
Finding replicated web collections

Junghoo Cho, Narayanan Shivakumar, Hector Garcia-Molina
Department of Computer Science

Stanford, CA 94305.
{cho, shiva, hector}@db.stanford.edu

Abstract

Many web documents (such as JAVA FAQs) are being replicated on the Internet. Often
entire document collections (such as hyperlinked Linux manuals) are being replicated many
times. In this paper, we make the case for identifying replicated documents and collections
to improve web crawlers, archivers, and ranking functions used in search engines. The paper
describes how to efficiently identify replicated documents and hyperlinked document collections.
The challenge is to identify these replicas from an input data set of several tens of millions of
web pages and several hundreds of gigabytes of textual data. We also present two real-life case
studies where we used replication information to improve a crawler and a search engine. We
report these results for a data set of 25 million web pages (about 150 gigabytes of HTML data)
crawled from the web.

1 Introduction

Many documents are replicated across the web. For instance, a document containing JAVA Fre-
quently Asked Questions (FAQs) is replicated at many sites. Furthermore, entire “collections” of
hyperlinked pages are often copied across servers for fast local access, higher availability, or “mar-
keting” of a site. We illustrate such replicated collections in Figure 1. The figure shows four actual
sites that make available two collections: the JAVA 1.0.2 API documentation, and the Linux Docu-
mentation Project (LDP) manual. Other examples of commonly replicated collections include JAVA
tutorials, Windows manuals, C++ manuals and even entire web sites such as ESPN’s Sportszone
and Yahoo. Even the Call For Papers for a database conference such as SIGMOD’00 is replicated
in three web sites (www.seas.smu.edu/sigmod2000/, www.dcc.unicamp.br/∼mario/sigmod2000,
http://www.dbai.tuwien.ac.at/pods) across three continents. In this case, the collection is small
and has a few hyperlinked documents such as the CFP, pages describing the conference committee,
organizing committee and sponsorship information. In general, replicated collections constitute
several hundreds or thousands of pages and are mirrored1 in several tens or hundreds of web sites.
For instance, the LDP collection is a 25 megabyte collection of several thousand pages, mirrored in
around 180 servers across the world.

1The term mirror is often used to denote a replicated collection or web site; often a mirror site has the connotation

of being a “secondary copy.”

1

Our goal in this paper is to study how to automatically identify mirrored “collections” on the
web, so that a variety of tasks can be performed more effectively. These tasks include:

• Crawling: A crawler fetches web pages for use by search engines and other data mining
applications. A crawler can finish its job faster if it skips replicated pages and entire collections
that it has visited elsewhere.

• Ranking: A page that has many copies, in a sense, is more important than one that does not.
Thus, search results may be ranked by replication factor. If a replicated page is a member of
a collection, it may also be useful to indicate this in the search result, and perhaps to provide
some main entry point to the collection (e.g., its root or home page).

• Archiving: An archive stores a subset of the web, for historical purposes [Ale99]. If the
archive cannot store the entire web, it may give priority to collections that are known to
be replicated, because of their importance and because they may represent coherent units of
knowledge.

• Caching: A cache holds web pages that are frequently accessed by some organization. Again
knowledge about collection replication can be used to save space. Furthermore, caching
collections as a whole may help improve hit ratios (e.g., if a user is accessing a few pages in
the LDP, chances are he will also access others in the collection).

As we will see in this paper, replication is widespread on the web, so the potential savings are
very significant for each of the above tasks. For instance, consider the potential savings to the
crawling task. A crawler that only visits one of the 180 LDP collections can avoid fetching about
4.5 gigabytes (25 MB * 180) of data. Indeed we will see in Section 5 that the crawler may save
significant (over 40%!) bandwidth and time by avoiding major mirrored collections, such as LDP,
JAVA API documents and Linux manuals. Recently, Bharat and Broder [BB99] observed similar
results on data crawled by the AltaVista web crawler.

We have intuitively motivated the usefulness of detecting “replicated collections.” However,
there are important challenges in (1) defining the notion of a replicated collection precisely, (2)
developing efficient algorithms that can identify such collections, and (3) effectively exploiting this
knowledge of replication. One of the major difficulties in detecting replicated collections is that
many replicas may not be strictly identical to each other. The reasons include:

1. Update frequency: The primary copy of a collection may often be constantly updated,
while mirror copies are updated only daily, weekly, monthly, or by operator control. For
instance, the Javasoft corporation maintains the primary JAVA API manuals, and the Uni-
versity of Edinburgh hosts the LDP collection. These primary copies are regularly updated
to incorporate the most recent bug fixes and documentation updates. However the mirrors
of these collections are usually out of date, depending on how often they are updated.

2

sunsite.unc.edu

www.javasoft.com

www.linuxhq.com

LDP

LDP
JAVA

www.sun.com

JAVA

JAVA

Figure 1: Mirrored document collections.

2. Mirror partial coverage: Mirror collections differ in how much they overlap with the
primary. In many cases, a collection is replicated entirely. In other cases, only a subset of a
collection may be mirrored, and hyperlinks point to uncopied portions in another mirror site,
or at the primary.

3. Different formats: The documents in a collection may not themselves appear as exact repli-
cas in another collection. For instance, one collection may have documents in HTML while
another collection may have them in PostScript, Adobe PDF or Microsoft Word. Similarly,
the documents in one collection may have additional buttons, links and inlined images that
make them slightly different from other versions of the document. Still, for some applications
we may wish to consider two collections in different formats to be “similar.”

4. Partial crawls: In most cases we need to identify replicated collections from a snapshot of
the web that has been crawled or cached at one site, not by examining the original data.
Thus, the data we are examining may be incomplete, e.g., because the crawler does not have
the resources to fetch all data. So even if two collections are perfect replicas, their snapshots
may not overlap fully. Furthermore, if the snapshots were crawled at different times, they
may represent different versions, even if the originals were in perfect synchrony.

