
Extracting Semistructured Information from the Web

J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo

Department of Computer Science
Stanford University

Stanford, CA 94305-9040

{hector,joachim,cho,aranha,crespo}@cs.stanford.edu

http://www-db.stanford.edu/

Abstract

We describe a configurable tool for extracting semistructured data from a set of HTML pages and
for converting the extracted information into database objects. The input to the extractor is a
declarative specification that states where the data of interest is located on the HTML pages, and
how the data should be “packaged” into objects. We have implemented the Web extractor using
the Python programming language stressing efficiency and ease-of-use. We also describe various
ways of improving the functionality of our current prototype. The prototype is installed and
running in the TSIMMIS testbed as part of a DARPA I3 (Intelligent Integration of Information)
technology demonstration where it is used for extracting weather data form various WWW sites.

1. Introduction
The World Wide Web (WWW) has become a vast information store that is growing at a rapid rate, both in
number of sites and in volume of useful information. However, the contents of the WWW cannot be
queried and manipulated in a general way. In particular, a large percentage of the information is stored as
static HTML pages that can only be viewed through a browser. Some sites do provide search engines, but
their query facilities are often limited, and the results again come as HTML pages.
In this paper, we describe a configurable extraction program for converting a set of hyperlinked HTML
pages (either static or the results of queries) into database objects. The program takes as input a
specification that declaratively states where the data of interest is located on the HTML pages, and how the
data should be “packaged” into objects. The descriptor is based on text patterns that identify the beginning
and end of relevant data; it does not use “artificial intelligence” to understand the contents. This means that
our extractor is efficient and can be used to analyze large volumes of information. However, it also means
that if a source changes the format of its exported HTML pages, the specification for the site must be
updated. Since the specification is a simple text file, it can be modified directly using any editor. However,
in the future we plan to develop a GUI tool that generates the specification based on high-level user input.

The vast majority of information found on the WWW is semistructured in nature (e.g., TSIMMIS [1], LORE

[2], Garlic [3], Information Manifold [4], RUFUS [5]). This means that WWW data does not have a
regular and static structure like data found in a relational database. For example, if we look at classified
advertisements on the Web, the “fields” and their nesting may differ across sites. Even at a single site,
some advertisements may be missing information, or may have extra information. Because of the
semistructured nature of WWW data, we have implemented our extractor facility so that it outputs data in
OEM (Object Exchange Model) [1] which is particularly well suited for representing semistructured data.
OEM is the model used by our TSIMMIS (The Stanford IBM Manager of Multiple Information Sources)
project. Thus, one of our TSIMMIS wrappers [6] can receive a query targeted to a set of HTML pages.
The wrapper uses the extractor to retrieve the relevant data in OEM format, and then executes the query (or

2

whatever query conditions have not been applied) at the wrapper. The client receives an OEM answer
object, unaware that the data was not stored in a database system.
In this paper, we describe our approach to extracting semistructured data from the Web using several
examples. Specifically, we illustrate in detail how the extractor can be configured and how a TSIMMIS

wrapper is used to support queries against the extracted information.

2. A Detailed Example
For our running example, let us assume that we have an application that needs to process weather data,
such as temperature and forecast, for a given city. As one of its information sources, we want to use a
Web site called IntelliCast [7] which reports daily weather data for most major European cities (see Figure
1).

)LJXUH����$�VQDSVKRW�RI�D�VHFWLRQ�RI�WKH�,QWHOOL&DVW�ZHDWKHU�VRXUFH�

Since this site cannot be queried directly from within another application (e.g., “What is the forecast for
Vienna for Jan. 28, 1997?”) we first have to extract the contents of the weather table from the underlying
HTML page1 which is displayed in Figure 2.

2.1 The Extraction Process

Our configurable extraction program parses this HTML page based on the specification file shown in
Figure 3. The specification file consists of a sequence of commands, each defining one extraction step.
Each command is of the form

[variables, source, pattern]

where source specifies the input text to be considered, pattern tells us how to find the text of interest within
the source, and variables are one or more extractor variables that will hold the extracted results. The text
in variables can be used as input for subsequent commands. (If a variable contains an extracted URL, we
can also specify that the URL be followed, and that the linked page be used as further input.) After the last
command is executed, some subset of the variables will hold the data of interest. Later we describe how the
contents of these variables are packaged into an OEM object.

1 The line numbers shown on the left-hand side of this and the next figures are not part of the content but have been added to simplify the following

discussions.

