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Many online data sources are updated autonomously and independently. In this paper, we make

the case for estimating the change frequency of data to improve Web crawlers, Web caches and to

help data mining. We first identify various scenarios, where different applications have different

requirements on the accuracy of the estimated frequency. Then we develop several “frequency

estimators” for the identified scenarios, showing analytically and experimentally how precise they
are. In many cases, our proposed estimators predict change frequencies much more accurately

and improve the effectiveness of applications. For example, a Web crawler could achieve 35%
improvement in “freshness” simply by adopting our proposed estimator.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and Statis-

tics—Time series analysis; H.2.4 [Database Management]: Systems—Distributed databases

General Terms: Algorithms, Design, Measurement

Additional Key Words and Phrases: Change frequency estimation, Poisson process

1. INTRODUCTION

With the explosive growth of the Internet, many data sources are available online.
Most of the data sources are autonomous and are updated independently of the
clients that access the sources. For instance, popular news Web sites, such as
CNN and NY Times, update their contents periodically whenever there are new
developments. Also, many online stores update the price and availability of their
products, depending on their inventory and on market conditions.

Since the sources are updated autonomously, the clients usually do not know
exactly when and how often the sources change. However, some of the clients can
significantly benefit by estimating the change frequency of the sources [Brewington
and Cybenko 2000b]. For instance, the following applications can use the estimated
change frequency to improve their effectiveness.

— Improving a Web crawler: A Web crawler is a program that automatically
visits Web pages and builds a local snapshot and/or index of Web pages. In order
to maintain the snapshot or index up-to-date, the crawler periodically revisits the
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pages and updates the pages with fresh images. A typical crawler usually revisits
the entire set of pages periodically and updates them all. However, if the crawler
can estimate how often an individual page changes, it may revisit only the pages
that have changed (with high probability) and improve the “freshness” of the local
snapshot without consuming as much bandwidth. According to [Cho and Garcia-
Molina 2000b], a crawler may improve the “freshness” by orders of magnitude in
certain cases if it can adjust the “revisit frequency” based on the change frequency.

— Improving the update policy of a data warehouse: A data warehouse
maintains a local snapshot, called a materialized view, of underlying data sources,
which are often autonomous. This materialized view is usually updated during off-
peak hours, to minimize the impact on the underlying source data. As the size of
the data grows, however, it becomes more difficult to update the view within the
limited time window. If we can estimate how often an individual data item (e.g.,
a row in a table) changes, we may selectively update only the items likely to have
changed, and thus incorporate more changes within the same amount of time.

— Improving Web caching: A Web cache saves recently accessed Web pages,
so that the next access to the page can be served locally. Caching pages reduces
the number of remote accesses and minimizes access delay and network bandwidth.
Typically, a Web cache uses an LRU (least recently used) page replacement policy,
but it may improve the cache hit ratio by estimating how often a page changes.
For example, if a page was cached a day ago and if the page changes every hour on
average, the system may safely discard that page, because the cached page is most
probably obsolete.

— Data mining: In many cases, the frequency of change itself might be useful
information. For instance, when a person suddenly accesses his bank account very
often, it may signal fraud, and the bank may wish to take an appropriate action.

In this paper, we study how we can effectively estimate how often a data item
(or an element) changes. We assume that we access an element repeatedly through
normal activities, such as periodic crawling of Web pages or the users’ repeated
access to Web pages. From these repeated accesses, we detect changes to the
element, and then we estimate its change frequency.

We have motivated the usefulness of estimating the frequency of change, and how
we accomplish the task. However, there exist important challenges in estimating
the frequency of change, including the following:

(1) Incomplete change history: Often, we do not have complete information
on how often and when an element changed. For instance, a Web crawler can tell if
a page has changed between accesses, but it cannot tell how many times the page
changed.

Example 1 A Web crawler accessed a page on a daily basis for 10 days, and it
detected 6 changes. From this data, the crawler may naively conclude that its
change frequency is 6/10 = 0.6 times a day. But this estimate can be smaller
than the actual change frequency, because the page may have changed more than
once between some accesses. Then, what would be a fair estimate for the change
frequency? How can the crawler account for the missed changes? 2
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Previous work has mainly focused on how to estimate the change frequency given
the complete change history [Taylor and Karlin 1998; Winkler 1972].

(2) Irregular access interval: In certain applications, such as a Web cache, we
cannot control how often and when a data item is accessed. The access is entirely
decided by the user’s request pattern, so the access interval can be arbitrary. When
we have limited change history and when the access pattern is irregular, it becomes
very difficult to estimate the change frequency.

Example 2 In a Web cache, a user accessed a Web page 4 times, at day 1, day 2,
day 7 and day 10. In these accesses, the system detected changes at day 2 and day
7. Then what can the system conclude on its change frequency? Does the page
change every (10 days)/2 = 5 days on average? 2

(3) Difference in available information: Depending on the application, we
may get different levels of information for different data items. For instance, cer-
tain Web sites tell us when a page was last-modified, while many Web sites do
not provide this information. Depending on the scenario, we may need different
“estimators” for the change frequency, to fully exploit the available information.

In this paper, we study how we can estimate the frequency of change when we
have incomplete change history of a data item. (Traditional statistical estimators
assume a complete change history.) To that end, we first identify various issues and
place them into a taxonomy (Section 2). Then for each branch in the taxonomy, we
propose an “estimator” and show analytically how good the proposed estimator is
(Sections 4 through 5). In summary, our paper makes the following contributions:

— We identify the problem of estimating the frequency of change with incomplete
data and we present a formal framework to study the problem.

— We develop several estimators that measure the frequency of change much
more effectively than existing ones. As will be clear from our discussion, more
“natural” estimators have undesirable properties, significantly impacting the effec-
tiveness of the applications using them. By examining these estimators carefully,
we propose much improved estimators. For the scenario of Example 1, for instance,
our estimator will predict that the page changes 0.8 times per day (as opposed to
the 0.6 we guessed earlier), which reduces the “bias” by 33% on average.

— We present analytical results that show how effective our proposed estima-
tors are. Also, we experimentally verify our proposed estimator using real dataset
collected from the Web. The experiments show that our estimator predicts change
frequencies much more accurately than existing ones and significantly improves the
effectiveness of a Web crawler.

1.1 Related work

The problem of estimating change frequency has been long studied in statistics com-
munity [Taylor and Karlin 1998; Winkler 1972; Misra and Sorenson 1975; Canavos
1972]. However, most of the previous work assumed that the complete change his-
tory is known, which is not true in many practical scenarios. In this paper, we study
how to estimate the change frequency based the incomplete change history. As far
as we know, Reference [Matloff 2002] is the only other work that studies change
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frequency estimation with incomplete history. Reference [Matloff 2002] was written
concurrently with our work; our estimator is similar to the one proposed in [Mat-
loff 2002]. The main difference is that our estimator avoids the singularity problem
that will be discussed later. Also, [Matloff 2002] proposes an estimator that uses
the last-modification date when the access is regular. Our estimator proposed in
Section 5 can be used when the access is irregular.

References [Cho and Garcia-Molina 2000b; Coffman, Jr. et al. 1998] study how
a crawler should refresh the local copy of remote Web pages to improve the “fresh-
ness” of the local copies. Assuming that the crawler knows how often Web pages
change, [Cho and Garcia-Molina 2000b] shows that the crawler can improve the
freshness significantly. In this paper, we show how a crawler can estimate the
change frequency of pages, to implement the refresh policy proposed in the ref-
erence. Reference [Edwards et al. 2001] also study how to improve the crawler’s
freshness using nonlinear programming.

Reference [Cho and Garcia-Molina 2000a] proposes an architecture in which a
crawler can adjust page revisit frequencies based on estimated page change fre-
quencies. To implement such an architecture, it is necessary to develop a good
frequency estimation technique, which is what we study in this paper.

Various researchers have experimentally estimated the change frequency of pages
[Wolman et al. 1999; Douglis et al. 1999; Wills and Mikhailov 1999]. Note that
most of the work used a naive estimator, which is significantly worse than the es-
timators that we propose in this paper. We believe their work can substantially
benefit by using our estimators. One notable exceptions are [Brewington and Cy-
benko 2000a; 2000b], which use last-modified dates to estimate the distribution of
change frequencies over a set of pages. However, since their analysis predicts the
distribution of change frequencies, not the change frequency of an individual page,
the method is not appropriate for the scenarios in this paper.

Many researchers studied how to build a scalable and effective Web cache, to
minimize the access delay, the server load and the bandwidth usage [Yu et al. 1999;
Gwertzman and Seltzer 1996; Baentsch et al. 1997]. While some of the work touches
on the consistency issue of cached pages, they focus on developing a new protocol
that may reduce the inconsistency. In contrast, our work proposes a mechanism
that can be used to improve the page replacement policy on existing architecture.