In such a scenario, it is challenging to even define what is a replicated collection, or even what
is the “boundary” of a collection. For example, suppose that one site has a set S1 of 10 pages, a
second site has a set S2 that is an exact copy of S1, and a third site has a set S3 containing only 5
of the S1 pages. In this case we have at least two choices: we could say that S1 is a replica of S2

(ignoring S3), or we could say that there are two additional replicas of the S3 collection, each with
5 replicated pages. That is, in the former case we have a 10-page collection at two sites, and in the
latter case we have a 5-page collection at 3 sites. If we wish to consider page and link structure
similarity, we have even more choices. For instance, suppose that only 8 of the 10 pages in S2 are
identical copies of their S1 counterparts. The remaining 2 are variants, e.g., they may have slightly
different content, or may have missing or extra links. Do we still consider S1 and S2 to be replicas,

3

or do we only consider corresponding sub-collections with 8 identical pages to be replicas? In the
former case we have a larger collection, but in the latter case we have a more faithful replica. In
this paper we study these issues, and propose a mechanism for making such decisions.

The amount of data on the web is staggering, on the order of hundreds of millions of pages
and hundreds of gigabytes, and growing rapidly. Thus, whatever techniques we use for identifying
replicated pages and collections must scale to very large sizes. Thus, we develop new techniques
for analyzing and manipulating our data.

After replicated collections have been identified, a final challenge is how to exploit effectively this
information to improve crawling, ranking, archiving, caching and other applications. For instance,
should a crawler try to identify replicas as it performs its first crawl, or should it first do a full
crawl, then identify replicas, and skip mirrors on subsequent crawls? If replicas are skipped, should
the crawler still visit them infrequently to make sure they are still copies? In this paper while we
do not focus on this category of challenges, we briefly touch on some of the crawling and ranking
issues in Section 5, where we present our experimental results.

In summary, the contributions of this paper are the following:

• Computable similarity measures: We define a practical similarity measure for collections
of web pages, and study options for defining boundaries of replicated collections. We carefully
design these measures so that in addition to being “good” measures, we can efficiently compute
them over hundreds of gigabytes of data on disk. Our work is in contrast to recent work in
the Information Retrieval domain [PP97] where the emphasis is on accurately comparing link
structures of document collections, when the document collections are small. We then develop
efficient heuristic algorithms to identify replicated sets of pages and collections.

• Improved crawling: We discuss how we use replication information to improve web crawling
by avoiding redundant crawling in the Google system.2 We report on how our algorithms and
similarity measures performed on over 150 gigabytes of textual data crawled from the web
(about 25 million web pages).

• Reduce clutter from search engines: Finally, we discuss how we used replication infor-
mation for another task, that of improving how web search engines present search results.
We have built an alternative search interface to the Google web search engine. This proto-
type shows significantly less clutter than in current web search engines, by clustering together
replicated pages and collections. Based on informal user testing, we have observed this simple
new interface helps the user quickly focus on the key results for a search over web data.

In Section 2 we discuss our similarity measures for pages and collections. Then in Section 3
we present our algorithm for efficiently identifying groups of similar collections. In Section 4 we

2Google [BP99] is a search engine developed in our group; it is currently commercially available at www.google.com.

4

informally evaluate the quality of our similarity measure, while in Section 5 we report on our
experience using our techniques for improving web crawling and result displaying.

2 Similarity of collections

Our goal is to identify collections of web pages that are “approximate replicas” or “similar.” As a
first step, it is instructive to define the notion of “identical collections.” By relaxing that definition,
we will then be able to obtain a useful notion of approximate collections.

The following definitions set the stage for our definition of identical collections. Note that when
we refer to a web page we refer to its textual (or image) content. The hyperlinks are modeled
separately, as arcs between pages.

Definition 1 Web graph Given a set of web pages, the web graph G = (V,E) has a node vi for
each web page pi, and a directed edge from vi to vj if there is a hyperlink from page pi to pj. ✷

Definition 2 Collection A collection is an induced subgraph of the web graph G. (Recall that
an induced subgraph G′ = (V ′, E′) of a graph G = (V,E), only has edges between the vertices
in the subgraph.) The number of pages in the collection is the collection size. Collection C′ is a
subcollection of C, if it is an induced subgraph of C. ✷

Notice that our graph model does not capture the position or anchor text of web hyperlinks
within their pages. For example, our model does not distinguish between two pages with identical
text and identical hyperlinks that are located in different places on the page. This is an acceptable
simplification since our ultimate goal is to find similar clusters.

Also notice that we have not restricted a collection to reside at a single web site or to be con-
nected. In practice, one may be only interested in collections at a single site (e.g., when improving
crawling), but this single-site condition can be enforced later as (or after) collections are identified.
Similarly, a collection whose pages are not connected via hyperlinks may be undesirable because it
represents a set of unrelated pages. Again, this additional restriction can be enforced as collections
are identified.

Definition 3 Identical3 collections Equi-sized collections C1 and C2 are identical (C1 ≡ C2) if
there is a one-to-one mapping M that maps all C1 pages to C2 pages (and vice-versa) such that:

• Identical pages: For each page p ∈ C1, p ≡ M(p). That is, the corresponding pages have
identical content.

3These are sometimes referred to as label preserving isomorphs in graph terminology. We use the term identical

to be consistent with other definitions we introduce.

5

p’

r’

p’’p

r q’ q’’ r’’q

Figure 2: Collections with similar pages.

• Identical link structure: For each link in C1 from page a to b, we have a link from M(a)
to M(b) in C2. ✷

As discussed in the Introduction, many replicated collections of interest are not strictly identical.
Thus, we need to relax Definition 3 so that “similar” collections can be identified. Since there are
many different ways to relax this definition, we need to keep in mind two important objectives: (a)
We want a notion of similarity that tracks our intuitive notions. That is, the collections we identify
as similar should appear to a human to be “close copies” of each other. (b) It should be possible
to efficiently and automatically check for similarity, so it is feasible to search for similar collections
over huge number of web pages. In the rest of this section we discuss the relaxations we believe
meet these criteria and that lead to our definition of similarity. In Sections 3 and 4 we use our
definition to identify similar clusters on the web and to validate our reasoning.

