acquire the most links.

More formally, we define the total number of incoming
links to group Gi in snapshot Sj , IL(Gi, Sj), as

IL(Gi, Sj) =
∑

p∈Gi

IL(p, Sj)

where IL(p, Sj) is the number of incoming links to the page

6Of course any links from p2 to other pages will be ignored
in our graph because we have not downloaded p2.
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Figure 1: The graph shows the popularity on the
X axis and the absolute change in the values of the
incoming links on the Y axis.
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Figure 2: The graph shows the popularity on the
X axis and the absolute change in the values of the
incoming links on the Y axis for the top 10% most
popular pages.

p in Sj . Then IL(Gi, S2)−IL(Gi, S1) represents the increase
of the popularity of the group Gi.

In Figure 1, we show the popularity increase of each group.
The horizontal axis represents the ten groups, where 90%–
100% corresponds to the most popular group. The vertical
axis shows IL(G, S2) − IL(G, S1) of each group. From the
graph, we can clearly see that it is only the popular pages
that become more popular over time. While the bottom
60% group obtained virtually no new links, the top 20%
pages acquired 8 million new links (the sum of two right-
most bars), which is more than 70% of all new links. In
Figure 2, we show a more detailed view of the top 10% group.
We further divide the top group into 5 subgroups and plot
their popularity increase. Here again, we can see that the
most popular pages (98%–100%) obtain significantly more
new links than others.

In Figure 3, we show the relative increase in the popularity
of each group. That is, we divide the popularity increase by
current popularity (i.e., [IL(G, S2)− IL(G, S1)]/IL(G, S1))
and plot this number. From this graph, we can see that while
the pages in the 60%–80% group show an high increase rate
compared to the 80%–100% group (mainly because the 60%–
80% group has significantly fewer links in the first snapshot
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Figure 3: The graph shows the popularity on the
X axis and the relative increase in the number of
incoming links on the Y axis.
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Figure 4: The graph shows the popularity on the
X axis and the absolute change in the values of the
PageRank on the Y axis.

than the 80%–100% group), we can still see that the bottom
60% of the pages do not show any increase in popularity.
The unpopular pages are simply being ignored by users.

We obtain similar results when we use PageRank as the
popularity metric. We again group the pages based on their
PageRanks in the first snapshot and define the total PageR-
ank of the group Gi in snapshot Sj as

PR(Gi, Sj) =
∑

p∈Gi

PR(p, Sj).

Figure 4 shows the popularity increase measured in PageR-
ank, PR(G, S2)−PR(G, S1). Again, the horizontal axis rep-
resents groups and vertical axis is popularity increase. From
this graph, we can see that while the pages in the 70%–100%
group increase their popularity, the pages in the 20%–50%
group actually decrease their popularity. That is, unpopular
pages are getting even less popular! This result is mainly be-
cause PageRank is a normalized metric. PageRank measures
the probability that a random Web surfer arrives at a page,
so if some pages become more popular and obtain higher
PageRank, then other pages should have lower PageRanks
so that the overall probability is the same. In contrast, for
the IL(p) metric, popularity does not decrease as long as
the page does not lose its incoming links.

In Figure 5, we show a more detailed view of PageR-
ank increase for the top 20% group. Again, we see that

85 90 95 100
Popularity

0.0002

0.0004

0.0006

0.0008

0.001

Absolute increase in
the PageRank values

Figure 5: The graph shows the popularity on the X
axis and the absolute change in the values of pager-
ank on the Y axis for the top 20% most popular
pages.
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Figure 6: The graph shows the popularity on the
X axis and the relative change in the values of the
PageRank on the Y axis.

more popular pages tend to increase their popularity more.
Finally, Figure 6 shows the relative increase of PageRank,
[PR(G, S2) − PR(G, S1)]/PR(G, S1), which shows similar
trend that we have observed so far.

4. POPULARITY EVOLUTION WITHOUT
SEARCH ENGINES

In the previous section, we presented our experimental
result showing that popular pages are indeed getting more
popular. How much of this trend is due to the search-engine
bias? That is, if search engines do not rank pages based
on the current popularity, will popular pages still get more
popular?