In data warehousing context, a lot of work has been done to efficiently maintain
materialized views [Hammer et al. 1995; Harinarayan et al. 1996; Zhuge et al. 1995].
However, most of the work focused on different issues, such as minimizing the size
of the view while reducing the query response time [Harinarayan et al. 1996].

2. TAXONOMY OF ISSUES

Before we start discussing how to estimate the change frequency of an element, we
first need to clarify what we mean by “change of an element.” What do we mean by
the “element” and what does the “change” mean? To make our discussion concrete,
we assume that an element is a Web page and that a change is any modification
to the page. However, note that the technique that we develop is independent
of this assumption. The element can be defined as a whole Web site or a single
row in a database table, etc. Also a change may be defined as more than, say, a
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30% modification to the page, or as updates to more than 3 columns of the row.
Regardless of the definition, we can apply our technique/analysis, as long as we
have a clear notion of the element and a precise mechanism to detect changes to
the element.

Given a particular definition of an element and a change, we assume that we
repeatedly access an element to estimate how often the element changes. This
access may be performed at a regular interval or at random intervals. Also, we may
acquire different levels of information at each access. Based on how we access the
element and what information is available, we develop the following taxonomy.

(1) How do we trace the history of an element? In this paper, we assume
that we repeatedly access an element, either actively or passively.
— Passive monitoring: We do not have any control over when and how often
we access an element. In a Web cache, for instance, Web pages are accessed only
when users access the page. In this case, the challenge is how to analyze the given
change history to best estimate its change frequency.
— Active monitoring: We actively monitor the changes of an element and can
control the access to the element. For instance, a crawler can decide how often
and when it will visit a particular page. When we can control the access, another
important question is how often we need to access a particular element to best
estimate its change frequency. For instance, if an element changes about once a
day, it might be unnecessary to access the element every minute, while it might be
insufficient to access it every month.
In addition to the access control, different applications may have different access
intervals.
— Regular interval: In certain cases, especially for active monitoring, we may
access the element at a regular interval. Obviously, estimating the frequency of
change will be easier when the access interval is regular. In this case, (number of
detected changes)/(monitoring period) may give us good estimation of the change
frequency.
— Random interval: Especially for passive monitoring, the access intervals
might be irregular. In this case, frequency estimation is more challenging.

(2) What information do we have? Depending on the application, we may
have different levels of information regarding the changes of an element.
— Complete history of changes: We know exactly when and how many times
the element changed. In this case, estimating the change frequency is relatively
straightforward; It is well known that (number of changes)/(monitoring period)
gives “good” estimation of the frequency of change [Taylor and Karlin 1998; Winkler
1972]. In this paper, we do not study this case.
— Last date of change: We know when the element was last modified, but not
the complete change history. For instance, when we monitor a bank account which
records the last transaction date and its current balance, we can tell when the
account was last modified by looking at the transaction date.
— Existence of change: The element that we monitor may not provide any
history information and only give us its current status. In this case, we can compute
the “signature” of the element at each access and compare these signatures between
accesses. By comparing signatures, we can tell whether the element changed or
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not. However, we cannot tell how many times or when the element changed by this
method.

In Section 4, we study how we can estimate the frequency of change, when we only
know whether the element changed or not. Then in Section 5, we study how we
can exploit the “last-modified date” to better estimate the frequency of change.

(3) How do we use estimated frequency? Different applications may use
the frequency of change for different purposes.

— Estimation of frequency: In data mining, for instance, we may want to study
the correlation between how often a person uses his credit card and how likely is a
default. In this case, it might be important to estimate the frequency accurately.
In Sections 4 and 5, we study the problem of estimating the frequency of change.
— Categorization of frequency: We may only want to classify the elements into
several frequency categories. For example, a Web crawler may perform a “small-
scale” crawl every week, crawling only the pages that are updated very often. Also,
the crawler may perform a “complete” crawl every three months to completely
refresh all pages. In this case, the crawler may not be interested in exactly how
often a page changes. It may only want to classify pages into two categories, the
pages to visit every week and the pages to visit every three months.
In the extended version of this paper [Cho and Garcia-Molina 2002], we discuss
how we may use the Bayesian inference method in this scenario. Since our goal is
categorize pages into different frequency classes, say, pages that change every week
(class CW ) and pages that change every month (class CM ), we store the probability
that page p belongs to each frequency class (P{p∈ CW } and P{p∈ CM}) under
the Bayesian method and update these probabilities based on detected changes.
For instance, if we learn that page p has not changed for one month, we increase
P{p∈CM} and decrease P{p∈CW }.

3. PRELIMINARIES

In this section, we will review some of the basic concepts for frequency estima-
tion and a Poisson-process model. A reader familiar with a Poisson process and
estimation theory may skip this section.

In Section 3.1, we first explain how we model the changes of an element. A model
for the change is essential to compare various “estimators.” Then in Section 3.2, we
explain the concept of “quality” of an estimator. Even with the same experimental
data, different estimators give different values for the change frequency. Thus we
need a well-defined metric that measures the effectiveness of different estimators.

3.1 Poisson process: the model for the changes of an element

In this paper, we assume that an element changes by a Poisson process. A Poisson
process is often used to model a sequence of random events that happen indepen-
dently with a fixed rate over time. For instance, occurrences of fatal auto accidents,
arrivals of customers at a service center, etc., are usually modeled by Poisson pro-
cesses.

To describe the Poisson-process model we use X(t) to refer to the number of
occurrences of a change in the interval (0, t]. Then a Poisson process of rate or
frequency λ has the following property:
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For s ≥ 0 and t > 0, the random variable X(s+t)−X(s) has the Poisson

probability distribution Pr{X(s+t)−X(s) = k} = (λt)k

k! e−λt for k =
0, 1, . . .

The parameter λ of a Poisson process is the average frequency or rate that a change
occurs. We can verify this fact by calculating how many events are expected to
occur in a unit interval:

E[X(t + 1) − X(t)] =

∞
∑

k=0

kPr{X(t + 1) − X(t) = k} =

∞
∑

k=1

k
λke−λ

k!
= λ.

Experiments reported in the literature [Brewington and Cybenko 2000a; Cho
and Garcia-Molina 2000a] strongly indicate that the changes to many Web pages
follow a Poisson process. For instance, Reference [Cho and Garcia-Molina 2000a]
traces the change history of half million Web pages and compares the observations
with the prediction of a Poisson model. For example, Figure 1 is one of the graphs
in the paper showing the distribution of successive change intervals of real Web
pages. In the graph, the horizontal axis represents the change intervals of pages,
and the vertical axis shows the fraction of the changes occurred at the given interval.
Under a Poisson model, this distribution should be exponential [Taylor and Karlin
1998; Snyder 1975; Wackerly et al. 1997], which is exactly what we observe from
the graph: The distribution of real Web page changes (dots in the graph) is very
close to the exponential straight line (note that the vertical axis is logarithmic).
Reference [Brewington and Cybenko 2000b] also analyzes real Web data and reports
that a Poisson process is a good approximation to model Web data.

While the results reported in the existing literature strongly indicate that changes
can be modeled by a Poisson process, it is still possible that some pages may not
follow the Poisson model. To address this concern, in Section 6.1 we also examine
our estimators when the elements do not follow the Poisson model.

3.2 Quality of estimator

The goal of this paper is to estimate the frequency of change λ, from the repeated
accesses to an element. To estimate the frequency, we need to summarize the
observed change history, or samples, as a single number that corresponds to the
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frequency of change. In Example 1, for instance, we summarized the six changes in
ten visits as the change frequency of 6/10 = 0.6/day. We call this summarization
procedure the estimator of the change frequency. Clearly, there exist multiple
ways to summarize the same observed data, which can lead to different change
frequencies. In this subsection, we will study how we can compare the effectiveness
of various estimators.

An estimator is often expressed as a function of the observed variables. For
instance, let X be the number of changes that we detected and T be the total access
period. Then, we may use λ̂ = X/T as the estimator of the change frequency λ as
we did in Example 1. (We use the notation “hat” to show that we want to measure
the parameter underneath it.) Here, note that X is a random variable, which is

measured by sampling (or repeated accesses). Therefore, the estimator λ̂ is also
a random variable that follows a certain probability distribution. In Figure 2, we
show two possible distributions of λ̂. As we will see, the distribution of λ̂ determines
how effective the estimator λ̂ is.

(1) Bias: Let us assume that the element changes at the average frequency λ,
which is shown at the bottom center of Figure 2. Intuitively we would like the
distribution of λ̂ to be centered around the value λ. Mathematically, λ̂ is said to
be unbiased, when the expected value of λ̂, E[λ̂], is equal to λ.