2.1 Similarity of web pages

Definition 3 requires that matching pages in identical collections be identical. One first step in
relaxing this definition is to allow the matching pages to be approximate replicas. For example, in
Figure 2 we show three collections. Solid, small boxes represent pages, arrows between pages are
the hyperlinks, and the dotted boxes encompass collections. We have labeled the top page in each
collection as p, p′ and p′′ to suggest that their contents are similar. We have labeled the other pages
analogously. Given that the link structure across these collections is identical, it seems natural to
say that this cluster of three collections is similar.

One can determine the similarity of two pages in a variety of ways. For instance, one can use the
information retrieval notion of textual similarity [Sal83]. One could also use data mining techniques
to cluster pages into groups that share meaningful terms (e.g., [PE98]), and then define pairs of
pages within a cluster to be similar. A third option is to compute textual overlap by counting
the number of chunks of text (e.g., sentences or paragraphs) that pages share in common [SGM95,

6

SGM96, BGM97, BB99]. In all schemes, there is a threshold parameter that indicates how close
pages have to be (e.g., in terms of number of shared words, n-dimensional distance, number of
overlapping chunks) to be considered similar. This parameter needs to be empirically adjusted
according to the target application.

We expand on the textual overlap option since it is the one we use in our experiments. To
compute text overlap, we first convert each page from its native format (e,g., HTML, PostScript)
into simple textual information using standard converters.4 The resulting page is then chunked into
smaller textual units (e.g., lines or sentences). Each textual chunk is then hashed down to a 32-bit
fingerprint. If two pages share more than some threshold T of chunks with identical fingerprints,
then the pages are said to be similar.

In prior work [SGM95, SGM96], we have shown this definition to be effective in approximating
the human notion of pages that share significant content. Broder et al. [BGM97, Bro97, BB99]
also report similar results. Furthermore, these references also show that checking for similarity
has a low cost, so it is feasible to compute page similarity over very large collections. Hence, this
is the definition of similarity we use in our experiments. However, it is important to note that
any definition of page similarity could be used in our forthcoming definition of similar collections,
and that any definition could be used in our algorithm for identifying similar clusters (although
performance would suffer if a more expensive definition were used).

Given that we have a function to determine similarity of two pages, we still need to discuss
how it is used to compare collections. Returning to our example, suppose that p is similar to
p′, that p′ is similar to p′′, but that p and p′′ are not similar. Do we still wish to consider the
three collections shown in Figure 2 similar, or do we wish to consider them pair-wise similar (e.g.,
the leftmost collection is only similar to the center one)? Our decision here is to consider all
three collections similar (transitive similarity), mainly because it significantly reduces the cost of
computing similarity. If we wished to compute pair-wise similarities, we would need to consider all
possible pairs of all possible collections (in our example we would have to try to match the center
collection against the left one and the right one). With transitive similarities, we only need to figure
out how to partition our pages into similar collections. (This tradeoff will become more apparent
as we describe the cluster identification algorithm.)

In our experience, transitive similarity still identifies groups of pages that are closely related.
For example, p′ may have been obtained form p (e.g., by extracting the plain text from a postscript
file), and then p′′ may have been obtained from p′ (e.g., by appending some comments to the file).
Even though the similarity test fails for p and p′′, in most cases a human would still consider all
three pages to be approximate copies.

The following definition formalizes the notion of transitive similarity that will be used in our
4Converters such as ps2ascii and html2ascii are not always exact converters and cannot handle non-ASCII

objects such as figures and equations in the text. But for our application, we believe this problem is not significant.

7

r

q

s

p

r

qp p q

r

q

p

q r

p

r s

r p

q qq s s

r

s

(a) (b)

p

r s

p

t

(c) (d)

Figure 3: Example pairs of collections.

definition of cluster similarity.

Definition 4 Page similarity We are given a test, ST (pi, pj), for determining if a pair of pages pi

and pj are pair-wise similar. Based on this test, we say that two pages are (transitively) similar,
pi ≈ pj, if there is some sequence of pages p1, p2, . . . , pk in our web graph, such that ST (pi, p1),
ST (p1, p2), . . ., ST (pk, pj). ✷

2.2 Similarity of link structure

We also wish to consider collections as similar even if their link structure does not match exactly.
The following four examples illustrate the decision that we must make in defining precisely what it
means for link structures to match approximately. The examples are shown in Figures 3 (a) – (d).
In each example, we refer to the first collection as [i] and the second collection as [ii]. If two pages
have the same label, then they are similar. For example, [i].p ≈ [ii].p.

• Collection sizes: In Figure 3(a), we show two collections. They are identical except for
the additional page [ii].s and the link from [ii].p to [ii].s. It seems natural to say that these
two collections are similar, since the differences are “relatively small.” That is, we can find
a function M , analogous to the one in Definition 3, that maps “almost all” pages in one
collection to similar pages in the other collection. However, we will require similar collections

8

to be equi-sized for two reasons. The first is that identifying collections that are similar (and
the corresponding mapping functions) is much simpler if we are only looking for collections
of equal size. Trying to locate collections of different sizes means we need to compare many
more collections. The second reason is that, if desired, one can add a second phase to the
search process to identify collections of different sizes. In our example, we would first identify
the core similar collections (with pages p, q and r). Then the second phase would search for
pages (like s) that could be added to one or the other collection, while still maintaining some
notion of similarity. In this paper we only cover the first phase where equi-sized collections
are identified.

• One-to-one: In Figure 3(b) we show two equi-sized collections that, again, could be con-
sidered similar by some. Notice that [ii].p points to two copies of [ii].q, while [i].p points to
one copy of [i].q. Similarly, [i].r and [ii].r point to two copies of [i].s and one copy of [ii].s
respectively. In this case, we can easily compute a mapping M from all pages in one collection
to some similar page in the other collection. However, this mapping is not one-to-one. In this
paper we will restrict our search to one-to-one mappings in order to constrain complexity.
Collections like the ones in Figure 3(b) will be deemed dissimilar, but we believe that this is
tolerable in practice. The collections that might be missed because they cannot be matched
by one-to-one mappings are not common because they contain replicas within the collection,
which is unusual.