3

)LJXUH����$�VHFWLRQ�RI�WKH�+70/�VRXUFH�ILOH�

Looking at Figure 3, we see that the list of commands is placed within the outermost brackets ‘[‘ and ‘]’,
and each command is also delimited by brackets. The extraction process in this example is performed by
five commands. The initial command (lines 1-4) fetches the contents of the source file whose URL is given
in line 2 into the variable called root. The ‘#’ character in line 3 means that everything (in this case the
contents of the entire file) is to be extracted. After the file has been fetched and its contents are read into
root, the extractor will filter out unwanted data such as the HTML markup commands and extra text with
the remaining four commands.
The second command (lines 5-8) specifies that the result of applying the pattern in line 7 to the source
variable root is to be stored in a new variable called temperature. The pattern can be interpreted as
follows: “discard everything until the first occurrence of the token </TR> (‘*’ means discard) in the second
table definition and save the data that is stored between </TR> and </TABLE> (‘#’ means save).” The two
<TABLE tokens between the ‘*’ are used as navigational help to identify the correct </TR> token since
there is no way of specifying a numbered occurrence of a token (i.e., “discard everything until the third
occurrence of </TR>”). After this step, the variable temperature contains the information that is stored
in lines 22 and higher in the source file in Figure 2 (up to but not including the subsequent </TABLE>

token which indicates the end of the temperature table).

 1 <HTML>
 2 <HEAD>
 3 <TITLE>INTELLICAST: europe weather</TITLE>
 4
 5 <TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=509>
 6 <TR>
 7 <TD colspan=11><I>Click on a city for local forecasts</I>
</TD>
 8 </TR>
 9 <TR>
10 <TD colspan=11><I> temperatures listed in degrees celsius </I>
</TD>
11 </TR>
12 <TR>
13 <TD colspan=11><HR NOSHADE SIZE=6 WIDTH=509></TD>
14 </TR>
15 </TABLE>
16 <TABLE CELLSPACING=0 CELLPADDING=0 WIDTH=514>
17 <TR ALIGN=left>
18 <TH COLSPAN=2>
</TH>
19 <TH COLSPAN=2><I>Tue, Jan 28, 1997</I></TH>
20 <TH COLSPAN=2><I>Wed, Jan 29, 1997</I></TH>
21 </TR>
22 <TR ALIGN=left>
23 <TH><I>country</I></TH>
24 <TH><I>city</I></TH>
25 <TH><I>forecast</I></TH>
26 <TH><I>hi/lo</I></TH>
27 <TH><I>forecast</I></TH>
28 <TH><I>hi/lo</I></TH>
29 </TR>
30 <TR ALIGN=left>
31 <TD>Austria</TD>
32 <TD>Vienna</TD>
33 <TD>snow</TD>
34 <TD>-2/-7</TD>
35 <TD>snow</TD>
36 <TD>-2/-7</TD>
37 </TR>
38 <TR ALIGN=left>
39 <TD>Belgium</TD>
40 <TD>Brussels</TD>
41 <TD>fog</TD>
42 <TD>2/-2</TD>
43 <TD>sleet</TD>
44 <TD>3/-1</TD>
45 </TR>
 .
 .
 </TABLE>
 .
 </HTML>

4

)LJXUH����$�VDPSOH�H[WUDFWRU�VSHFLILFDWLRQ�ILOH�

The third command (lines 9-12) instructs the extractor to split the contents of the temperature variable
into “chunks” of text, using the string <TR ALIGN=left> (lines 22, 30, 38, etc. in Figure 2) as the
“chunk” delimiter. Note, each “chunk” represents one row in the temperature table. The result of each
split is stored in a temporary variable called _citytemp. The underscore at the beginning of the name
_citytemp indicates that this is a temporary variable; its contents will not be included in the resulting
OEM object. The split operator can only be applied if the input is made up of equally structured pieces
with a clearly defined delimiter separating the individual pieces. If one thinks of extractor variables as lists
(up until now each list had only one member) then the result of the split operator can be viewed as a new
list with as many members as there are rows in the temperature table. Thus from now on, when we apply a
pattern to a variable, we really mean applying the pattern to each member of the variable, much like the
apply operator in Lisp.
In command 4 (lines 13-16), the extractor copies the contents of each cell of the temporary array into the
array city_temp starting with the second cell from the beginning. The first integer in the instruction
_citytemp[1:0] indicates the beginning of the copying (since the array index starts at 0, 1 refers to the
second cell), the second integer indicates the last cell to be included (counting from the end of the array).
As a result, we have excluded the first row of the table which contains the individual column headings.
Note, that we could have also filtered out the unwanted row in the second command by specifying an
additional *</TR> condition before the ‘#’ in line 7 of Figure 3. The final command (lines 17-20) extracts
the individual values from each cell in the city_temp array and assigns them into the variables listed in
line 17 (country, c_url, city, etc.).
After the five commands have been executed, the variables hold the data of interest. This data is packaged
into an OEM object, shown in Figure 4, with a structure that follows the extraction process. OEM is a
schema-less model that is particularly well-suited for accommodating the semistructured data commonly
found on the Web. Data represented in OEM constitutes a graph, with a unique root object at the top and
zero or more nested subobjects. Each OEM object (shown as a separate line in Figure 4) contains a label,
a type, and a value. The label describes the meaning of the value that is stored in this component. The
value stored in an OEM object can be atomic (e.g., type string, url), or can be a set of OEM subobjects.
For additional information on OEM, please refer to [8].