(2) Efficiency: In Figure 2, it is clear that λ̂ may take a value other than λ,

even if E[λ̂] = λ. For any estimator, the estimated value might be different from
the real value λ, due to some statistical variation. Clearly, we want to keep the
variation as small as possible. We say that the estimator λ̂1 is more efficient than
the estimator λ̂2, if the distribution of λ̂1 has smaller variance than that of λ̂2. In
Figure 2, for instance, the estimator with the distribution (a) is more efficient than
the estimator of (b).

(3) Consistency: Intuitively, we expect that the value of λ̂ approaches λ, as we

increase the sample size. This convergence of λ̂ to λ can be expressed as follows:

Let λ̂n be the estimator with sample size n. Then λ̂n is said to be a consistent
estimator of λ if

limn→∞Pr{|λ̂n − λ| ≤ ε} = 1 for any positive ε.

4. ESTIMATION OF FREQUENCY: EXISTENCE OF CHANGE

How can we estimate how often an element changes, when we only know whether
the element changed or not between our accesses? Intuitively, we may use X/T (X:
the number of detected changes, T : monitoring period) as the estimated frequency
of change, as we did in Example 1. This estimator has been used in the existing
literature that estimates the change frequency of Web pages [Douglis et al. 1999;
Wills and Mikhailov 1999; Wolman et al. 1999].

In Section 4.1 we first study how effective this naive estimator X/T is, by ana-
lyzing its bias, consistency and efficiency. Then in Section 4.2, we will propose a
new estimator, which is less intuitive than X/T , but is much more effective.
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4.1 Intuitive frequency estimator: X/T

To help our discussion, we first define some notation. We assume that we access
the element n times at a regular interval I. (Estimating the change frequency for
irregular accesses is discussed in Section 4.3.) Assuming that T is the total time
elapsed during our n accesses, T = nI = n/f , where f(= 1/I) is the frequency at
which we access the element. We use X to refer to the total number of changes that
we detected during n accesses. We also assume that the changes of the element
follow a Poisson process with rate λ. Then, we can define the frequency ratio
r = λ/f , the ratio of the change frequency to the access frequency. When r is
larger than 1 (λ > f), the element changes more often than we access it, and when
r is smaller (λ < f), we access the element more often than it changes.

Note that our goal is to estimate λ, given X and T (= n/f). However, we may
estimate the frequency ratio r(= λ/f) first and estimate λ indirectly from r (by
multiplying r by f). In the rest of this subsection, we will assume that our estimator
is the frequency ratio r̂, where

r̂ =
λ̂

f
=

1

f

(

X

T

)

=
X

n .

Note that we need to measure X repeated accesses to the element and use the X
to estimate r.

(1) Is the estimator r̂ biased? As we argued in Example 1, the estimated r̂
will be smaller than the actual r, because the detected number of changes, X, will
be smaller than the actual number of changes. Furthermore, this bias will grow
larger as the element changes more often than we access it (i.e, as r = λ/f grows
larger), because we miss more changes when the element changes more often. The
following theorem formally proves this intuition.

Theorem 4.1 The expected value of the estimator r̂ is

E[r̂] = 1 − e−r. 2

Proof. To compute E[r̂], we first compute the probability that the element does
not change between accesses. We use Xi to indicate whether the element changed
or not in the ith access. More precisely,

Xi =

{

1 if the element changed in ith access,

0 otherwise.

Then, X is the sum of all Xi’s, X =
∑n

i=1 Xi.

Assuming q is the probability that the element does not change during time interval
I (= 1/f), q = Pr{X(t + I) − X(t) = 0} = e−λI = e−r. By definition, Xi is equal
to zero when the element does not change between the (i− 1)th and the ith access.
Because the change of the element is a Poisson process, the changes at different
accesses are independent, and each Xi takes the value 1 with probability (1 − q)
independently from other Xi’s. Since X is equal to m when m Xi’s are equal to 1
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Pr{X = m} =
(

n
m

)

(1 − q)mqn−m. Therefore,

E[r̂] =

n
∑

m=0

m

n
Pr
{

r̂ =
m

n

}

=

n
∑

m=0

m

n
Pr{X = m} = 1 − e−r.

Note that when r̂ is unbiased, E[r̂] is always equal to r. Clearly, 1 − e−r is not r,
and the estimator r̂ is biased. In Figure 3 we visualize the bias of r̂ by plotting
E[r̂]/r over r. The horizontal axis is logarithmic to show the values more clearly
when r is small and large. (In the rest of this paper, we use a logarithmic scale,
whenever convenient.) If r̂ is unbiased (E[r̂] = r), the graph E[r̂]/r would be equal
to 1 for any r (the dotted line), but because the estimated r̂ is smaller than the
actual r, E[r̂]/r is always less than 1. From the graph, it is clear that the estimator
r̂ is not very biased (E[r̂]/r ≈ 1) when r(= λ/f) is small (i.e., when the element
changes less often than we access it), but the bias is significant (E[r̂]/r � 1), when
r is large. Intuitively, this happens because we miss more changes as we access the
element less often (when r is large). From the graph, we can see that the bias is
smaller than 10% (E[r̂]/r > 0.9) when the frequency ratio r is smaller than 0.21.
That is, we should access the element 1/0.21 ≈ 5 times as frequently as it changes,
in order to get less than 10% bias.

(2) Is the estimator r̂ consistent? The estimator r̂ = X/n is not consistent,
because the bias of r̂ does not decrease even if we increase the sample size n; the dif-
ference between r and E[r̂] (E[r̂]/r = (1− e−r)/r) remains the same independently
of the size of n.
This result coincides with our intuition; r̂ is biased because we miss some changes.
Even if we access the element for a longer period, we still miss a certain fraction of
changes, if we access the element at the same frequency.

(3) How efficient is the estimator? To evaluate the efficiency of r̂, we com-
pute its standard deviation.

Corollary 4.2 The standard deviation of the estimator r̂ = X/n is

σ[r̂] =
√

e−r(1 − e−r)/n. 2

Proof. The proof is similar to that of Theorem 4.1. For the complete proof, see
Appendix A.

Remember that the standard deviation tells us how clustered the distribution of r̂
is around E[r̂]; Even if E[r̂] ≈ r, the estimator r̂ may take a value other than r,
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because our sampling process (i.e., access to the element) inherently induces some
statistical variation.

From the statistics theory, we know that r̂ takes a value in the interval (E[r̂] −
2σ,E[r̂]+2σ) with 95% probability, assuming r̂ follows the normal distribution [Wack-
erly et al. 1997]. In most applications, we want to make this confidence interval
(whose length is proportional to σ) small compared to the actual frequency ratio
r. Therefore, we want to reduce σ/r, the ratio of the confidence interval to the
frequency ratio, as much as we can. In Figure 4, we show how this ratio changes
over the sample size n by plotting its graph. Clearly, the statistical variation σ/r
decreases as n increases; While we cannot decrease the bias of r̂ by increasing the
sample size, we can reduce the statistical variation with more samples.

Also note that when r is small, we need a larger sample size n to get the same
variation σ/r. For example, to make σ/r = 0.5, n should be 1 when r = 1, while n
should be 9 when r = 0.3. We explain what this implies by the following example.

Example 3 A crawler wants to estimate the change frequency of a Web page by
visiting the page 10 times, and it needs to decide on the access frequency.

Intuitively, the crawler should not visit the page too slowly, because the crawler
misses many changes and the estimated change frequency is biased. But at the
same time, the crawler should not visit the page too often, because the statistical
variation σ/r can be large and the estimated change frequency may be inaccurate.

For example, let us assume that the actual change frequency of the page is, say, once
every week (λ = 1/week), and the crawler accesses the page once every two weeks
(f = 1/2 weeks). Then the bias of the estimated change frequency is 57%! (When
r = 2, E[r̂]/r ≈ 0.43.) On the other hand, if the crawler revisits the page every day
(f = 1/day), then the statistical variation is large and the 95% confidence interval
is 1.5 times as large as the actual frequency! (When r = 1/7, the 95% confidence
interval, 2σ/r is 1.5.) In the next subsection, we will try to identify the best revisit
frequency for this example based on an improved estimator. 2

4.2 Improved estimator: − log

(

X̄ + 0.5

n + 0.5

)

While the estimator X/T is known to be quite effective when we have a complete
change history of an element [Taylor and Karlin 1998; Winkler 1972], our analysis
showed that it is less than desirable when we have an incomplete change history. The
estimator is highly biased and we cannot reduce the bias by increasing the sample
size. In this subsection, we propose another estimator − log((X̄ + 0.5)/(n + 0.5)),
which has more desirable properties.