• Break points: In Figure 3(c) we see that the two link structures look similar, with the
exception that pages [i].q and [ii].t are different. We could define the two collections to be
similar since most of the pages in one collection can be mapped to a similar page in the
other collection. For instance, we can compute a mapping M that maps [i].p to [ii].p, [i].r
to [ii].r and [i].s to [ii].s (and vice versa). This only omits [i].q and [ii].t from the mapping
since they have different content. Thus, when defining collection similarity, we could require
that only a “large fraction” of the pages be mapped (by a one-to-one mapping) to similar
pages. However, to control complexity, we will again be more conservative and require that
all pages be mapped to similar pages. The price we pay is that certain collections, like the
one in Figure 3(c), will not be identified as similar. Instead, the dissimilar pages (like q and
t) will break the collection into smaller collections. In our very simple example, pages [i].p
and [ii].p would be identified as similar collections. The r and the s pages would form other
collections. We call pages like q and r break points because they split similar collections. If
break points are a problem, we could introduce a second phase that tries to combine similar
collections that are connected via “short” segments. We do not discuss such a second phase
further in this paper. In Section 5 we will informally evaluate the occurrance of break points.

• Link similarity: Figure 3(d) highlights another issue. We could say the two collections
are similar since each similar page shares similar incoming links. For instance, [ii].r has an
incoming link from [ii].q, and the page that matches with [ii].r, i.e., M([ii].r) = [i].r, has one

9

from the corresponding page M([ii].q) = [i].q. In the reverse direction, [i].r has two incoming
links, and at least of one them ([i].q to [i].r) has a matching link. Note that the incoming
links to the p and q pages match across the collections (no incoming links in either case).

For our similarity test, we will require that matching pages have at least one matching incom-
ing link, unless neither page has any incoming links. Having at least one link ensures that if
one collection is a tree, then any similar collection must have the same tree structure. If one
collection is a DAG with a single root page from which all pages can be reached, then the
property ensures that in a similar collection all pages will be reachable from the node that
matches the root.

One could use a stronger definition requiring more matching incoming links. For instance, if
[i].r had 10 incoming links, we could require [ii].r to have not just one analogous link, but say
8 (80%) analogous links. We do not use here such conservative definitions because they lead
to more expensive similarity tests, and because most collections of interest have root pages or
tree-like structures, and the at-least-one-link test is quite good at identifying what humans
consider similar collections. Also note that we could phrase our test in terms of outgoing (as
opposed to incoming) links, but we believe that this gives a test of equivalent usefulness.

We have described step by step the considerations that lead us to the following definition for
similar collections. As we have stated, there are many different ways to define similarity, and out
contribution here is to present one that is logically sound, that leads to efficient algorithms, and
that identifies many of the collections that humans would call similar. After our definitions, we will
present an algorithm for efficiently identifying similar collections, and in Section 5 we will present
experimental results to substantiate our claim that our notions of similarity are useful and natural
for the web.

Definition 5 Similar collections Equisized collections C1 and C2 are similar (i.e, C1
∼= C2) if there

is a one-to-one mapping M (and vice-versa) that maps all C1 pages to all C2 pages such that:

• Similar pages: Each page p ∈ C1 has a matching page M(p) ∈ C2, such that p ≈M(p).

• Similar links: For each page p in C1, let P1(p) be the set of pages in C1 that have a link
to page p. Similarly define P2(M(p)) for pages in C2. Then we have pages p1 ∈ P1(p) and
p2 ∈ P2(M(p)) such that p1 ≈ p2 (unless both P1(p) and P2(M(p)) are empty). That is, two
corresponding pages should have at least one parent (in their corresponding collections) that
are also similar pages. ✷

We will call a group of collections a cluster, and if the collections in a cluster are similar, then
we will call it a similar cluster. The following definitions formalize these notions.

10

b

a

c d

b

a

c

e

d

e

c

b

d

 (i) (ii) (iii)

a

Figure 4: One possible similar cluster.

Definition 6 Cluster We define a set of equi-sized collections to be a cluster. The number of
collections in the cluster is the cluster cardinality. If s is the collection size of each collection in the
cluster, the cluster size is s as well. ✷

Definition 7 Identical cluster Cluster R = {C1, C2, . . . , Cn} is an identical cluster if for ∀i, j,
Ci ≡ Cj . That is, all its collections are identical. ✷

Definition 8 Similar cluster A cluster R = {C1, C2, . . . , Cn} is similar if all of its collections are
pairwise similar, i.e., if for ∀i, j, Ci

∼= Cj . ✷

3 Computing similar clusters

Our goal is now to identify similar clusters within a given web graph. To illustrate the challenges,
consider the graph shown in Figure 4. In this figure we have identified one similar cluster (dashed
line), consisting of two collections (dotted lines). (Again, pages with the same label are similar.)
Here the cluster cardinality is 2, while the collection size is 5. Figure 5 shows a different cluster
in exactly the same web graph. This cluster has cardinality 3 and its collections have size 3. Our
examples show that different types of similar clusters can be found in a web graph, and that there
are complex interactions between the number of clusters found, their cardinalities, and the sizes of
their collections.

In general, we could postulate an objective function to optimize in our cluster search process.
This function would give a value to a particular set of clusters, based on the number of clusters, their
cardinalities, and the sizes of the collections. Unfortunately, searching for the optimal clustering
would be extremely expensive, since in principle one would have to consider all possible ways to
form collections and clusters.

11

a

b

a

c d

b

a

c d

e e

c

b

d

 (iii)(ii) (i)

Figure 5: Another possible similar cluster.

Instead of such a generalized search for the best clustering, we propose here a clustering algo-
rithm that “grows” clusters from smaller sized ones. As we will see, the algorithm favors larger
cardinalities over larger collections.

Figure 6 illustrates how the algorithm works. The algorithm first computes trivial clusters on
the given web graph. These clusters have collections of size one and are found by grouping similar
pages. For example, the two pages labeled t are determined to be similar, and form one of the
trivial clusters. (This cluster has two collections, each with a single page. We do not show the
dotted lines that form the collections to avoid cluttering the figure.) Figure 6(a) shows the trivial
clusters found in this example web graph.