 1 [["root",
 2 "get(’http://www.intellicast.com/weather/europe/’)",
 3 "#"
 4],
 5 ["temperatures",
 6 "root",
 7 "*<TABLE*<TABLE*</TR>#</TABLE>*"
 8],
 9 ["_citytemp",
10 "split(temperatures,’<TR ALIGN=left>’)",
11 "#"
12],
13 ["city_temp",
14 "_citytemp[1:0]",
15 "#"
16],
17 ["country,c_url,city,weath_tody,hgh_tody,low_today,weath_tomorrow,hgh_tomorrow,low_tomorrow",
18 "city_temp",
19 "*<TD>#</TD>*HREF=#>#*<TD>#</TD>*<TD>#/#</TD>*<TD>#</TD>*<TD>#/#*"
20]]

5

Notice that the sample object in Figure 4 reflects the structure of our extractor specification file. That is,
the root object of the OEM answer will have a label root because this was the first extracted variable.
This object will have a child object with label temperature because this was the second variable
extracted. In turn, the children are the city_temp objects extracted next, and so on. Notice that variable
_citytemp does not appear in the final result because it is a temporary variable.

2.2 Customizing the Extraction Results

As discussed in the previous section, the outcome of the extraction process is an OEM object that contains
the desired data together with information about the structure and contents of the result. The contents and
structure of the resulting OEM object are defined in a flexible way by the specification file. For instance,
we could have chosen to extract additional data, and to create an OEM result that has a different structure
than the one shown in Figure 4. For example, we can also extract the date values in lines 19 and 20 of
Figure 2. Then, we can group together the temperature and weather data that is associated with each date,
creating an OEM object such as the one depicted in Figure 5. Although not shown in our example, we
could have also specified that different label names be used in the OEM object than those that are used for
the extraction variables.

)LJXUH����$�GLIIHUHQW�2(0�UHVXOW�REMHFW�

root complex {
temperature complex {

city_temp complex {
country string “Austria”
city_url url http://www…
city string “Vienna”
weather_today string “snow”
high_today string “-2”
low_today string “-7”
weather_tom string “snow”
high_tomorrow string “-2”
low_tomorrow string “-7”

}
city_temp complex {

country string “Belgium”
city_url url http://www…
city string “Brussles”
…

}
…

}
}

)LJXUH����7KH�H[WUDFWHG�LQIRUPDWLRQ�LQ�2(0�IRUPDW�

root complex {
temperature complex {

city_temp complex {
country string “Austria”
city_url url http://www…
city string “Vienna”
todays_weather complex {

date string “Tue, Jan 28, 1997”
weather string “snow”
high string “-2”
low string “-7”

}
tomorrows_weather complex {

date string “Wed, Jan 29, 1997”
weather string “snow”
high string “-2”
low string “-7”

}
}
city_temp complex {

country string “Belgium”
city_url url http://www…
city string “Brussles”
…

}
…

}
}

6

It is important to note that there may be several different ways of defining the individual extraction steps
that ultimately result in the same OEM answer object. Thus when defining the specification file one can
proceed in a way that is most intuitive rather than worrying about finding the only “correct” set of steps.
For instance, in our example, we could have avoided the usage of the temporary array _citytemp by
filtering out the unwanted header information in the previous step. However, both approaches ultimately
lead to the same result2 (with slight differences in performance).