Answering this question is not easy in practice, because
we cannot prevent users from using search engines in order
to observe the popularity evolution when search engines do
not exist. Thus, in the rest of this paper, we try to exam-
ine the impact of search engines theoretically by analyzing
two Web-surfing models: the random-surfer model and the
search-dominant model. The random-surfer model captures
the case when the users are not influenced by search engines.
In this model, Web users discover new pages simply by surf-



ing the Web, just following links. They never use a search
engine to discover pages. In contrast, the search-dominant
model captures the case when users’ browsing patterns are
completely influenced by search engines. Whenever a user
wants to explore the Web, she goes to a search engine, issues
queries, and clicks on the results. She never visits a page if
it is not returned by a search engine.

By analyzing the popularity evolution under these two
models and comparing the results, we will be able to tell
how much bias search engines introduce. We first discuss the
random-surfer model in this section. (The search-dominant
model is discussed in Section 5.) In Section 4.1, we define the
random-surfer model formally. In Section 4.2, we analyze
how the popularity of a page evolves over time under the
model. Then in Section 4.3, we check the validity of our
random-surfer model by comparing the actual popularity
evolution of Google with the result of our random-surfer
model. We note that the material in Sections 4.1 through 4.3
was presented in our earlier paper [7].

4.1 Random-surfer model
For our random-surfer model, we define two notions of

popularity. Our first notion of popularity, (simple) popular-
ity, measures how many Web users like a particular page.

Definition 1 (Popularity) We define the popularity of page
p at time t, P(p, t), as the fraction of Web users who like
the page. 2

Under this definition, if 100,000 users (out of, say, one mil-
lion) currently like page p, its popularity is 0.1.

Our second notion of popularity, visit popularity, measures
how many users visit a page at a particular time.

Definition 2 (Visit popularity) We define the visit pop-
ularity of a page p at time t, V(p, t), as the number of “visits”
or “page views” a page gets within a unit time interval at
time t. 2

Using these two definitions, we now introduce the two
core assumptions of our random-surfer model. The first as-
sumption of our random-surfer model is that the number of
visitors to a page is proportional to its current PageRank
(which can be interpreted as its popularity).

Proposition 1 The number of visits to page p within a unit
time interval at time t is proportional to how many people
like the page. That is,

V(p, t) = r1 P(p, t)

where r1 is a normalization constant. 2

Intuitively, this assumption makes sense, because if a page
is more popular the page is more likely to be visited. More
formally, we know that the current PageRank of a page rep-
resents the probability that a person arrives at the page if
the person follows links on the Web randomly (Section 2).
Therefore, assuming that we use PageRank as the measure
of the popularity of page p, P(p, t), the number of visitors to
the page is proportional to P(p, t) under the random-surfer
model.

Our second assumption is that a visit to a page can be
done by any Web user with equal probability. That is, if
there exist n Web users and if the page p was just visited by
a user, the visit may have been done by any Web user with
1/n probability.

Symbol Meaning
P(p, t) (Simple) popularity of p at t
V(p, t) Visit popularity of p at t
R(p, t) The ranking p at t in a search result
Q(p) Quality of p
n Total number of Web users
r1, r2 Normalization constants for the visit pop-

ularity and the simple popularity

Table 1: The symbols that are used throughout this
paper and their meanings
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Figure 7: Time evolution of page popularity

Proposition 2 Any visit to a page can be done by any Web
user with equal probability. 2

Given these two hypotheses, we can derive how the pop-
ularity of a page evolves over time. In the next section,
we present the result from this analysis. For the reader’s
convenience, we summarize our notation in Table 1. As we
continue our discussion, we will explain some of the symbols
that have not been introduced yet.

4.2 Popularity evolution
Intuitively, if we know the current popularity of the page

p, we can estimate how many new users will visit p based
on Propositions 1 and 2. Then, if we know what fraction
of these new users end up liking p, we can estimate how
much its popularity increases. To capture this fraction, we
define the quality of page p, Q(p), as the probability that
an average user will like the page p when she visits p. For
example, when all users like p when they visit, the quality
Q(p) is close to one.