Next, the algorithm merges trivial clusters that can lead to similar clusters with larger collec-
tions. We detail this process below (Figure 6(b)). The outcome is shown in Figure 6(c), where
trivial clusters a, b, c and d have been merged into a larger-size cluster. (Again, clusters are shown
with dashed lines, collections with dotted lines. Collections with a single page are not shown to
avoid clutter.) The remaining trivial clusters are not merged. For example, the t cluster is not
merged with the larger cluster because it would lead the collections to be of different sizes and hence
not similar by our definition. Notice that the s and g clusters could form a larger cluster (with a
single collection of size 2). However, our algorithm does not generate disconnected collections (see
Section 2), so s and g are left as separate clusters.

3.1 Growth strategy

We now discuss how to merge clusters. Consider two trivial similar clusters Ri = {p1, p2, . . . , pn}
and Rj = {q1, q2, . . . , qm}, where pk and qk (1 ≤ k ≤ n) are pages in Ri and Rj . We define:

1. si,j to be the number of pages in Ri with links to at least one page in Rj,

12

k kk

k kk

d

(a) Trivial clusters

(c) Maximal cardinality clusters

(b) Growing clusters

s

a

c

d

t

a

c

d

bb

g

t

a

c

d

b

k k k

ddd

c ccg

bbb

a aa

s tt

c c

d

a

b

c

d

a

b

t t

a

b

g

s

Figure 6: Growing similar clusters.

13

2. di,j to be the number of pages in Rj with links from at least one page in Ri,

3. |Ri| to be the number of pages in Ri, and

4. |Rj | to be the number of pages in Rj.

We say that two trivial clusters Ri and Rj can be joined if they satisfy the merge condition
|Ri| = si,j = di,j = |Rj |. This condition implies that each page in Ri has a hyperlink to a unique
page in Rj . For example, consider trivial clusters a and b in Figure 6(a). They each have three
collections, and each of the three b pages has an incoming link from one of the a pages. Thus, these
two trivial clusters satisfy the merge condition, and can form a larger cluster of three collections,
where each collection has one of the a pages and the b page it points to. Such a larger cluster
clearly meets the conditions of Definition 5.

Continuing with the example, notice that trivial cluster c can be joined with the {a, b} cluster
we have just formed. This is because the merge condition holds between c and one of the trivial
clusters (b) that formed the {a, b} cluster. The new cluster can be formed by adding each c page
to the collection containing the b page that points to that c page. Similarly, we can merge the d

cluster, to obtain the cluster shown in Figure 6(c).

We can see that the resulting cluster (with collections of size 4) satisfies Definition 8, that is,
each collection is similar to the others in the cluster. For instance, consider page c in the leftmost
collection of Figure 6(c). It has matching pages in the other two collections of the cluster, and at
least one of the incoming arcs (the one from a) is found in the other collections. This guaranteed
arc is the one that was used to grow trivial cluster c into this larger cluster. Similarly, all pages in
the leftmost collection have matching pages in the other collections.

Our clustering algorithm proceeds in this fashion. Conceptually, it consists of the following
steps:

1. Find all trivial clusters.

2. Form a trivial cluster graph (TCG) G = (V,E), where each vertex vi in V corresponds to one
of the trivial clusters, and we have an edge from vi to vj if vi, vj satisfy the merge condition.
The TCG for our running example is shown in Figure 6(b).

3. Merge each connected component of the TCG into a similar cluster. The merge process for a
connected component can start at any node from which all the others in the component can
be reached.

In some cases there can be more than one place to start the merge process for a connected
component. Figure 7 shows one example with two trivial clusters a and b. The TCG has a cycle
between these two nodes, so we can start the process at either node. If we start at a, we obtain

14

a a’

b’b

a a’

b’b

a a’

b’b

b b’

aa’

(a) Graph with 2 trivial clusters (b) Corresponding TCG

(c) One possible cluster (d) Another cluster

Figure 7: Impact of start point for merge.

the cluster shown in Figure 7(c), while if we start with b we obtain the cluster in Figure 7(d). In
practice, one of these clusters may be better than the other because the collections have a more
natural entry point or root. One possible way to identify the more natural starting point is to select
the page with the largest number of incoming links from other web sites. Thus, if more sites have
links to a (either copy) than to b, then a may be a more natural starting point, and the cluster in
Figure 7(c) would be preferable.

It can be shown that our clustering algorithm yields similar clusters, using the arguments
outlined in our example. As illustrated by our example, our algorithm only produces clusters with
connected collections (e.g., s and g were not merged in Figure 6). We believe this yields more
natural results. However, the merge condition can easily be extended to merge collections that
have no links between them. Finally, the algorithm gives preference to cardinality over collection
size. That is, the algorithm will identify the largest-cardinality similar cluster that may be formed
(with connected collections), even if its collections have only one page. From the remaining pages,
it will identify the next largest-cardinality cluster, and so on.

3.2 Implementing the cluster growing algorithm

The clustering algorithm we have described can be implemented very efficiently by relying on
good database algorithms. Initially we compute all similar page pairs using an iceberg algo-
rithm [FSGM+98]. These algorithms efficiently find tuples in a table that occur more than some
threshold number of times. In our case, the table contains each instance of a shared chunk between
two pages, and the threshold is the number of common chunks needed between similar pages (Sec-

15

LINK

PID=SRC DEST=PID

Group by Ts.RID, Td.RID

s = count (distinct src), d = count (distinct dest)

TRIVIAL as Ts TRIVIAL as Td
RID PID SRC DEST RID PID

a = | Ts.RID |, b = | Td.RID |

Figure 8: Join-based construction of LinkSummary table

tion 2). The output of the iceberg algorithm is a second table containing the pairs of pages that
are directly similar (function ST of Definition 4). We then perform a simple disk-based union-

find [CLR91] algorithm that performs sequential scans over this table and computes trivial similar
clusters. The output of this phase is a table trivial(rid, pid), which contains tuple 〈Ri, pj〉 to
indicate that page pj is in trivial cluster Ri. This table materializes all trivial similar clusters as
per Definition 8.