2.3 Additional Capabilities

In addition to the basic capabilities described in the previous section, our extractor provides several other
features and constructs that simplify the extraction steps and at the same time enhance the power of the
extractor. For example, the extract_table construct allows the automatic extraction of the contents of
an HTML table (i.e., the data that is stored in each of its rows) as long as the table can be uniquely
identified through some patterns in the text (this would allow us to collapse steps 2 and 3 in our example).
An other useful operation is the case operator that allows the user to specify one or more possible patterns
that are expected to appear in the input. This is especially useful for sources where the structure of the file
is dynamic (in addition to the actual data). If the first pattern does not match, the parser will try to match
each of the alternate patterns until a match has been found. If none of the patterns match, the parser will
ignore the rest of the current input and continue parsing the data from the next input variable (if there is
one).
As a last example of the extraction capabilities of our parser, consider the frequent scenario where
information is stored across several linked HTML pages. For example, one can imagine that the weather
data for each city is stored on its own separate Web page connected via a hyperlink. In this case, one can
simply extract the URL for each city and then obtain the contents of the linked page by using the get

operator as shown in the second line of Figure 3.

2.4 Querying the Extracted Result

In order to allow applications to query the extracted results, we need to provide a queryable interface that
can process queries such as “What is the high and low temperature for Jan. 29 for Vienna, Austria?” and
return the desired result (e.g., “high: -2, low -7”). Rather than developing a new query processor from
scratch, we decided for now to reuse the wrapper generation tools that we have developed in the TSIMMIS

project. With this toolkit, we can generate wrappers that have the ability to support a wide variety of
queries that are not natively supported by the source, in our case the extracted output (for more details on
wrappers see [6, 9]). With this approach, we only need to provide a simple interface that accepts a request
for the entire extracted result (this is equivalent to supporting a query such as “SELECT * FROM …”).
Making use of the wrapper’s internal query engine, we can indirectly support most of the commonly asked
queries (i.e., selections and projections on the extracted output). Currently, applications can interact with
TSIMMIS wrappers using one of two query languages (LOREL3 [2] and MSL4 [10]). Wrappers return
results in OEM format.
In the future, we plan to store extracted OEM results in LORE (Lightweight Object Repository) to make use
of its more sophisticated query processor that has been optimized for answering (LOREL) queries on
semistructured data. In addition, we will get the ability to cache extracted results which will allow us to
reuse already extracted information and provides independence from unreliable sources.

2 We chose the approach described here since it demonstrates the additional capabilities of the extractor but the solution without the temporary variable

is more efficient.
3 LOREL (LORE Language)is a query language that was developed at Stanford as part of the LORE (Lightweight Object Repository) project for

expressing queries against semistructured data represented in OEM.
4 MSL (Mediator Specification Language) is a rule-based language, which was developed as part of the TSIMMIS project for querying OEM objects.

7

3. Evaluation
An important design goal when developing our extractor was to find the right balance between its inherent
capabilities on one hand and ease of use on the other. We think we have achieved both, which becomes
apparent when one compares our approach to other existing tools such as YACC [11] or PERL [13]
regular expressions, for example. Although YACC is a more powerful and more generic parser, a YACC
grammar for extracting Web data from the HTML source in Figure 2 would be much more complex and
difficult to generate (after all, writing a YACC specification is nothing else than writing a program using a
much more complex language). For example, YACC does not support hierarchical splitting, an important
feature of our extractor that demonstrates its close relationship to the hierarchical organization of Web data
and simplifies the specification that a user has to write.
We have also considered using an existing HTML parser which is natively available in Python5. This
HTML parser “understands” SGML syntax and can automatically identify HTML tags in the input stream.
Upon encountering an HTML tag, the parser executes a user-defined function using the tag attributes as
function input. Thus, it is very easy to extract text and HTML tags from an input file. However, the
native parser does not understand the semantic connections that exist between some of the tags (i.e., begin
and end tags, list members, etc.) and cannot easily be used for building an OEM object that preserves the
hierarchical structure of the data. All of the processing and construction has to be handled by externally
invoked user-defined functions. In addition, although this native parser is extremely flexible in terms of
input processing capabilities, it is not as efficient in terms of raw processing speed as our own parser which
is implemented on top of the Python find command6.
A drawback of our approach is that the extraction mechanism depends on outside (human) input for
describing the structure of HTML pages. This becomes an issue when the structure of source files changes
rapidly requiring frequent updates to the specification file. Using a different approach, Ashish et al. [12],
attempt to insert machine learning techniques into their extraction program for automatically making
intelligent guesses about the underlying HTML structure of a Web site. Their approach is aimed at
eliminating most of the user intervention from the extraction process. By contrast, the approach that we are
pursuing here is two-pronged and relies on human intelligence supported by a flexible extractor program:
(1) we are enabling our extractor to exit gracefully from a variety of cases in which the underlying
structure does not match the specification, and (2), we are making the process of writing the extraction
specification itself as easy and efficient as possible. In the future, we intend to develop a GUI for helping
users generate and maintain correct specification files. Our planned interface will resemble a Web browser
in that it can render the marked-up HTML source. More importantly however, it will enable the user to
simply “highlight” the information that is to be extracted directly on the screen without having to write a
single line of specification (which will be generated automatically by the GUI).