In [7], we analyzed the popularity evolution for the random-
surfer model and obtained the following result:

Theorem 1 The popularity of page p evolves over time through
the following formula.

P(p, t) =
Q(p)

1 + [ Q(p)
P(p,0)

− 1] e−[ r1

n
Q(p)]t

Here, n is the total number of Web users. P(p, 0) is the
initial popularity of p at time zero when the page was first
created. 2

In Figure 7, we show an example of the time evolution
of page popularity. The horizontal axis corresponds to the
time. The vertical axis corresponds to the popularity P(p, t)
at the given time. We assumed Q(p) = 1, r1/n = 1 and



P(p, 0) = 10−8 for this graph. These parameters represent
the case when the quality of the page is very high (almost all
users who look at the page like it) and the initial popularity
of the page is low (only 1 out of 100 million users like the
page in the beginning).

From the graph, we can see that a page roughly goes
through three stages after its birth: the infant stage, the
expansion stage, and the maturity stage. In the first infant
stage (between t = 0 and t = 13) the page is barely no-
ticed by Web users and has practically zero popularity. At
some point (t = 13), however, the page enters the second
expansion stage (t = 13 and 25), where the popularity of
the page suddenly increases. Clearly, the length of the in-
fant stage depends on the initial popularity. The higher the
initial popularity is, the shorter the infant stage is. In the
third maturity stage, the popularity of the page stabilizes
at a certain value. The maturity stage occurs when most of
the Web users have already visited the page and are aware
of it.

In the next section, we compare the popularity evolution
from our random-surfer model against the actual popularity
evolution of a Web site to see how well they fit.

4.3 Case study: Google’s popularity evolution
In examining the actual popularity evolution of a Web

site, there are two potential methods. First method is to
examine large snapshots of the Web collected over a long
period of time and investigate the link-structure changes.
However, our dataset is too short for this purpose, so we
cannot use this method. The second method is to use the
“site-popularity” data reported by Web-rating companies.
For example, Nielsen-NetRatings [17] tracks how many Web
users visit some of the well-known Web sites in each week
and publishes their finding every week. Since this data is
available as early as 1996, we decided to use this method.

For our comparison, we use Google’s popularity evolu-
tion, because it is one of the few companies that Nielsen-
NetRatings (and other Web-rating companies) started to
track from the beginning of the company. Other popular
Web sites, such as Yahoo and AOL, went online much be-
fore Nielsen-NetRatings began tracking them, so we do not
know their complete popularity evolution. In addition, we
believe that Google is the Web site which is least affected by
popularity-based ranking mechanisms. Google is the first
search engine that used PageRank as their main ranking
function and PageRank had not been implemented by other
search engines for a few years. Therefore, Google’s popu-
larity evolution had not been affected by popularity-based
rankings from other search engines — at least initially un-
til other search engines started to implement variations of
PageRank.

Roughly speaking, Nielsen-NetRatings tracks what frac-
tion of Web users visit each Web site every week, by in-
stalling their monitoring program on a number of comput-
ers and tracking them constantly. Each computer is used
exclusively by a single person, so one machine corresponds
to one Web user. From this tracking, Nielsen reports what
they call the audience reach, which is the fraction of their
Web users who visit a particular site at least once in each
week. For example, the audience reach 0.3 means that 30%
of the users visited the site at least once in the week.

We downloaded Google’s audience-reach data from Nielsen-
NetRatings and plotted graph in Figure 8. The solid line
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Figure 8: Google’s popularity evolution

in the graph is the Nielsen’s experimental data. The graph
starts at January 1998 when Google’s first prototype system
went online. From the graph, we observe that Google had
been relatively unknown until mid-2000, but from that point
on its popularity exploded. This explosion lasted for about
three years until early 2003 when the popularity started to
level off at 0.3.

For comparison, we show the prediction of our random-
surfer model as a dashed line in the graph, with the fol-
lowing parameters: Q(p) = 0.3,P(p, 0) = 5 × 10−6, and
r1

n
= 8. There parameters mean that an average Web user

likes Google with a 30% probability and that one out of
200,000 Web users initially liked Google when it went on-
line. The initial popularity is rather high given that there
were more than 200,000 users in 1998. Perhaps this high
initial popularity may be due to the “Stanford aura effect.”
Since Google was linked from many Stanford pages and be-
cause a large number of Web users were visiting Stanford
sites regularly after a number of successful Internet com-
panies started from Stanford, Google may have attracted
relatively large initial traffic compared to an average Web
site.