Figure 9 shows how to implement the cluster growing algorithm efficiently. It expects as input
table trivial(rid, pid) and a second table, link(src, dest), giving the links in the web graph.
(Tuple 〈pi, pj〉 is in link if pi has a hyperlink to pj.) In Step [1] we pre-process the data, using
relational operators, to compute link statistics (si,j , di,j , |Ri|, and |Rj |) for every pair of trivial
clusters, Ri and Rj. Well known relational query optimization techniques can be used to execute
this step efficiently. In Steps [2] – [4] we compute all pairs of trivial clusters that satisfy the
merge condition. Finally, we compute our maximal-cardinality similar clusters in Step [5] using the
classical union-find algorithm [CLR91]. In this step, we are conceptually regaining the collection
structure (i.e., Figure 6(c)) by merging collections based on computing connected components.

4 Quality of similarity measures

In defining our notion of similar clusters we made a number of choices, to arrive at an efficient
algorithm for identifying clusters. In this section we describe experiments performed to informally
evaluate the “quality” of the clusters found by our algorithm. We stress that since there is no single
way to identify similar clusters, even if performance were not an issue, there is no definitive quality
measure. Instead, we simply provide some examples and statistics to describe the characteristics
of the clusters identified by our algorithm and by our definition of similarity.

We chose 25 widely replicated web collections (e.g., Perl, XML, JAVA manuals) from their

16

Algorithm 3.1 Cluster growing algorithm

Inp : Tables Trivial and Link,
Out : The set of similar clusters
Procedure

[0] S ← {} // S: the set of similar clusters

[1] Construct LinkSummary table with schema
〈 Ts.RID, Td.RID, a, b, s, d 〉 based on Figure 8

[2] For each entry in LinkSummary
[3] If (a = s = d = b)
[4] S ← S ∪ {〈Ts.RID, Td.RID〉} // Coalesce Ts.RID and Td.RID

[5] Return “union-find(S)” // Find connected components

Figure 9: Cluster growing algorithm.

primary sites (e.g., www.perl.org). We call these collections the targets to distinguish them from
the potentially different collections that may be identified by our algorithm. The sizes of the
targets varied between 50 and 1000 pages. For each target we automatically downloaded between
five and ten mirrored versions from the web. The mirrored targets were different versions of the
primary version, either older or slightly modified versions (e.g., additional links or inlined images).
The total number of web pages so downloaded was approximately 35, 000. In addition, we added
15, 000 randomly crawled pages to this data set. We assume these pages were unrelated to each
other and the targets we had already downloaded.

On this data set we computed similar clusters using our cluster growing algorithm. We then
manually examined these clusters to see if they corresponded to the mirrored targets. Our algorithm
identified 180 non-trivial collections. Of these, 149 collections formed 25 clusters, corresponding to
our 25 targets. Each of these clusters had at least 2 collections.

The remaining 31 collections did not correspond to a target, and hence we call them “problem”
collections. Upon examining the problem collections, we discovered that many were caused by what
we call partial mirrors, as illustrated by Figure 10(a). The figure (left side) shows a collection [ii]
that is a partial mirror of the [i] collection. That is, some of the [ii] pages point to the unmirrored
portions of the first collection. In this case, our cluster growing algorithm would only identify
a cluster with the collections [i].{a, b, c} and [ii].{a, b, c}, leaving the other pages as “problem
collections.”

In some cases (e.g., for improving crawling), it is more useful if similar collections include the
partially mirrored pages. In our example, it may be better to identify the two collections shown in
Figure 10(b), where pages d, e, f and g appear in both collections.

17

c

a

b

g

d

c

f

b

a

e

c

a

b

g

d

c

f

b

a

e

(b) Cluster found with extended merge condition(a) Original graph with partial mirror

Figure 10: Example of partial mirrors.

Our cluster growing algorithm can be easily extended to identify partially mirrored collections,
if so desired. This can be achieved by modifying the merge condition used by the algorithm: We
now merge trivial clusters Ri and Rj whenever |Ri| = si,j ≥ di,j = |Rj |. This weaker condition
arises when pages in Rj have “virtual” links from pages in Ri, i.e., the Rj pages are not mirrored
in as many sites as the Ri pages. We call the clusters produced by our modified merging condition
as extended clusters.

Returning to our experiment, we ran the extended algorithm on our data set, and observed
that only 8 collections were “problem collections.” That is, 23 (31 − 8) of the collections found
by the original algorithm were caused by partial mirrors, and were now properly clustered by the
extended condition. All the remaining collections (180 − 8) correspond to the desired targets.

In summary, our algorithm (especially with the extension we have described) is very good at
identifying what a human would call a replicated collection of web pages (i.e., our target collections).
However, it is important to note that in this experiment, the target collections were fully crawled.
In practice, our algorithm may be run on data that includes partially crawled collections, and
clearly it will not be possible to identify the complete target collection, no matter what clustering
algorithm is used. In the next section we explore this more realistic scenario, and show that even
with partial crawls, our algorithm can still yield significant benefits.

18

Measures / Signatures Entire document Four lines Two lines
Space Fingerprints 800 MBs 2.4 GBs 4.6 GBs
Time Compute fingerprints 44 hrs 44 hrs 44 hrs

Compute trivial similar clusters 97 mins 302 mins 630 mins

Table 1: Storage and time costs for computing trivial similar clusters.

5 Exploiting similar clusters

To demonstrate the usefulness of similar clusters, we explored the use of our cluster growing algo-
rithm in two applications, crawling and searching. Our results also demonstrate that the algorithm
is efficient, since we had to identify clusters in hundreds of gigabytes of web data. For our work we
used data crawled by the Stanford Google web crawler [BP99]. We ran our experiments on a SUN
UltraSPARC with dual processors, 256 MBs of RAM and 1.4 GBs of swap space, running SunOS
5.5.1.

5.1 Improving crawling

For the first application, we performed a comprehensive performance analysis of web crawlers to
identify how much redundant data they crawl. This allowed us to quantify the resources (such
as network bandwidth) crawlers waste in visiting multiple copies of pages and collections. As we
will see, our performance analysis helped us significantly improve the performance of the Google
crawler.

We used the Google crawler since it was developed within our group and we had direct access to
its data. We believe that analogous results could be obtained using the data from other crawlers.
Indeed, in some recent work, other researchers report results similar to our own in the context of the
AltaVista web crawler [BGM97, BB99]. The Google crawler fed us approximately 25 million web
pages primarily from domains located in the United States of America. This dataset corresponds
to about 150 gigabytes of textual information.