Essentially, our new estimator is based on the result of Theorem 4.1. According to
the theorem, the expected value of the estimator X

n is E
[

X
n

]

= 1−e−r. Intuitively,

we may consider this formula as X
n = 1 − e−r, which can be rearranged to r =

− log
(

n−X
n

)

. From this formula we suspect that if we use − log
(

n−X
n

)

as the
estimator for r, we may get an unbiased estimate.1

1We can also derive the estimator − log(n − X/n) through the maximum likelihood estimator

method. Here, we provide more intuitive derivation.
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− log( X̄+0.5
n+0.5

) is less than 10% biased

While intuitively attractive, the estimator − log
(

n−X
n

)

has a mathematical sin-
gularity. When the element changes in all our accesses (i.e., X = n), the estimator
produces infinity, because − log(0/n) = ∞. This singularity makes the estimator
technically unappealing, because the expected value of the new estimator is now
infinity. (In other words, the estimator is biased to infinity!) We can avoid this
singularity by adding a small constant, 0.5, to X̄ and n2:

r̂ = − log

(

n − X + 0.5

n + 0.5

)

In the remainder of this subsection, we will formally study the properties of this
new estimator. Assuming X̄ is n−X (the number of accesses that the element did
not change) we can simplify the estimator as follows.

r̂ = − log

(

X̄ + 0.5

n + 0.5

)

(1) Is the estimator biased? To see whether the estimator is biased, we
compute the expected value of r̂ as we did for Theorem 4.1.

Corollary 4.3 The expected value of the new estimator r̂ = − log
(

X̄+0.5
n+0.5

)

is

E[r̂] = −
n
∑

i=0

log

(

i + 0.5

n + 0.5

)(

n

i

)

(1 − e−r)n−i(e−r)i. (1)

Proof. Proof is straightforward. See Appendix A.

To show the bias of our new estimator we plot the graph of E[r̂]/r over r in Figure 5.
For comparison, we also show the graph of the previous estimator X/n in the figure.

From the graph, we can see that our new estimator − log( X̄+0.5
n+0.5 ) is much better

than X/n. While X/n is heavily biased for most r, our new estimator is practically
unbiased for r < 1 for any n ≥ 3.
Also, note that the bias of the new estimator decreases as we increase the sample
size n. For instance, when n = 3, r̂ shows bias if r > 1, but when n = 50, it
is not heavily biased until r > 3. This property has a significant implication in

2In Appendix B, we show why we selected the value 0.5 to avoid the singularity.
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practice. If we use the estimator X/n, we can reduce the bias only by adjusting
the access frequency f (or by adjusting r), which might not be possible for certain
applications. However, if we use our new estimator, we can reduce the bias to the
desirable level, simply by increasing the number of accesses to the element. For this
reason, we believe our new estimator can be useful for a wider range of applications
than X/n is.
Given that the estimator becomes less biased as the sample size grows, we may
ask how large the sample size should be in order to get an unbiased result. For
instance, what sample size gives us less than 10% bias? Mathematically, this can
be formulated as follows: Find the region of n and r, where

∣

∣

∣

∣

E[r̂] − r

r

∣

∣

∣

∣

≤ 0.1

is satisfied. From the formula of Equation 1, we can numerically compute the region
of n and r where the above condition is met, and we show the result in Figure 6. In
the figure, the gray area is where the bias is less than 10%. Note that the unbiased
region grows larger as we increase the sample size n. When n = 20, r̂ is unbiased
when r < 3.5, but when n = 80, r̂ is unbiased when r < 5. We illustrate how we
can use these graphs for the selection of the revisit frequency shortly.

(2) How efficient is the estimator? As we discussed in Section 4.1, r̂ may
take a value other than r even if E[r̂] ≈ r, and the value of σ/r tells us how large
this statistical variation can be.
We computed σ/r of − log( X̄+0.5

n+0.5 ), similarly to Theorem 4.1, and we show the
results in Figure 7. As expected, the statistical variation σ/r gets smaller as the
sample size n increases. For instance, σ/r is 0.4 for r = 1.5 when n = 10, but σ/r
is 0.2 for the same r value when n = 40.
Also note that the statistical variation σ/r takes its minimum at r ≈ 1.5 within
the unbiased region of r. (When r is large, the estimator is heavily biased and is
not very useful.) For instance, when n = 20, the estimator is practically unbiased
when r < 2 (the bias is less than 0.1% in this region) and within this range, σ/r
is minimum when r ≈ 1.35. For other values of n, we can similarly see that σ/r
takes its minimum when r ≈ 1.5. We can use this result to decide on the revisit
frequency for an element.

Example 4 A crawler wants to estimate the change frequency of a Web page by
visiting it 10 times. While the crawler does not know exactly how often that
particular page changes, say many pages within the same domain are known to
change roughly once every week. Based on this information, the crawler wants to
decide how often to access that page.
Because the statistical variation (thus the confidence interval) is smallest when
r ≈ 1.5 and because the current guess for the change frequency is once every week,
the optimal revisit frequency for that page is 7 days × 1.5 ≈ once every 10 days.
Under these parameters, the estimated change frequency is less than 0.3% biased
and the estimated frequency may be different from the actual frequency by up to
35% with 75% probability. We believe that this confidence interval will be more
than adequate for most crawling and caching applications.
In certain cases, however, the crawler may learn that its initial guess for the change
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Fig. 8. An example of irregular accesses

frequency may be quite different from the actual change frequency, and the crawler
may want to adjust the access frequency in the subsequent visits. We briefly discuss
on this adaptive policy later. 2

(3) Is the estimator consistent? The following theorem shows that our new
estimator is indeed consistent:

Theorem 4.4 For the estimator r̂ = − log( X̄+0.5
n+0.5 ), lim

n→∞

E[r̂] = r and lim
n→∞

V [r̂] =

0 2

Proof. From Corollary 4.3,

E[r̂] = −
n
∑

i=0

log

(

i + 0.5

n + 0.5

)(

n

i

)

(1 − e−r)n−i(e−r)i.

That is, E[r̂] is the expected value of − log
(

i+0.5
n+0.5

)

, where i follows the binomial

distribution B(n, e−r). When n goes to infinity B(n, e−r) becomes the normal dis-
tribution N(ne−r,

√

ne−r(1 − e−r)) by the DeMoivre-Laplace limit theorem [Wack-
erly et al. 1997].
Then, assuming x denotes (i + 0.5)/(n + 0.5), x follows the normal distribution

N

(

e−r + 1/2n

1 + 1/2n
,

√

e−r(1 − e−r)

n(1 + 1/2n)2

)

.

When n goes to infinity, e−r+1/2n
1+1/2n → e−r and

√

e−r(1−e−r)
n(1+1/2n)2 → 0, so the distribution

of x becomes an impulse function δ(x − e−r), whose non-zero value is only at
e−r [Courant and David 1989]. Therefore, when n → ∞, E[r̂] is the same as the
expectation of − log x when x follows δ(x − e−r) distribution. That is,

lim
n→∞

E[r̂] = −
∫ 1

0

(log x) δ(x − e−r)dx = − log e−r = r.

Similarly, we can prove that lim
n→∞

E[r̂2] = r2 and

lim
n→∞

V [r̂] = lim
n→∞

(

E[r̂2] − {E[r̂]}2
)

= r2 − r2 = 0.
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4.3 Irregular access interval

When we access an element at irregular intervals, estimation becomes more com-
plicated. For example, assume that we detected a change when we accessed an
element after 1 hour and we detected another change when we accessed the ele-
ment after 10 hours. While all changes are considered equal when we access the
element at regular intervals, in this case the first change “carries more information”
than the second, because if the element changes more than once every hour, we will
definitely detect a change when we accessed the element after 10 hours.

In order to obtain an estimator for irregular case, we can use a maximum likelihood
estimator [Wackerly et al. 1997]. Informally, the maximum likelihood estimator
computes which λ value has the highest probability of producing the observed set
of events, and use this value as the estimated λ value. Using this method for the
irregular access case, we obtain the following equation3:

m
∑

i=1

tci

eλ tci − 1
=

n−m
∑

j=1

tuj (2)

Here, tci represents the interval in which we detected the ith change, and tuj rep-
resents the jth interval in which we did not detect a change. Also, m represents
the total number of changes we detected from n accesses. Note that all variables
in Equation 2 (except λ) can be measured by an experiment. Therefore, we can
compute the estimated frequency by solving this equation for λ. Also note that all
access intervals, tci’s and tuj ’s, take part in the equation. It is because depending
on the access interval, the detected change/non-change carries a different level of
information. We illustrate how we can use the above estimator by the following
example.