In general, we can see that Google’s popularity evolution
follows an S-curve as predicted by our model. Given this
result, we believe that our random-surfer model captures
the popularity evolution of Web pages reasonably well.

5. IMPACT OF SEARCH ENGINES ON POP-
ULARITY EVOLUTION

In the previous section, we studied the popularity evo-
lution of a page when users discover pages purely based
on random surfing. In this section, we analyze how the
popularity evolution changes when the users discover pages
solely based on search results (the search-dominant model).
From this analysis, we can tell how long it takes for a page
to become popular when users’ browsing pattern is domi-
nated by a search engine, and thus we can indirectly mea-
sure the potential bias introduced by search engines. As we
will see later, the result from our analysis is quite alarming.
Our result predicts that it takes 66 times longer under the
search-dominant model than under the random-surfer model
in order for a page to become popular! This result strongly
indicates that we need to devise a new mechanism to “pro-
mote” new pages, so that new pages have higher chance to
be “discovered” by people and get the attention that they
may deserve. We further discuss this issue at the end of this
section.



5.1 Search-dominant model
For our search-dominant model, we assume that the users

use only one search engine. In addition, we assume that
the search engine always returns the same set of pages in
the same order, ranked purely by their popularity. This
assumption may be unrealistic for general search scenarios
because search engines return different results depending on
the query. However, we may consider that our model in-
vestigates the set of pages returned for a particular query,
say, “XML.” For all “XML” queries, the search engine re-
turns the same set of pages (related to XML) and ranks the
pages roughly by their PageRank. Therefore, if we focus our
attention only to this set of pages, their relative popularity
evolution will be similar to what our search-dominant model
predicts.

In formalizing our search-dominant model, we first note
that the main assumption for the random-surfer model is
Proposition 1: the visit popularity of a page is proportional
to its current popularity. This assumption makes sense when
users surf the Web randomly (Section 2), but it may not be
valid when users visit pages purely based on search results.
Then what will be a good model to estimate the visit pop-
ularity?

We can derive the relationship between V(p, t) and P(p, t)
by investigating the following two distributions:

1. If a pages is returned as the ith entry in the search
result, how likely is the user to click on the page? For
example, what fraction of users will visit the second
entry in the search result?

2. Given the PageRank of a page, what will be its ranking
in the search result?

In Section 5.2, we present the empirical data that provides
the answers to the above questions. Based on this empirical
data, we assume the following relationship between V(p, t)
and P(p, t) for the search-dominant model.

Proposition 3 Under the search-dominant model, the num-
ber of visits to page p at time t satisfies the following equa-
tion:

V(p, t) = r2 P(p, t)
9

4

where r2 is a normalization constant. 2

Under this hypothesis, note that users visit popular pages
significantly more often than unpopular pages compared to
the random-surfer model. We illustrate this point through
an example.

Example 1 Consider two pages, p1 and p2, with popularity
values at 0.9 and 0.1, respectively. Under the random-surfer
model, the visit popularity is proportional to the popularity,
so

V(p1, t)

V(p2, t)
=

P(p1, t)

P(p2, t)
=

0.9

0.1
= 9.

That is, p1 is visited 9 times more often than p2. Under
the search-dominant model, however, the visit popularity is

proportional to P(p, t)
9

4 , so

V(p1, t)

V(p2, t)
=

[

P(p1, t)

P(p2, t)

] 9

4

=

[

0.9

0.1

] 9

4

= 140.

That is, p1 is visited 140 times more often than p2. 2
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Figure 9: Probabilistic cumulative distribution of
PageRank values

This result is reasonable. Since the search engine mainly
“promotes” popular pages by returning them at the top,
they are visited more often than under the random-surfer
model.

In the next section, we present empirical evidences that
lead to Proposition 3. A reader who is not interested in the
derivation of Proposition 3 may skip the next section.