We experimented with three different chunking strategies for identifying similar pages: (1) one
fingerprint for the entire document, (2) one fingerprint for every four lines of text, and (3) one
fingerprint for every two lines of text. For each scheme we generated a DocChunks table, where
each tuple gives a URL (represented as a 32-bit integer) and the fingerprint (32 bits) for one chunk
in that document. By joining the DocChunks table with itself, we can generate the table of shared
fingerprints that is the input to the cluster growing algorithm (Section 3.2). To give the reader an
idea of the resources utilized, we report in Table 1 the storage cost for table DocChunks, as well
as the time breakdown in computing the set of trivial similar clusters. The thresholds used were
T = 15 and T = 25 for the “four line” and “two line” fingerprints respectively.

19

10%

20%

30%

40%

50%

60%

0 1 2 3 - 10 10 - 100

%age
of

pages

‘‘Four-line’’ fingerprints

‘‘Two-line’’ fingerprints

‘‘Entire document’’ fingerprint

Number of replicas

Figure 11: Document replication
on 25 million web pages.

1

10

100

1000

10000

1 10 100

infoseek-manual

cyber-access

www-faq

EMIS

java

web-museum

apache

occ

LDP

TUCOWS
pathfinder
free-bsd

200

experts-exchange.com
www.press.jhu.edu

400300

Cardinality of similar cluster
Si

ze
 o

f
si

m
ila

r
cl

us
te

r

Noise

Multiple name

replicated
collections

Widely

Figure 12: Distribution of maximal clusters.

In Figure 11 we report the number of similar pages for each the three chunkings. For instance,
let us consider the case when we compute one fingerprint on the entire document. About 64% of
the 25 million web pages have no replicas (the left-most darkest bar) except itself: about 18% of
pages have an additional exact copy – that is, there are about 1

2 ∗ 18
100 ∗ 25 ∗ 106 distinct pages that

have one exact copy among the other 1
2 ∗ 18

100 ∗ 25 ∗ 106 pages in this category. Similarly, about 5%
of pages have between 10 and 100 replicas. As expected, the percentage of pages with more than
one similar page increases when we relax the notion of similarity from 36% (100 − 64%) for exact
replicas, to about 48% (100 − 52%) for “two-line” chunks.

From the above experiments, it is clear that the Google crawler wastes significant resources
crawling multiple copies of pages. Our next step was to identify the similar clusters, in order to
help Google avoid crawling similar collections. We ran our extended cluster growing algorithm on
the collected web graph, a process that took about 20 hours total. The algorithm was modified to
consider only collections at a single web site.

In Figure 12, we visualize each cluster as a point in the graph, based on the cluster cardinality
and size. For the reader’s convenience, we annotate some of the points that correspond to document
collections (we manually labeled these points after automatically computing extended clusters). For
instance, the LDP point (near the top right corner) indicates that the LDP collection constitutes
1349 pages and has 143 replicas in our crawled data set. Based on our manual examination of
the data, we roughly partitioned the clusters into the following categories, which are also shown in
Figure 12.

1. Widely replicated collections: We found several extended clusters that corresponded to
widely replicated collections. We list the five clusters with the largest cardinalities in Table 2.
For instance, the TUCOWS WinSock utilities is replicated at 360 web sites across the world,
constitutes about 1052 web pages and the principal copy is located at the listed URL.

2. Multiple name servers: In many cases, a set of machines in a single domain share content

20

Rank Description Similar cluster Similar cluster
cardinality size

1 TUCOWS WinSock utilities 360 1052
http://www.tucows.com

2 LDP Linux Documentation Project 143 1359
http://sunsite.unc.edu/LDP

3 Apache Web server 125 115
http://www.apache.org

4 JAVA 1.0.2 API 59 552
http://java.sun.com

5 Mars Pathfinder 49 498
http://mars.jpl.nasa.gov

Table 2: Popular web collections.

even if the machines have different IP addresses. Web sites such as www.experts-exchange.com
fall into this category.

3. Noise: Most of the identified clusters in the area labeled “Noise” were not significant or
very meaningful. For instance, may web sites have HTML versions of PowerPoint slides
created by the “Save As HTML” feature in Microsoft PowerPoint. Readers may be aware
that PowerPoint saves each slide as an image file (such as in .GIF format) and creates a slide-
show of HTML pages. Each such HTML page has the same content and hyperlink structure
but points to the inlined GIF rendering of the corresponding slide. Since our system computes
page similarity based on textual content and not based on image similarity, PowerPoint slide-
shows are placed into the same cluster. In a few cases, small clusters were induced by “break
point” pages. Fortunately, the noise clusters can easily be identified by their small size (less
than 10 pages in their collections), so it is easy to ignore them when using similar clusters to
improve crawling.

Based on the above rough classification, we precoded information about the widely replicated
collections and machines with multiple names into the Google web crawler. We then ran the crawler
again and the crawler avoided the precoded collections and machines. This time, 35 million web
pages corresponding to about 250 gigabytes of textual data were crawled. Notice that this is a
larger crawl than the original one (which was for 25 million pages), so it included a significant
amount of new data. Of course, since the web is very dynamic, a significant amount of the “old”
data had also changed.

Nevertheless, the second crawl avoided many of the replicated collections very successfully. To
confirm this, we again computed the set of similar pages as in the earlier experiments. We observed
that the number of similar pages had dropped from a staggering 48% in the previous crawl to a
more reasonable 13%. Similarly, the number of identical copies also fell to about 8%. The number
of similar and exact pages did not drop to zero in the new crawl because new clusters were identified

21

in the new data. These newly identified replicated collections could be added to the list of pages
to avoid in future crawls.

In general, the replica avoiding process is a continuous one. Each crawl identifies new replicated
collections that can be avoided in the future. In steady state, the number of newly identified replicas
should be relatively small at each iteration. In addition, it is important to periodically revisit what
are thought to be replicated collections to see if they have changed and need to be removed from the
avoid list. We have not yet implemented such a general replica-avoidance scheme into our crawler,
but we believe that the results we have shown here clearly illustrate the large potential savings. As
the web continues to grow, and crawlers struggle to keep up [LG99], it will be even more important
to avoid replicated pages!