4. Conclusion
There has been much interest recently in moving data from the WWW into databases, of one type or
another. This way, data that is embedded in HTML documents can be searched more effectively, and can
be better managed. Our extractor is a flexible and efficient tool that provides a currently missing link
between a lot of interesting data (which resides on the Web) and the applications (which have no direct
access to the Web data).
We are currently using the extractor in our TSIMMIS testbed for accessing weather and intelligence data
from several Web sites. As a result of our initial tests, we implemented the case operator as described in
Sec. 2.3. The need for such an operator arose since we frequently encounter minor irregularities in the
structure of the underlying HTML pages (e.g., weather data that is temporarily missing for a given city,

5 Our extractor is implemented using Python [14] version 1.3.
6 Comparison tests have shown a processing speed of 10K/sec. of text for the native HTML parser vs. 2 MB/sec. for the Python find command.

8

etc.) from which our first prototype did not recover. We are now in the process of extracting other kinds of
semistructured information from the Web and find that the currently implemented set of extraction
operators is powerful enough to handle all of the encountered sources; i.e., our specification files are
straightforward and easy to understand.

References
[1] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J.

Widom, “The TSIMMIS Project: Integration of Heterogeneous Information Sources,” In
Proceedings of Tenth Anniversary Meeting of the Information Processing Society of Japan,
Tokyo, Japan, 7-18, 1994.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener, “The Lorel Query Language for
Semistructured Data,” In Proceedings of ACM SIGMOD International Conference on
Management of Data, Tucson, Arizona, 1997.

[3] M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. F. Cody, R. Fagin, A. Flickner, A. W.
Luniewski, W. Niblack, D. Petkovic, J. Thomas, J. H. Williams, and E. L. Wimmers, “Towards
heterogeneous multimedia information systems: the Garlic approach,” In Proceedings of Fifth
International Workshop on Research Issues in Data Engineering (RIDE): Distributed Object
Management, Los Angeles, California, 123-130, 1995.

[4] T. Kirk, A. Levy, J. Sagiv, and D. Srivastava, “The Information Manifold,” AT&T Bell
Laboratories, Technical Report 1995.

[5] K. Shoens, A. Luniewski, P. Schwarz, J. Stamos, and J. Thomas, “The RUFUS System:
Information Organization for Semi-Structured Data,” In Proceedings of Nineteenth International
Conference on Very Large Databases, Dublin, Ireland, 97-107, 1993.

[6] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman, “A Query Translation Scheme
for Rapid Implementation of Wrappers,” In Proceedings of Fourth International Conference on
Deductive and Object-Oriented Databases, Singapore, 1995.

[7] Weather Services International. “INTELLICAST: Europe Weather.” URL,
http://www.intellicast.com/weather/europe/.

[8] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, “Object Exchange Across Heterogeneous
Information Sources,” In Proceedings of Eleventh International Conference on Data
Engineering, Taipei, Taiwan, 251-260, 1995.

[9] J. Hammer, M. Breunig, H. Garcia-Molina, S. Nestorov, V. Vassalos, and R. Yerneni, “Template-
Based Wrappers in the TSIMMIS System,” In Proceedings of Twenty-Third ACM SIGMOD
International Conference on Management of Data, Tucson, Arizona, 1997.

[10] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina, “Object Fusion in Mediator Systems,”
In Proceedings of Twentieth International Conference on Very Large Databases, Bombay, India,
1996.

[11] S. C. Johnson, “Yacc—yet another compiler compiler,” AT&T Bell Laboratories, Murray Hill,
N.J., Computing Science Technical Report 32, 1975.

[12] N. Ashish and C. Knoblock. “Wrapper Generation for Semi-structured Internet Sources.”
Workshop on Management of Semistructured Data, Ventana Canyon Resort, Tucson, Arizona.

[13] L. Wall and R. L. Schwartz (1992). Programming perl, O'Reilly & Associates, Inc., Sebastopol,
CA.

[14] Corporation for National Research Initiatives. “The Python Language Home Page.” URL,
http://www.python.org/, Reston, Virginia.