5.2 Visit popularity under the search-dominant
model

In the search-dominant model, users surf the Web start-
ing from the search result page and clicking on the returned
URLs. In addition, they are more likely to click on the top-
result pages than the bottom ones. Therefore, the probabil-
ity to visit page p, V(p, t) depends on the rank of p in the
search result. We use R(p, t) to represent the rank of p at
time t. For example, if p is the 2nd-ranked page, R(p, t) is 2.
Then how likely are the users to click on the ith result? That
is, what is the relationship between R(p, t) and V(p, t)?

Wolf et al. [23] proposed a mathematical model for the
users’ click probability of a page and the rank of the page.
Lempel and Moran [16] provide empirical measurements of
the click probability and the rank of a page from the Al-
taVista query log. According to their empirical measure-
ments, it appears that the click probability closely follows
the distribution below:

V(p, t) = c1R(p, t)−
3

2 (1)

Here, c1 is a normalization constant. Based on this empirical
data, we will assume Equation 1 as the relationship between
V(p, t) and R(p, t).

We next examine the relationship between R(p, t) and
P(p, t). To derive this relationship, we note that R(p, t)
is the rank of p when pages are ordered by their PageR-
ank values. That is, R(p, t) is equivalent to the number of
pages whose PageRank values are above P(p, t).7 Therefore,
if we know the overall distribution of PageRank values, we
can obtain the rank of p, R(p, t), from its PageRank value,
P(p, t).

In Figure 9, we show the PageRank distribution obtained
from a snapshot of the Web. The distribution was ob-
tained from a Web snapshot captured by Stanford WebBase
project [13]. The WebBase project periodically downloads
hundreds of millions of pages on the Web, stores the pages
in their local repository and provides them to researchers in

7More precisely, this number plus one



other institutions. The graph in Figure 9 was obtained from
a snapshot containing roughly 100 million pages. The hori-
zontal axis in the graph corresponds to the PageRank value
and the vertical axis shows the ranking of the pages at the
given PageRank value. Both axes in the graph are in the
logarithmic scale. Since the graph is a straight line in the
logarithmic scale with the slope −

3
2
, we see that the ranking

and the PageRank of a page satisfy following equation:

R(p, t) = c2P(p, t)−
3

2 (2)

where c2 is a normalization constant.
While we obtained Figure 9 from a snapshot of the Web-

Base repository, this PageRank distribution seems to be uni-
versally true on the Web. We observed almost identical dis-
tributions for other snapshots in the WebBase repository
and a roughly equivalent distribution from the two snap-
shots described in Section 3. Given these results, we assume
the PageRank distribution follows Equation 2.

Given Equations 1 and 2, we can derive the following re-
lationship between V(p, t) and P(p, t):

V(p, t) = c1R(p, t)−
3

2

= c1

(

c2P(p, t)−
3

2

)−
3

2

= r2 P(p, t)
9

4

5.3 Popularity evolution
In the previous section, we explained the main hypothe-

sis of the search-dominant model, Proposition 3, that shows
how visit popularity is related to the simple popularity. In
addition to this hypothesis, if we assume Proposition 2 (the
visits to a page are done by random users), we can ana-
lyze the popularity evolution for the search-dominant model.
The following theorem is the result of this analysis.

Theorem 2 Under the search-dominant model, the popu-
larity of page p, P(p, t), evolves through the following equa-
tion:

∞
∑

i=1

[P(p, t)](i−
9

4
)
− [P(p, 0)](i−

9

4
)

(

i − 9
4

)

Q(p)i
=

r2

n
t

Here, n is the total number of Web users and P(p, 0) is the
initial popularity of p when the page was first created. 2

We defer the proof of the above theorem to Section 9, and
first study its implication.

In Figure 10, we show the popularity evolution of a page
under the search-dominant model for the same parameters
as in Figure 7.8 Figure 11 shows the same graph, but only
around t = 1650, when the popularity suddenly increases.
In both graphs, the horizontal axis is time and the vertical
axis is P(p, t). The figures show an alarming impact of a
search engine on page popularity.