Example 5 We accessed an element 4 times in 20 hours (Figure 8), in which we
detected 2 changes (the first and the third accesses). Therefore, the two changed
intervals are tc1 = 6h, tc2 = 3h and the two unchanged intervals are tu1 = 4h,
tu2 = 7h. Then by solving Equation 2 using these numbers, we can estimate
that λ = 2.67 changes/20 hours. Note that the estimated λ is slightly larger than
2 changes/20 hours, which is what we actually observed. This result is because the
estimator takes “missed” changes into account. 2

In this paper we do not formally analyze the bias and the efficiency of the above
estimator, because the analysis requires additional assumption on how we access
the element. However, we believe the proposed estimator is “good” for two reasons:

(1) The estimated λ has the highest probability to generate the observed changes.

(2) When the access to the element follows a Poisson process, the estimator is
consistent. That is, as we access the element more, the estimated λ converges to
the actual λ.

Note, however, that when we detect changes in all accesses (m = n), the esti-
mator suffers from a singularity of λ = ∞. In particular, the estimator reduces to
− log(X̄/n) (with the singularity problem) when the access interval is regular. We

3For derivation, see Appendix C
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Fig. 9. Problems with the estimator based on last modified date

have not found a disciplined way to avoid this singularity, and we believe that the
estimator in Section 4.2, − log(X̄ + 0.5/n + 0.5), is a better choice when the access
interval is regular.

5. ESTIMATION OF FREQUENCY: LAST DATE OF CHANGE

When the last-modification date of an element is available, how can we use it to
estimate change frequency? For example, assume that a page changed 10 hours
before our first access and 20 hours before our second access. Then what will be
a fair guess for its change frequency? Would it be once every 15 hours? In this
section, we propose a new estimator that uses the last-modified date for frequency
estimation. Since our final estimator is not easy to understand directly, we derive
the estimator step by step in this section. We note that our derivation in this sec-
tion is different from standard estimation techniques (e.g., the maximum likelihood
estimator) because standard methods lead to complex and not-easy-to-implement
estimators for practical applications. As we will see, the estimator proposed in this
section is algorithmically simple and has negligible bias.

We first derive the initial version of our estimator based on the following well-
known lemma [Wackerly et al. 1997]:

Lemma 5.1 Let T be the time to the previous event in a Poisson process with rate
λ. Then the expected value of T is E[T ] = 1/λ. 2

That is, in a Poisson process the expected time to the last change is 1/λ. Therefore,
if we define Ti as the time from the last change at the ith access, E[Ti] is equal to
1/λ. When we accessed the element n times, the sum of all Ti’s, T =

∑n
i=1 Ti, is

E[T ] =
∑n

i=1 E[Ti] = n/λ. From this equation, we suspect that if we use n/T as
our estimator, we may get an unbiased estimator E[n/T ] = λ. Note that T in this
equation is a number that needs to be measured by repeated accesses.

While intuitively appealing, this estimator has a serious problem because the
element may not change between some accesses. In Figure 9, for example, the
element is accessed 5 times but it changed only twice. If we apply the above
estimator naively to this example, n will be 5 and T will be T1+ · · ·+T5. Therefore,
this naive estimator practically considers that the element changed 5 times with
the last modified dates of T1, T2, . . . , T5. This estimation clearly does not match
with the actual changes of the element, and thus leads to bias.4 Intuitively, we may
get a better result if we divide the actual number of changes, 2, by the sum of T2

and T5, the final last-modified dates for the two changes. Based on this intuition,
we modify the naive estimator to the one shown in Figure 10.

4We can verify the bias by computing E[n/T ] when λ � f .
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Init() /* initialize variables */
N = 0; /* total number of accesses */
X = 0; /* number of detected changes */
T = 0; /* sum of the times from changes */

Update(Ti, Ii) /* update variables */
N = N + 1;
/* Has the element changed? */
If (Ti < Ii) then

/* The element has changed. */
X = X + 1;
T = T + Ti;

else
/* The element has not changed */
T = T + Ii;

Estimate() /* return the estimated lambda */
return X/T;

Fig. 10. The estimator using last-modified dates

The new estimator consists of three functions, Init(), Update() and Estimate(),
and it maintains three global variables N, X, and T. Informally, N represents the num-
ber of accesses to the element, X represents the number of detected changes, and T

represents the sum of the time to the previous change at each access. (We do not
use the variable N in the current version of the estimator, but we will need it later.)
Initially, the Init() function is called to set all variables to zero. Then whenever
the element is accessed, the Update() function is called, which increases N by one
and updates X and T values based on the detected change. The argument Ti to
Update() is the time to the previous change in the ith access and the argument
Ii is the interval between the accesses. If the element has changed between the
(i − 1)th access and the ith access, Ti will be smaller than the access interval Ii.
Note that the Update() function increases X by one, only when the element has
changed (i.e., when Ti < Ii). Also note that the function increases T by Ii, not
by Ti, when the element has not changed. By updating X and T in this way, this
algorithm implements the estimator that we intend. Also note that the estimator
of Figure 10 predicts the change frequency λ directly. In contrast, the estimator of
Section 4 predicts the change frequency by estimating the frequency ratio r.

To study the bias of this estimator, we show the the graph of E[r̂]/r of this
estimator in Figure 11. We computed this graph analytically using the formula
derived in Appendix D. To compute the graph, we assumed that we access the
element at a regular interval I (= 1/f) and we estimate the frequency ratio r =
λ/f (the ratio of the change frequency to the access frequency). Remember that
E[r̂]/r = 1 when the estimator is not biased, which is shown as a dotted line. The
solid line shows the actual graphs of the estimator for various n.

We can see that the estimator has significant bias when n is small, while the
bias is relatively small when n is large (i.e, after many accesses to the element).
For instance, when n = 10, the graph of the new estimator is fairly close to 1,
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Estimate() function

Estimate()
X’ = (X-1) - X/(N*log(1-X/N));
return X’/T;

Fig. 13. New Estimate() function that re-

duces the bias
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Fig. 14. Statistical variation of the new esti-

mator over r

but when n = 2, the estimated frequency ratio is twice as big as the actual ratio
(E[r̂]/r ≈ 2) when r > 5. In fact, in Appendix D, we prove that the E[r̂]/r = n

n−1
when r is large, and E[r̂]/r = n log( n

n−1 ) when r is close to zero. For example,

when n = 2, E[r̂]/r converges to 2
2−1 = 2 as r increases, and E[r̂]/r converges to

2 log( 2
2−1 ) = log 4 as r approaches 0. Based on this analysis, we propose to modify

the Estimate() function to the one shown in Figure 13 so that we can remove the
bias from the estimator.5 For detailed analysis of the bias and the derivation of the
new estimator, see Appendix D.

To show that our new estimator is practically unbiased, we plot the graph of
E[r̂]/r for the new Estimate() function in Figure 12. The axes in the graph are
the same as in Figure 11. Clearly, the estimator is practically unbiased. Even when
n = 2, E[r̂]/r is very close to 1 (the bias is less than 2% for any r value.). We show
the graph only for n = 2, because the graphs for other n values essentially overlap
with that of n = 2.

While we derived the new Estimate() based on the analysis of regular access
cases, note that the new Estimate() function does not require that access be
regular. In fact, through multiple simulations, we have experimentally verified
that the new function still gives negligible bias even when access is irregular. We
illustrate the usage of this new estimator through the following example.

5The function (X−1)−X/(N log(1−X/N)) is not defined when X = 0, but we use limX→0[(X−
1) − X/(N log(1 − X/N))] = 0 as its value when X = 0. In short, we assume X’ = 0 when X = 0.
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Example 6 A crawler wants to estimate the change frequency of a page by visit-
ing it 5 times. However, the crawler cannot access the page more than once every
month, because the site administrator does not allow more frequent crawls. Fortu-
nately, the site provides the last modified date whenever the crawler accesses the
page.

To show the improvement, let us assume that the page changes, say, once every
week and we crawl the page once every month. Then, without the last modified
date, the bias is 43% on average (E[r̂]/r ≈ 0.57), while we can practically eliminate
the bias when we use the last modified date. (The bias is less than 0.1%.) 2

Finally in Figure 14, we show the statistical variation σ/r of the new estimator,
for various n. The horizontal axis in the graph is the frequency ratio r, and the
vertical axis is the statistical variation σ/r. We can see that as n increases, the
variation (or the standard deviation) gets smaller.