5.2 Improving search engine result presentation

For some applications it makes sense for the crawler to continue gathering multiple copies of a
collection. For example, in searching the web, one of the page replicas may be unavailable, so
the user may wish to visit another copy. For some data mining, for instance, it may be better to
analyze all copies, not just a representative collection. But even if the crawler collects all pages, it
may still be very useful to filter out redundancy as information is presented to the user.

To illustrate this point, consider how a web search engine operates today. When we search for
concepts such as “object-oriented programming” or “Linux” on the web, search engines return a
list of pages ranked using some proprietary ranking function. The resulting display is often often
distracting for the following two reasons:

• Multiple pages within a hyperlinked collection are displayed. For instance, in Figure 13 we
show an example of how the Google search engine displays5 results for the search for “XML
databases.” We see that several pages in www.techweb.com satisfy this query and links to all
these pages are displayed.

• Links to replicated collections are displayed several times. For instance, in Figure 13, the
TechWeb collection that is available at www.techweb.com and techweb.cmp.com (among
other sites), is displayed multiple times.

We have implemented a prototype presentation filter that runs on top of the Google search
engine to illustrate how search results can be better organized. The prototype computes similar
clusters on the data collected by the crawler, and then uses the information to address the two
problems identified above. In Figure 14 we show how our prototype displays the results for the user
query “XML databases.” As we can see, the prototype “rolls up” collections so that it only displays

5The screen shots are for the initial Google prototype, not the newer commercial version.

22

Figure 13: Search results for “XML databases”
from Google search engine.

Figure 14: Rolled up search results for “XML
databases”.

the link of one page in a collection, even if multiple pages within the collection satisfy the query.
For example, there is a single page listed from www.techweb.com. Also the prototype automatically
“rolls up” replicas of collections as well. In our example, the replica pages for techweb.cmp.com
are not listed at all.

Notice that in our prototype display each result has two additional links marked Collection
and Replica. When a user clicks on the Collection link, the collection is rolled down and all
pages satisfying the user query are displayed. Similarly, when the user clicks on the Replica link,
the prototype displays all the replicas of the collection. We believe such an interface is useful to a
user, since the interface gives the user a “high-level” overview of the results rather than just a long
list of URLs.

We evaluated the above search interface informally within our group. In general, users have
found this prototype to be valuable especially for queries in technical areas. For instance, when our
users tried queries in topics such as Latex, C++, Latex, JAVA, XML and GNU software, traditional
search engines typically yield many redundant results. The same queries yielded much better results
in our prototype because of the clustering. Hence we believe that by computing similar clusters
and rolling up collections and clusters, we can improve current search engines significantly.

23

6 Conclusion

In this paper we have introduced a new definition for similarity of collections of web pages. We
have also proposed a new algorithm for efficiently identifying similar collections that form what we
call a similar cluster. In developing our definitions and algorithm, we have made tradeoffs between
the generality of the similar cluster concept and the cost of identifying collections that meet the
criteria. No definition of similarity will capture precisely what a human would consider a similar
cluster (indeed, more than one human would probably not agree either). Nevertheless, by using
our definition and cluster growing algorithm to improve crawling and result displaying, we have
shown that our definition and algorithm can be very useful on very large web graphs: the work of
a crawler can be reduced by 40%, and results can be much better organized when presented to a
user.

There are various directions for future research in the area of replicated web collections. In
particular, as mentioned in Section 2, we believe it is possible to post-process the output of our
cluster growing algorithm to (a) join together clusters that are separated by small web segments,
and (b) extend clusters by adding “nearby” pages. This would require an extended definition of
similarity that would allow (a) some small number of pages in one collection not be be mapped, and
(b) collections to be of slightly different sizes. An evaluation would be needed to see if the extra
processing cost is worth the more general notion of similarity. Also, the concept of similar clusters
may be applicable in other domains beyond the web. For instance, any XML or semi-structured
database can be viewed as a graph, and hence may contain similar clusters. A clustering algorithm
like ours could be used, say, to identify customers with similar interests or similar purchasing
patterns.

References

[Ale99] Alexa Corporation. http://www.alexa.com, 1999.

[BB99] Krishna Bharat and Andrei Z. Broder. Mirror, Mirror, on the Web: A study of host
pairs with replicated content. In Proceedings of 8th International Conference on World
Wide Web (WWW’99), May 1999.

[BGM97] Andrei Broder, Steve C. Glassman, and Mark S. Manasse. Syntactic clustering of the
web. In Sixth International World Wide Web Conference, pages 391 – 404, April 1997.

[BP99] Sergey Brin and Lawrence Page. Google search engine. http://www.google.com, 1999.

[Bro97] Andrei Broder. On the resemblance and containment of documents. In Compression
and complexity of Sequences (SEQUENCES’97), pages 21 – 29, 1997.

[CLR91] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
algorithms. The MIT Press, 1991.

24

[FSGM+98] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and Jef-
frey D. Ullman. Computing iceberg queries effciently. In Proceedings of International
Conference on Very Large Databases (VLDB ’98), pages 299 – 310, August 1998.

[LG99] Steve Lawrence and C. Lee Giles. Accessibility of information on the web. Nature,
400:107–109, 1999.

[PE98] M. Perkowitz and O. Etzioni. Adaptive web sites: Automatically synthesizing web
pages. In Fifteenth National Conference on Artificial Intelligence, 1998.

[PP97] James Pitkow and Peter Pirolli. Life, death, and lawfulness on the electronic frontier.
In International conference on Computer and Human Interaction (CHI’97), 1997.

[Sal83] Gerard Salton. Itroduction to modern information retrieval. McGraw-Hill, New York,
1983.

[SGM95] Narayanan Shivakumar and Hector Garcia-Molina. SCAM:a copy detection mecha-
nism for digital documents. In Proceedings of 2nd International Conference in Theory
and Practice of Digital Libraries (DL’95), Austin, Texas, June 1995.

[SGM96] Narayanan Shivakumar and Hector Garcia-Molina. Building a scalable and accurate
copy detection mechanism. In Proceedings of 1st ACM Conference on Digital Libraries
(DL’96), Bethesda, Maryland, March 1996.

25