1. It takes several orders of magnitude more time for a
page to become popular under the search-dominant
model. In Figure 7 (random-surfer model), it took less

8For a fair comparison, we should set r2 such that the to-
tal number of visits to overall pages are the same under
both models. That is,

∑n

i=1 V(pi, t) =
∑n

i=1 r1P(pi, t) =
∑n

i=1 r2P(pi, t)
9

4 . We set r2 = 4.836 × 106r1 so that this
equation holds.
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Figure 10: Popularity evolution under the search-
dominant model
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Figure 11: Closer look at the popularity evolution
around t = 1650

than 25 time units for the page to obtain popularity
one, but in Figure 10 (search-dominant model), it took
1650 time units! It means that if a page becomes pop-
ular within one year when search engines do not exist,
it takes 66 years when search engines dominate users’
browsing pattern!

2. The popularity increase is much more sudden under
the search-dominant model than under the random-
surfer model. In Figure 7, the page spent around 12
time units (from t = 13 until t = 25) in the expansion
stage, but the expansion stage virtually does not exist
in Figure 10; the popularity increases from zero to one
almost immediately at t = 1650.

This result is because most of the user traffic is directed to
popular pages under the search-dominant model. Therefore,
unpopular pages get significantly less traffic than under the
random-surfer model, so it takes much longer time for a page
to build up initial momentum. However, once it obtains a
reasonable ranking in the search result, it garners signifi-
cantly more traffic than under the random-surfer model, so
its popularity increases very quickly as long as it is of high
quality.

Given this result, we believe that search engines can play a
very significant role in the “survival” of a page. As Figure 10
shows, once a page starts to get noticed by Web users, its
popularity can jump almost immediately (as long as the page
is of high quality). Thus, if search engines can identify high
quality pages early on and promote them for a relatively
short period, the pages can achieve its eventual popularity
significantly earlier than under the random-surfer model.



6. RELATED WORK
There have been a number of studies investigating the

evolution of the Web pages [4, 8, 10, 11, 22]. Most of these
studies are experimental and mainly focus on the changes
in the content of the pages. For example, Fetterly et al. [11]
downloaded close to 100 million pages on a weekly basis
for 11 weeks and examined how often the pages changed,
how significant changes occurred and what were the major
factors influencing the degree of change of each page.

Link-popularity metrics were first proposed by Kleinberg [15]
and Page et al. [19]. Google is the first company that
adopted a link-popularity metric as the primary ranking
metric [5]. Major search engines have adopted variations of
PageRank in the last few years after Google became hugely
successful [21]. In this paper, we study the impact of link-
popularity metrics on the popularity evolution of Web pages.
In our related paper [7], we propose a new ranking metric
that discovers “high-quality” pages early on, so that we can
minimize the popularity bias introduced by search engines.

There exists a large body of work that investigates the
properties of the Web link structure [1, 2, 6, 20]. For ex-
ample, [6] shows that the global link structure of the Web
is similar to a “bow-tie.” [1, 6] show that the number of
incoming or outgoing links follow a power-law distribution.
[2, 20] propose potential models on the Web link structure.
Note that these studies investigate the distribution of links
within a snapshot of the Web, while we study the popularity
evolution over time.

There exist a number of studies that measure the user traf-
fic to individual Web sites and/or pages [3, 14, 9]. In most of
the study, the traffic also seems to follow the power-law dis-
tribution. [14] proposes a theoretical model to explain the
overall traffic distribution. Again, our work focuses on the
time evolution of popularity rather than the overall traffic
distribution at a particular point in time.

7. CONCLUSION
In this paper, we studied how the popularity of a Web

page evolves over time and how search engines affect the
popularity evolution. Through an experimental study con-
ducted over 7 months, we first showed that popular pages
are indeed getting more popular while unpopular pages are
getting relatively less popular. We then analyzed two rea-
sonable Web models and tried to estimate the potential im-
pact of search engines on the popularity evolution of Web
pages. The result from our analysis is immensely worrisome.
It shows that when search engines rank pages based on their
popularity, it takes several orders of magnitude more time
for a new page to become popular even if the page is of
high quality. Given that PageRank and its variations are
being used by major search engines, our result strongly in-
dicates that many high-quality pages are ignored by Web
users, simply because no one has discovered them yet. We
believe that our study demonstrates an urgent need to de-
velop a new ranking mechanism (such as the one proposed
in [7]) that can potentially identify high-quality pages early
on and promote them, so that we can alleviate this problem.
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9. DERIVATION OF POPULARITY EVOLU-
TION

In this section, we provide the detailed analysis of the
popularity evolution discussed in Section 5.3. The analy-
sis of the random-surfer model was provided in our earlier
paper [7].