6. EXPERIMENTS

In this section we study the effectiveness of our estimator through various exper-
iments. First in Section 6.1, we experimentally show that our estimator performs
well even if the elements do not follow the Poisson model. In Section 6.2 we study
the improvement when we use the last-modification date for frequency estimation.
In Section 6.3 we compare the naive estimator (Section 4.1) with ours (Section 4.2)
using real Web data. This experiment shows that our estimator is much more
effective than the naive one: In 84% of the cases, our estimator predicted more “ac-
curate” change frequency than the naive one. Finally in Section 6.4, we quantify
the improvement a crawler may achieve when it uses our improved estimator. As
we will see, our experiments suggest that a crawler may improve its effectiveness
by 35% by using our estimator.

6.1 Non-Poisson model

Although the experiments in the existing literature suggest that a Poisson change
distribution (that we have used so far) is a good approximate model for Web page
changes [Brewington and Cybenko 2000a; 2000b; Cho and Garcia-Molina 2000a], it
is interesting to study what happens to our estimators if the distribution were “not
quite Poisson.” One simple way to model deviations from Poisson is to change the
exponential inter-arrival distribution to a more general gamma distribution.

A gamma distribution has two parameters, α and λ. When α = 1, the gamma
distribution becomes an exponential distribution with change rate λ, and we have
a Poisson change process. If α < 1, small change intervals become more frequent.
As α grows beyond 1, small intervals become rare, and the distributions starts
approximating a normal one. Thus, we can capture a wide range of behaviors by
varying the α around its initial value of 1.

Through simulations, we experimentally measured the biases of the naive esti-
mator (Section 4.1) and our proposed estimator (Section 4.2), and we show the
result in Figure 15. This simulation was done on synthetic data, where the change
intervals followed gamma distributions of various α values. For the simulation, we
let the element change once every second on average, and we accessed the element
every second. In the figure, the horizontal axis shows the α values that we used for
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the simulation.
From the graph, we can see that the bias of our new estimator is consistently

smaller than that of the naive estimator. When α = 1, or when the element follows
a Poisson process, the bias of our estimator is 0, while the bias of the naive estimator
is around 37%. Even when α is not equal to 1, our estimator still has smaller bias
than that of the naive one. This graph suggests that our estimator is significantly
better than the naive one, even if the change distribution is not quite a Poisson
distribution.

6.2 Improvement from last modification date

We now study the improvement we can get when we use the last modification date
of a page to estimate change frequency. To study the improvement, we ran multiple
simulations assuming that page changes follow a Poisson process. From the simula-
tion results we compared the bias and efficiency of the estimator in Section 4.2 (the
estimator that uses page change information only) and in Section 5 (the estimator
that uses the last-modification date). We refer to the estimator in Section 4.2 as r̂e

and the estimator in Section 5 as r̂t.
Figure 16 shows a set of results from these experiments. For these experiments,

we assumed that we estimate the change frequency of a page after 50 visits (n = 50).
The horizontal axis is logarithmic and represents the frequency ratio r used for a
particular experiment. The solid lines show E[r̂]/r, the average frequency ratio
estimate over the actual frequency ratio. An unbiased estimator will be a straight
line at 1. From the graph it is clear that r̂e is not very useful when r is large (r > 5,
when the access frequency is smaller than the change frequency). In contrast, the
estimator r̂t shows no bias for the whole range of r values.

The dotted lines in the graph show their efficiency, σ/r (the standard deviation
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of an estimator over the actual frequency ratio). For most r values (r < 5), we can
see that the estimator r̂t shows similar or better efficiency (smaller σ/r value) than
the estimator r̂e. While r̂e seems more efficient for large r values (r > 7), note that
r̂e is not very useful in this range because of its large bias. The result simply means
that r̂e consistently gives wrong frequency estimates in this range.

To compare the efficiency of r̂e and r̂t when r is large and when r̂e is unbiased
(thus useful), in another set of experiments we increased the n values (number of
accesses) for large r, so that the bias of r̂e is reduced to less than 5%. (We remind
the reader that the bias of r̂e decreases when n increases.) For example, when
r = 5, both r̂t and r̂e have less than 5% bias if n = 160 and when r = 6 we get
less than 5% bias if n = 500. After making the bias of both estimators less than
5% by adjusting n, we then compared the efficiency of the estimators. Figure 17
shows the result from these experiments. The axes in the graph are the same as
Figure 16. The bias of r̂e and r̂t are both close to a straight line because we used
larger n for larger r. From the graph, it is clear that r̂t is more efficient than r̂e

when their bias is comparable, i.e., σt/r is consistently smaller than σe/r for all r
values.

6.3 Effectiveness of estimators for real Web data

In this subsection, we compare the effectiveness of our proposed estimator (Sec-
tion 4.2) and that of the naive estimator (Section 4.1), using real change data
collected from the Web. Before the comparison, we first describe how the data was
obtained.

The change data was collected for a period of 4 months (from February 17, 1999
until June 24, 1999) from 720,000 Web pages on 270 sites. During this period, the
pages were downloaded every day, so that we could detect daily changes to the
pages. From this daily download, we could tell whether a page had changed or not
on a particular day and obtain an accurate daily change history of 720,000 pages.

We note that the 270 sites were not randomly selected. Instead, we selected
the most “popular” 270 Web sites, based on the snapshot of Web pages storied in
our repository (25 million HTML pages at that time). To measure popularity, we
counted how many pages in our repository had links to each site, and we used the
count as the popularity measure of a site. From each site selected this way, we then
downloaded about 3,000 pages. Therefore, the results in our experiment are biased
toward more “popular” sites, but we believe that most people, thus most crawlers,
are interested in these “popular” pages rather than a random Web page.

To compare the naive and our estimators, it is important to know the actual
change frequencies of the pages: We need to tell which estimator predicts a closer
frequency to the actual change frequency. However, it is not possible to obtain
the actual change frequency of a page from our daily change data, because we do
not know exactly how many times each page changed during a day. We may have
missed some changes if more than one change occurred per a day.

To address this problem, we used the following method: First, we identified the
pages for which we monitored “most” of the changes. That is, we selected only the
pages that changed less than once in three days, because we would probably have
missed many changes if a page changed more often. Also, we filtered out the pages
that changed less than 3 times during our monitoring period, because we may have
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Fig. 18. Comparison of the naive estimator and ours

Table I. Total number of changes detected for each policy

policy Changes detected Percentage over uniform

Uniform 2, 147, 589 100%

Naive 4, 145, 581 193%
Ours 4, 892, 116 228%

not monitored the page long enough if it changed less often.6 Then for the selected
pages, we assumed that we did not miss any of their changes and we could estimate
their actual frequencies by X/T (X: number of changes detected, T : monitoring
period). We refer to this value as a projected change frequency.

On these selected pages we then ran a simulated crawler, which visited each page
only once every week. Therefore, the crawler had less change information than our
original dataset. Based on this limited information, the crawler estimated change
frequency and we compared the estimates to the projected change frequency.

We emphasize that the simulated crawler did not actually crawl pages. Instead,
the simulated crawler was run on the change data collected, so the projected change
frequency and the crawler’s estimated change frequency are based on the same
dataset (The crawler simply had less information than our dataset). Therefore, we
believe that the better estimator would predicts a frequency close to the projected
change frequency.

From this comparison, we could observe the following:

— For 83% of pages, our proposed estimator predicted a value closer to the
projected change frequency than the naive one. The naive estimator was “better”
for less than 17% pages.

— Assuming that the projected change frequency is the actual change frequency,
our estimator showed about 15% bias on average over all pages, while the naive
estimator showed more than 35% bias. Clearly, this result shows that our proposed
estimator is significantly more effective than the naive one. We can decrease the
bias by half by using our estimator.

In Figure 18, we show more detailed results from this experiment. The horizontal
axis in the graph shows the ratio of the estimated change frequency to the projected
change frequency (rλ) and the vertical axis shows the faction of pages that had the
given ratio. Therefore, for the pages with rλ < 1, the estimate was smaller than
the projected frequency, and for the pages with rλ > 1, the estimate was larger
than the projected frequency. Assuming that the projected frequency is the actual

6We also used less/more stringent range for the selection, and the results were similar.
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frequency, a better estimator is the one centered around rλ = 1. We can clearly
see that our proposed estimator is better than the naive one. The distribution of
the naive estimator is skewed to the left quite significantly, while the distribution
of our estimator is more centered around 1.

6.4 Application to a Web crawler

Our results show that our proposed estimator gives more accurate change frequency
than the naive one. Now we study how much improvement an application may
achieve by using our estimator. To illustrate this point, we consider a Web crawler
as an example.

Typically, a Web crawler revisits all pages at the same frequency, regardless of
how often they change. Instead, a crawler may revisit pages at different frequencies
depending on their estimated change frequency. In this subsection, we compare the
following revisit policies:

— Uniform policy: A crawler revisits all pages at the frequency of once every
week. The crawler does not try to estimate how often a page changes.

— Naive policy: In the first 5 visits, a crawler visits each page at the frequency
of once every week. After the 5 visits, the crawler estimates the change frequencies
of the pages using the naive estimator (Section 4.1). Based on these estimates, the
crawler adjusts revisit frequencies for the remaining visits.
Note that there exist multiple ways to adjust revisit frequency. For example, the
crawler may visit a page proportionally more often based on its change frequency
(f ∝ λ, where f is revisit frequency, and λ is change frequency). In our experiment,
we set the revisit frequency f to be proportional to the square root of its change
frequency λ (f ∝

√
λ), because this policy gave the best result.7

— Our policy: The crawler uses our proposed estimator (Section 4.2) to esti-
mate change frequency. Other than this fact, the crawler uses the same policy as
the naive policy.

In our experiments, we ran a simulated crawler on the change history data described
in Section 6.3 for each policy. For fair comparison, we made sure that the average
revisit frequency over all pages was equal to once a week under any policy. That
is, the crawler used the same total download/revisit resources, but allocated these
resources differently under different policies. Since we have the change history
of 720,000 pages for about 3 months,8 and since the simulated crawler visited
pages once every week on average, the crawler visited pages 720, 000 × 13 weeks ≈
9, 260, 000 times in total.

Out of these 9.2M visits, we counted how many times the crawler detected
changes, and we report the results in Table I. The second column shows the total
number of changes detected under each policy, and the third column shows the
percentage improvement over the uniform policy. Note that the best policy is the
one that detected the highest number of changes from the same number of visits.

7We can analyze our quality metric (described shortly) using the techniques in [Cho and Garcia-

Molina 2000b]. This analysis shows that f ∝
√

λ policy gives close to optimal result.
8While we monitored pages for 4 months, some pages were deleted during our experiment, so each

page was monitored for 3 months on average
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That is, we use the total number of changes detected as our quality metric. From
these results, we can observe the following:

— A crawler can significantly improve its effectiveness by adjusting revisit fre-
quency. For example, the crawler detected 2 times more changes when it used the
naive policy than the uniform policy.

— Our proposed estimator makes the crawler much more effective than the naive
one. Compared to the naive policy, our policy detected 35% more changes!

7. CONCLUSION

In this paper, we studied the problem of estimating the change frequency of an
element, when we do not have the complete change history. In this case, we cannot
simply divide the detected number of changes by time because this estimation leads
to significant bias due to undetected changes. By careful analysis we designed
estimators with low bias and with high consistency.

We also studied how effective our estimators are using real Web change data.
Our experimental results strongly indicate that our estimator predicts the change
frequency much more accurately than existing ones and improves the effectiveness
of a crawler significantly. We also verified that our estimator works well even if the
change model is not “quite Poisson.”

7.1 Future Work

We briefly discuss some venues for future work. In this paper we assumed that we
pick an estimator before we start an experiment and use the method throughout the
experiment. But in certain cases, we may need to dynamically adjust our estimation
method, depending on what we detect during the experiment.

(1) Adaptive scheme: Even if we initially decide on a certain access frequency,
we may want to adjust it during the experiment, when the estimated change fre-
quency is very different from our initial guess. Then exactly when and how much
should we adjust the access frequency?

Example 7 Initially, we guessed that a page changes once every week and started
visiting the page every 10 days. In the first 4 accesses, however, we detected 4
changes, which signals that the page may change much more frequently than we
initially guessed.
In this scenario, should we increase the access frequency immediately or should we
wait a bit longer until we collect more evidence? When we access the page less
often than it changes, we need a large sample size to get an unbiased result, so it
might be good to adjust the access frequency immediately. On the other hand, it
is also possible that the page indeed changes once every week on average, but it
changed in the first 4 accesses by statistical variation. Then when should we adjust
the change frequency to get the optimal result?

(2) Changing λ: In this paper we also assumed that the change frequency λ
of an element is stationary (i.e., does not change). This assumption may not be
valid in certain cases, and we may need to test whether λ changes or not. There
has been work on how we can verify whether a Poisson process is stationary and, if
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not, how we can estimate the change rate of λ [Yacout and Chang 1996; Canavos
1972]. However, this work assumes that the complete change history of an element
is available, so careful study is necessary to apply it to incomplete change history.

Finally, in this paper we mainly focused on the problem of change-frequency es-
timation, assuming that other algorithms [Cho and Garcia-Molina 2000b; Edwards
et al. 2001; Coffman, Jr. et al. 1998] can use the change frequency estimate to
determine the optimal revisit frequency. Instead, we may directly determine the
optimal revisit frequency based on all change history that we have observed so far.
Since this approach removes one level of indirection (i.e., estimating the change
frequency), we may be able to get a better revisit frequency.9

A. PROOFS FOR COROLLARIES

Proof of Corollary 4.2.

σ[r̂] =
√

E[r̂2] − E[r̂]2

=

√

√

√

√

(

n
∑

m=0

(m

n

)2

Pr
{

r̂ =
m

n

}

)

−
(

n
∑

m=0

(m

n

)

Pr
{

r̂ =
m

n

}

)2

(where Pr
{

r̂ =
m

n

}

=

(

n

m

)

(1 − e−r)me−r(n−m) from Theorem 4.1)

=

√

[

(1 − e−r)

{

e−r

n
+ (1 − e−r)

}]

− [1 − e−r]
2

=
√

e−r(1 − e−r)/n

Proof of Corollary 4.3. From the definition of X̄,

Pr{X̄ = i} = Pr{X = n − i} =

(

n

i

)

(1 − e−r)n−i(e−r)i.

Then,

E

[

− log

(

X̄ + 0.5

n + 0.5

)]

= −
n
∑

i=0

log

(

i + 0.5

n + 0.5

)(

n

i

)

(1 − e−r)n−i(e−r)i.

B. AVOIDING THE SINGULARITY OF THE ESTIMATOR −LOG(X̄/N)

The estimator − log(X̄/n) has a singularity when X̄ = 0, because log(0/n) = ∞.
In this section, we study how we can avoid the singularity.

Note that the singularity arises because we pass the number 0 as the parameter
of a logarithmic function. Intuitively, we can avoid the singularity if we increase
X̄ slightly when X̄ = 0, so that the logarithmic function does not get 0 even when
X̄ = 0. In general, we may avoid the singularity if we add small numbers a and b
(> 0) to the numerator and the denominator of the estimator, so that the estimator

is − log( X̄+a
n+b ). Note that when X̄ = 0, − log( X̄+a

n+b ) = − log( a
n+b ) 6= ∞ if a > 0.

9We thank an anonymous reviewer for suggesting this idea.
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Then what value should we use for a and b? To answer this question, we use the
fact that we want the expected value, E[r̂], to be as close to r as possible. As we
showed in Section 4.2, the expected value is

E[r̂] = E

[

− log

(

X̄ + a

n + b

)]

= −
n
∑

i=0

log

(

i + a

n + b

)(

n

i

)

(1 − e−r)n−i(e−r)i,

which can be approximated to

E[r̂] ≈
[

− log

(

n + a

n + b

)]

+

[

n log

(

n + a

n − 1 + b

)]

r + . . .

by Taylor expansion [Thomas, Jr. 1969]. Note that we can make the above equation
to E[r̂] ≈ r + . . . , by setting the constant term − log( n+a

n+b ) = 0, and the factor of

the r term, n log( n+a
n−1+b ) = 1.

From the equation − log(n+a
n+b ) = 0, we get a = b, and from n log( n+a

n−1+a ) = 1, we
get the graph of Figure 19. In the graph, the horizontal axis shows the value of n and
the vertical axis shows the value of a which satisfies the equation log( n+a

n−1+a ) = 1
for a given n. We can see that the value of a converges to 0.5 as n increases and
that a is close to 0.5 even when n is small. Therefore, we can conclude that we can
minimize the bias by setting a = b = 0.5.

Alternatively, we may derive an estimator that avoids the singularity through
Bayesian estimation [Bernardo and Smith 1994; Lee 1997].10 In Bayesian esti-
mation, we model the estimated λ of a page as a random variable and assign a
probability distribution Pr(λ) to the estimated λ. Before we start visiting a page
we assume a certain prior distribution for Pr(λ), say a uniform distribution, based
on our knowledge on the λ value. After a visit, we then update the distribution
based on the observed change/non-change (i.e., the outcome of random variable X)
using the following formula:

Pr(λ|X) =
Pr(X|λ)Pr(λ)

Pr(X)

10We thank an anonymous reviewer for suggesting this alternative method.
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This new distribution Pr(λ|X) is called a posteriori distribution. Note that we can
compute Pr(X|λ) and Pr(X) on the right side of formula using the Poisson model,
and Pr(λ) is the assumed prior distribution. In the successive visits, the computed
posteriori distribution then works as the prior distribution for the visit and we
compute a new posteriori distribution based on observed changes.

Notice that after every visit we have a probability distribution (not a single
number) associated with the λ of the page. To obtain a single number for λ from
the distribution, we can either use the maximum a posteriori estimator or the
posterior expectation [Bernardo and Smith 1994; Lee 1997].

To simplify our derivation, we assume that our goal is to estimate θ = 1− e−λ/f

(thus indirectly λ) and use the beta function

Pr(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1 − θ)β−1

as the prior distribution of θ.11 Under these assumptions, the posterior expectation
estimator of θ becomes X+α

n+α+β . If we assume a uniform prior for θ (i.e., α = β = 1),

then the estimator becomes X+1
n+2 . Given that θ = 1 − e−r = X+1

n+2 ,

r̂ = − log

(

n − X + 1

n + 2

)

.

This estimator also avoids the singularity of

r̂ = − log

(

n − X

n

)

.

C. ESTIMATOR FOR AN IRREGULAR ACCESS CASE

For our analysis, we assume that tci represents the interval in which we detected the
ithe change, and tuj represents the jth interval in which we did not detect a change.
Also m represents the total number of changes we detected out of n accesses.

Under a Poisson process, the probability that the element changes after interval
tci is 1 − e−λtci . Also,the probability that the element does not change after the
interval tuj is e−λtuj . Therefore, the probability that the observed events happen is
m
∏

i=1

(1− e−λtci) ·
n−m
∏

j=1

e−λtuj . We need to find the λ that maximizes this probability.

Since logarithm is a monotonic function, we can take the logarithm of the above
formula and find the λ that minimizes the logarithm. That is, λ should minimize

log





m
∏

i=1

(1 − e−λtci)

n−m
∏

j=1

e−λtuj



 =

m
∑

i=1

log(1 − e−λtci) −
n−m
∑

j=1

λtuj .

To minimize this,

d

dλ





m
∑

i=1

log(1 − e−λtci) −
n−m
∑

j=1

λtuj



 =
m
∑

i=1

tci

eλ tci − 1
−

n−m
∑

j=1

tuj = 0.

11The beta function is commonly used when the observed event is binary.
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That is, λ should satisfy

m
∑

i=1

tci

eλ tci − 1
=

n−m
∑

j=1

tuj .

D. BIAS OF THE ESTIMATOR IN FIGURE 10

In this section, we analyze the bias of the estimator described in Figure 10. For
our analysis, we assume that we access the element at a regular interval I(= 1/f),

and we compute the bias of the frequency ratio r̂ = λ̂/f , where λ̂ is the estimator
described in Figure 10.

The following lemma provides the formula to compute the bias of the estimator.

Lemma D.1 The bias of the estimator r̂ = λ̂/f (λ̂ is the estimator of Figure 10)
is:

E[r̂]

r
=

n
∑

k=0

[

Pr{X = k}
r

∫ nI

(n−k)I

(

k

ft

)

Pr{T = t | X = k} dt

]

(3)

Here, Pr{X = k} is the probability that the variable X takes a value k, and Pr{T =
t | X = k} is the probability that the variable T takes a value t when X = k. We
assume we access the element n times. 2

Proof. The proof is straightforward. We can compute the expected value by
summing all possible X

T values multiplied by their probabilities. In the proof of
Theorem D.2, we will show how we can compute Pr{X = k} and Pr{T = t | X =
k}.

We now compute the closed form of the bias of Figure 10 in the following theorem.
This theorem will give us an important idea on how we can eliminate the bias.

Theorem D.2 When r → ∞, the only remaining term in the summation of Equa-
tion 3 is when k = n, and E[r̂]/r becomes n

n−1 .

lim
r→∞

E[r̂]

r
= lim

r→∞

Pr{X = n}
r

∫ nI

0

(

n

ft

)

Pr{T = t | X = n} dt =
n

n − 1

Also, when r → 0, the only remaining term in the equation is when k = 1, and
E[r̂]/r becomes n log( n

n−1 ).

lim
r→0

E[r̂]

r
= lim

r→0

Pr{X = 1}
r

∫ nI

(n−1)I

(

1

ft

)

Pr{T = t | X = 1} dt = n log

(

n

n − 1

)

2

Proof. We first show how we can compute Pr{X = k} and Pr{T = t | X = k}.
The variable X is equal to k when the element changed in k accesses. Since the
element may change at each access with probability 1− e−r (r = λ/f , r: frequency
ratio),

Pr{X = k} =

(

n

k

)

(1 − e−r)k(e−r)n−k
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Now we compute the probability that T = t (0 ≤ t ≤ kI) when X = k. If we use
ti to represent the time added to T at the ith access, T can be expressed as

T =
n
∑

i=1

ti

Since the element did not change in (n−k) accesses when X = k, we added (n−k)
times of I to T . Then

T = (n − k)I +

k
∑

i=1

tci

where ci is the ith access in which the element changed. Without losing generality,
we can assume that the element changed only in the first k accesses. Then

T = (n − k)I +
k
∑

i=1

ti (4)

In those changed accesses, the probability that ti = t is

Pr{ti = t} =







λe−λt

1 − e−r
if 0 ≤ t ≤ I

0 otherwise
(5)

because the element follows a Poisson process. From Equations 4 and 5, we can
compute the Pr{T = t | X = k} by repeatedly applying the methods of transfor-
mations [Wackerly et al. 1997]. For example, when k = 3

Pr{T = (n − k)I + t | X = k} =



















































(λt)2λe−λt

2(1 − e−r)3
for 0 ≤ t < I

[6λt − 2(λt)2 − 3] λe−λt

2(1 − e−r)3
for I ≤ t < 2I

(λt − 3)2λe−λt

2(1 − e−r)3
for 2I ≤ t < 3I

0 otherwise

Now we study the limit values of Equation 3. When r → ∞,

lim
r→∞

Pr{X = k}
r

=

{

0 if k = 0, 1, . . . , n − 1

1 if k = n

Also when r → 0,

lim
r→0

Pr{X = k}
r

=

{

n if k = 1

0 if k = 2, . . . , n
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Then

lim
r→∞

E[r̂]

r
= lim

r→∞

n
∑

k=0

(

Pr{X = k}
r

∫ nI

(n−k)I

(

k

ft

)

Pr{T = t | X = k} dt

)

= lim
r→∞

∫ nI

0

(

n

ft

)

Pr{T = t | X = n} dt

= lim
r→∞

∫ nI

0

(

n

ft

)

(λt)n−1λe−λt

(n − 1)!(1 − e−r)n
dt

=
n

n − 1

lim
r→0

E[r̂]

r
= lim

r→0

n
∑

k=0

(

Pr{X = k}
r

∫ nI

(n−k)I

(

k

ft

)

Pr{T = t | X = k} dt

)

= n lim
r→0

∫ nI

(n−1)I

(

1

ft

)

Pr{T = t | X = 1} dt

= n lim
r→0

∫ nI

(n−1)I

(

1

ft

)

e(n−1)Iλe−λt

1 − e−r
dt

= n log

(

n

n − 1

)

Informally, we may explain the meaning of the theorem as follows:

When r is very large (i.e., when the element changes much more often
than we access it), we are very likely to detect n changes (X = n with
high probability), and the bias of the estimator is n

n−1 . When r is very
small (i.e., when we access the element much more often than it changes),
we are very likely to detect either 0 or 1 change (X will be either 0 or 1
with high probability), and the bias is n log(n/(n − 1)) when X = 1.

We can use this result to design an estimator that eliminates the bias. Assume
that X = n after n accesses. Then it strongly indicates that r is very large, in
which case the bias is n

n−1 . To avoid this bias, we may divide the original estimator

X/T by n
n−1 and use X

T / n
n−1 = n−1

T as our new estimator in this case. That is,
when X = n we may want to use (X − 1)/T as our estimator, instead of X/T .
Also, assume that X = 1 after n accesses. Then it strongly indicates that r is very
small, in which case the bias is n log(n/(n − 1)). To avoid this bias, we may use
(

X
T

)

/ n log(n/(n−1)) = 1
T

X
n log(n/(n−X)) as our estimator when X = 1. In general,

if we use the estimator X ′/T where

X ′ = (X − 1) − X

n log(1 − X/n)

we can avoid the bias both when X = n and X = 1: X ′ = n− 1 when X = n, and
X ′ = 1

n log(n/(n−1)) when X = 1.12

12The function (X −1)−X/(n log(1−X/n)) is not defined when X = 0 and X = n. However, we

can use limX→0[(X − 1)−X/(n log(1−X/n))] = 0 and limX→n[(X − 1)−X/(n log(1−X/n))] =
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