To help our analysis, we first define the user awareness of
page p at time t, A(p, t), as the fraction of the Web users
who is aware of the page at the time. For example, if 100,000
users (say, out of one million) have visited the page p1 so
far and are aware of the page, its user awareness, A(p1, t),
is 0.1. Given the definition, we can see that we can measure
the popularity of a page from its awareness and quality.

P(p, t) = A(p, t) · Q(p) (3)

The above equation holds because the Web users who cur-
rently like the page p are the people who are aware of the
page and like it.

Assuming that there are n Web users in total, we now
derive how the current awareness of a page is related to its
past popularity.

Lemma 1 The user awareness of p at t, A(p, t), can be
computed from its past popularity through the following for-
mula:

A(p, t) = 1 − e−
r2

n

∫

t

0
[P(p,t)]kdt (4)

Here, k is the constant 9
4

which we assumed in Proposition 3.

2

Proof V(p, t) is the rate at which Web users visit the page

p at t. Thus by time t, page p is visited
∫ t

0
V(p, t)dt =

r2

∫ t

0
[P(p, t)]kdt times.

Without loss of generality, we compute the probability
that user u1 is not aware of the page p when the page has
been visited m times. The probability that the ith visitor to
p was not u1 is (1−

1
n
). Therefore, when p has been visited

k times, the probability that u1 would have never visited p
is (1− 1

n
)m. By time t, the page is visited

∫ t

0
V(p, t)dt times.

Then the probability that the user is not aware of p at time
t, 1 −A(p, t), is

1 −A(p, t) =

(

1 −
1

n

)

∫

t

0
V(p,t)dt

=

(

1 −
1

n

)r2

∫

t

0
[P(p,t)]kdt

=

[

(

1 −
1

n

)−n
]−

r2

n

∫

t

0
[P(p,t)]kdt

When the number of web users is large, we can approxi-
mate the above expression by limiting n to infinity: n → ∞,
(

1 −
1
n

)−n
→ e. Thus,

1 −A(p, t) = e−
r2

n

∫

t

0
[P(p,t)]kdt

�

Based on Equations 3 and 4, we now derive the popularity
evolution of a page.

Proof for Theorem 2 From Equations 3 and 4,

P(p, t) =
[

1 − e−
r2

n

∫

t

0
[P(p,t)]kdt

]

Q(p) (5)

If we differentiate both sides of the above equation,

dP

dt
=

(

−
r2

n
P

k
) (

−e−
r2

n

∫

t

0
P

kdt
)

Q (6)

From Equation 5, we know that e−
r2

n

∫

t

0
P

kdt = 1− P

Q
. Thus,

Equation 6 becomes

dP

dt
=

(r2

n
P

k
)

(

1 −
P

Q

)

Q.

After rearrangement, we get

1
(

1 −
P

Q

)

QPk

dP =
r2

n
dt. (7)

Since P

Q
< 1, we can use the expansion

(

1 −
P

Q

)−1

= 1 +
P

Q
+

(

P

Q

)2

+ · · · =
∞

∑

i=0

(

P

Q

)i

.

Then Equation 7 becomes
[

∞
∑

i=0

P
i−k

Qi+1

]

dP =
r2

n
dt.

If we integrate both sides of the above equation,
[

∞
∑

i=1

P
i−k

(i − k) Qi

]

+ C =
r2

n
t

where C is a constant determined by the boundary condi-
tion. When t = 0, the right-hand side of the above equation
is zero, so the left-hand side should also be zero. Therefore,

[

∞
∑

i=1

P(p, t)i−k
− P(p, 0)i−k

(i − k) Q(p)i

]

=
r2

n
t. �


