
Parallel Crawlers

Junghoo Cho
University of California, Los Angeles

cho@cs.ucla.edu

Hector Garcia-Molina
Stanford University

cho@cs.stanford.edu

ABSTRACT
In this paper we study how we can design an effective parallel
crawler. As the size of the Web grows, it becomes imperative
to parallelize a crawling process, in order to finish download-
ing pages in a reasonable amount of time. We first propose
multiple architectures for a parallel crawler and identify fun-
damental issues related to parallel crawling. Based on this
understanding, we then propose metrics to evaluate a par-
allel crawler, and compare the proposed architectures using
40 million pages collected from the Web. Our results clarify
the relative merits of each architecture and provide a good
guideline on when to adopt which architecture.

Keywords
Web Crawler, Web Spider, Parallelization

1. INTRODUCTION
A crawler is a program that downloads and stores Web

pages, often for a Web search engine. Roughly, a crawler
starts off by placing an initial set of URLs, S0, in a queue,
where all URLs to be retrieved are kept and prioritized.
From this queue, the crawler gets a URL (in some order),
downloads the page, extracts any URLs in the downloaded
page, and puts the new URLs in the queue. This process is
repeated until the crawler decides to stop. Collected pages
are later used for other applications, such as a Web search
engine or a Web cache.

As the size of the Web grows, it becomes more difficult to
retrieve the whole or a significant portion of the Web using
a single process. Therefore, many search engines often run
multiple processes in parallel to perform the above task, so
that download rate is maximized. We refer to this type of
crawler as a parallel crawler.

In this paper we study how we should design a paral-
lel crawler, so that we can maximize its performance (e.g.,
download rate) while minimizing the overhead from paral-
lelization. We believe many existing search engines already
use some sort of parallelization, but there has been little
scientific research conducted on this topic. Thus, little has
been known on the tradeoffs among various design choices
for a parallel crawler. In particular, we believe the following
issues make the study of a parallel crawler challenging and
interesting:

Copyright is held by the author/owner(s).
WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

• Overlap: When multiple processes run in parallel to
download pages, it is possible that different processes
download the same page multiple times. One process
may not be aware that another process has already
downloaded the page. Clearly, such multiple down-
loads should be minimized to save network bandwidth
and increase the crawler’s effectiveness. Then how can
we coordinate the processes to prevent overlap?

• Quality: Often, a crawler wants to download “impor-
tant” pages first, in order to maximize the “quality”
of the downloaded collection. However, in a parallel
crawler, each process may not be aware of the whole
image of the Web that they have collectively down-
loaded so far. For this reason, each process may make
a crawling decision solely based on its own image of
the Web (that itself has downloaded) and thus make
a poor crawling decision. Then how can we make sure
that the quality of the downloaded pages is as good for
a parallel crawler as for a centralized one?

• Communication bandwidth: In order to prevent over-
lap, or to improve the quality of the downloaded pages,
crawling processes need to periodically communicate
to coordinate with each other. However, this commu-
nication may grow significantly as the number of crawl-
ing processes increases. Exactly what do they need to
communicate and how significant would this overhead
be? Can we minimize this communication overhead
while maintaining the effectiveness of the crawler?

While challenging to implement, we believe that a paral-
lel crawler has many important advantages, compared to a
single-process crawler:

• Scalability: Due to enormous size of the Web, it is often
imperative to run a parallel crawler. A single-process
crawler simply cannot achieve the required download
rate in certain cases.

• Network-load dispersion: Multiple crawling processes
of a parallel crawler may run at geographically distant
locations, each downloading “geographically-adjacent”
pages. For example, a process in Germany may down-
load all European pages, while another one in Japan
crawls all Asian pages. In this way, we can disperse
the network load to multiple regions. In particular,
this dispersion might be necessary when a single net-
work cannot handle the heavy load from a large-scale
crawl.

• Network-load reduction: In addition to the dispersing
load, a parallel crawler may actually reduce the net-
work load. For example, assume that a crawler in
North America retrieves a page from Europe. To be
downloaded by the crawler, the page first has to go
through the network in Europe, then the Europe-to-
North America inter-continental network and finally
the network in North America. Instead, if a crawl-
ing process in Europe collects all European pages, and
if another process in North America crawls all North
American pages, the overall network load will be re-
duced, because pages go through only “local” networks.

Note that the downloaded pages may need to be trans-
ferred later to a central location, so that a central index
can be built. However, even in that case, we believe
that the transfer can be significantly smaller than the
original page download traffic, by using some of the
following methods:

– Compression: Once the pages are collected and
stored, it is easy to compress the data before send-
ing them to a central location.

– Difference: Instead of sending the entire image
with all downloaded pages, we may first take dif-
ference between previous image and the current
one and send only this difference. Since many
pages are static and do not change very often,
this scheme can significantly reduce the network
traffic.

– Summarization: In certain cases, we may need
only a central index, not the original pages them-
selves. In this case, we may extract the necessary
information for the index construction (e.g., post-
ings list) and transfer this data only.

To build an effective web crawler, we clearly need to ad-
dress many more challenges than just parallelization. For
example, a crawler needs to figure out how often a page
changes and how often it would revisit the page in order to
maintain the page up to date [7, 9]. Also, it has to make
sure that a particular Web site is not flooded with its HTTP
requests during a crawl [16, 11, 26]. In addition, it has to
carefully select what page to download and store in its lim-
ited storage space in order to make the best use of its stored
collection of pages [8, 5, 10]. While all of these issues are
important, we focus on the crawler parallelization in this
paper, because this problem has been paid significantly less
attention than the others.

In summary, we believe a parallel crawler has many ad-
vantages and poses interesting challenges. In particular, we
believe our paper makes the following contributions:

• We identify major issues and problems related to a
parallel crawler and discuss how we can solve these
problems.

• We present multiple techniques for a parallel crawler
and discuss their advantages and disadvantages. As far
as we know most of these techniques have not been de-
scribed in open literature. (Very little is known about
the internals of crawlers, as they are closely guarded
secrets.)

• Using a large dataset (40M web pages) collected from
the Web, we experimentally compare the design choices
and study their tradeoffs quantitatively.

• We propose various optimization techniques that can
minimize the coordination effort between crawling pro-
cesses, so that they can operate more independently
while maximizing their effectiveness.

1.1 Related work
Web crawlers have been studied since the advent of the

Web [18, 24, 4, 23, 13, 6, 19, 11, 8, 5, 10, 9, 7]. These studies
can be roughly categorized into one of the following topics:

• General architecture [23, 13, 6, 19, 11]: The work in
this category describes the general architecture of a
Web crawler and studies how a crawler works. For ex-
ample, Reference [13] describes the architecture of the
Compaq SRC crawler and its major design goals. Some
of these studies briefly describe how the crawling task
is parallelized. For instance, Reference [23] describes
a crawler that distributes individual URLs to multi-
ple machines, which download Web pages in parallel.
The downloaded pages are then sent to a central ma-
chine, on which links are extracted and sent back to
the crawling machines. However, these studies do not
carefully compare various issues related to a parallel
crawler and how design choices affect performance. In
this paper, we first identify multiple techniques for a
parallel crawler and compare their relative merits us-
ing real Web data.

• Page selection [8, 5, 10]: Since many crawlers can
download only a small subset of the Web, crawlers need
to carefully decide what page to download. By retriev-
ing “important” or “relevant” pages early, a crawler
may improve the “quality” of the downloaded pages.
The studies in this category explore how a crawler can
discover and identify “important” pages early, and pro-
pose various algorithms to achieve this goal. In our pa-
per, we study how parallelization affects some of these
techniques and explain how we can fix the problems
introduced by parallelization.

• Page update [9, 7]: Web crawlers need to update the
downloaded pages periodically, in order to maintain
the pages up to date. The studies in this category
discuss various page revisit policies to maximize the
“freshness” of the downloaded pages. For example,
Reference [7] studies how a crawler should adjust re-
visit frequencies for pages when the pages change at
different rates. We believe these studies are orthogo-
nal to what we discuss in this paper.

There also exists a significant body of literature study-
ing the general problem of parallel and distributed comput-
ing [20, 22, 25, 28]. Some of these studies focus on the
design of efficient parallel algorithms. For example, Refer-
ences [25, 21, 15] present various architectures for parallel
computing, propose algorithms that solve various problems
(e.g., finding maximum cliques) under the architecture, and
study the complexity of the proposed algorithms. While the
general principles described are being used in our work,1

none of the existing solutions can be directly applied to the
crawling problem.

1For example, we may consider that our proposed solution
is a variation of “divide and conquer” approach, since we
partition and assign the Web to multiple processes.

Another body of literature designs and implements dis-
tributed operating systems, where a process can use dis-
tributed resources transparently (e.g., distributed memory,
distributed file systems) [28, 27, 1, 17]. Clearly, such OS-
level support makes it easy to build a general distributed
application, but we believe that we cannot simply run a cen-
tralized crawler on a distributed OS to achieve parallelism.
A web crawler contacts millions of web sites in a short pe-
riod of time and consumes extremely large network, storage
and memory resources. Since these loads push the limit of
existing hardwares, the task should be carefully partitioned
among processes and they should be carefully coordinated.
Therefore, a general-purpose distributed operating system
that does not understand the semantics of web crawling will
lead to unacceptably poor performance.

2. ARCHITECTURE OF A PARALLEL
CRAWLER

In Figure 1 we illustrate the general architecture of a par-
allel crawler. A parallel crawler consists of multiple crawling
processes, which we refer to as C-proc’s. Each C-proc per-
forms the basic tasks that a single-process crawler conducts.
It downloads pages from the Web, stores the pages locally,
extracts URLs from the downloaded pages and follows links.
Depending on how the C-proc’s split the download task,
some of the extracted links may be sent to other C-proc’s.
The C-proc’s performing these tasks may be distributed ei-
ther on the same local network or at geographically distant
locations.

• Intra-site parallel crawler: When all C-proc’s run on
the same local network and communicate through a
high speed interconnect (such as LAN), we call it an
intra-site parallel crawler. In Figure 1, this scenario
corresponds to the case where all C-proc’s run only on
the local network on the top. In this case, all C-proc’s
use the same local network when they download pages
from remote Web sites. Therefore, the network load
from C-proc’s is centralized at a single location where
they operate.

• Distributed crawler: When C-proc’s run at geograph-
ically distant locations connected by the Internet (or
a wide area network), we call it a distributed crawler.
For example, one C-proc may run in the US, crawling
all US pages, and another C-proc may run in France,
crawling all European pages. As we discussed in the
introduction, a distributed crawler can disperse and
even reduce the load on the overall network.

When C-proc’s run at distant locations and communi-
cate through the Internet, it becomes important how
often and how much C-proc’s need to communicate.
The bandwidth between C-proc’s may be limited and
sometimes unavailable, as is often the case with the
Internet.

When multiple C-proc’s download pages in parallel, differ-
ent C-proc’s may download the same page multiple times. In
order to avoid this overlap, C-proc’s need to coordinate with
each other on what pages to download. This coordination
can be done in one of the following ways:

• Independent: At one extreme, C-proc’s may download
pages totally independently without any coordination.

C-proc. . .C-proc

Local connect

C-proc

collected pages queues of URLs to visit

. . .C-proc

Local connect

NET
INTER

Figure 1: General architecture of a parallel crawler

1S 2S1 2(C) (C)

b

a

c

d

e

f

g

h
i

Figure 2: Site S1 is crawled by C1 and site S2 is
crawled by C2

That is, each C-proc starts with its own set of seed
URLs and follows links without consulting with other
C-proc’s. In this scenario, downloaded pages may over-
lap, but we may hope that this overlap will not be sig-
nificant, if all C-proc’s start from different seed URLs.

While this scheme has minimal coordination overhead
and can be very scalable, we do not directly study
this option due to its overlap problem. Later we will
consider an improved version of this option, which sig-
nificantly reduces overlap.

• Dynamic assignment: When there exists a central co-
ordinator that logically divides the Web into small par-
titions (using a certain partitioning function) and dy-
namically assigns each partition to a C-proc for down-
load, we call it dynamic assignment.

For example, assume that a central coordinator par-
titions the Web by the site name of a URL. That
is, pages in the same site (e.g., http://cnn.com/top.
html and http://cnn.com/content.html) belong to
the same partition, while pages in different sites be-
long to different partitions. Then during a crawl, the
central coordinator constantly decides on what parti-
tion to crawl next (e.g., the site cnn.com) and sends
URLs within this partition (that have been discovered
so far) to a C-proc as seed URLs. Given this request,
the C-proc downloads the pages and extracts links from
them. When the extracted links point to pages in the
same partition (e.g., http://cnn.com/article.html),
the C-proc follows the links, but if a link points to a
page in another partition (e.g., http://nytimes.com/

index.html), the C-proc reports the link to the cen-
tral coordinator. The central coordinator later uses
this link as a seed URL for the appropriate partition.

Note that the Web can be partitioned at various gran-
ularities. At one extreme, the central coordinator may
consider every page as a separate partition and assign
individual URLs to C-proc’s for download. In this case,
a C-proc does not follow links, because different pages
belong to separate partitions. It simply reports all
extracted URLs back to the coordinator. Therefore,
the communication between a C-proc and the central
coordinator may vary dramatically, depending on the
granularity of the partitioning function.

• Static assignment: When the Web is partitioned and
assigned to each C-proc before they start to crawl, we
call it static assignment. In this case, every C-proc
knows which C-proc is responsible for which page dur-
ing a crawl, and the crawler does not need a central
coordinator. We will shortly discuss in more detail
how C-proc’s operates under this scheme.

In this paper, we mainly focus on static assignment be-
cause of its simplicity and scalability, and defer the study of
dynamic assignment to future work. Note that in dynamic
assignment, the central coordinator may become the major
bottleneck, because it has to maintain a large number of
URLs reported from all C-proc’s and has to constantly co-
ordinate all C-proc’s. Thus the coordinator itself may also
need to be parallelized.

3. CRAWLING MODES FOR STATIC AS-
SIGNMENT

Under static assignment, each C-proc is responsible for
a certain partition of the Web and has to download pages
within the partition. However, some pages in the partition
may have links to pages in another partition. We refer to
this type of link as an inter-partition link. To illustrate how
a C-proc may handle inter-partition links, we use Figure 2 as
our example. In the figure, we assume two C-proc’s, C1 and
C2, are responsible for sites S1 and S2, respectively. For
now, we assume that the Web is partitioned by sites and
that the Web has only S1 and S2. Also, we assume that
each C-proc starts its crawl from the root page of each site,
a and f.

1. Firewall mode: In this mode, each C-proc downloads
only the pages within its partition and does not follow
any inter-partition link. All inter-partition links are
ignored and thrown away. For example, the links a →
g, c → g and h → d in Figure 2 are ignored and thrown
away by C1 and C2.

In this mode, the overall crawler does not have any
overlap in the downloaded pages, because a page can
be downloaded by only one C-proc, if ever. However,
the overall crawler may not download all pages that it
has to download, because some pages may be reach-
able only through inter-partition links. For example,
in Figure 2, C1 can download a, b and c, but not d and
e, because they can be reached only through h → d
link. However, C-proc’s can run quite independently
in this mode, because they do not conduct any run-
time coordination or URL exchanges.

2. Cross-over mode: Primarily, each C-proc downloads
pages within its partition, but when it runs out of
pages in its partition, it also follows inter-partition
links. For example, consider C1 in Figure 2. Process
C1 first downloads pages a, b and c by following links
from a. At this point, C1 runs out of pages in S1, so
it follows a link to g and starts exploring S2. After
downloading g and h, it discovers a link to d in S1, so
it comes back to S1 and downloads pages d and e.

In this mode, downloaded pages may clearly overlap
(pages g and h are downloaded twice), but the over-
all crawler can download more pages than the firewall
mode (C1 downloads d and e in this mode). Also, as
in the firewall mode, C-proc’s do not need to commu-
nicate with each other, because they follow only the
links discovered by themselves.

3. Exchange mode: When C-proc’s periodically and
incrementally exchange inter-partition URLs, we say
that they operate in an exchange mode. Processes do
not follow inter-partition links.

For example, C1 in Figure 2 informs C2 of page g after
it downloads page a (and c) and C2 transfers the URL
of page d to C1 after it downloads page h. Note that
C1 does not follow links to page g. It only transfers
the links to C2, so that C2 can download the page. In
this way, the overall crawler can avoid overlap, while
maximizing coverage.

Note that the firewall and the cross-over modes give C-
proc’s much independence (C-proc’s do not need to commu-
nicate with each other), but they may download the same
page multiple times, or may not download some pages. In
contrast, the exchange mode avoids these problems but re-
quires constant URL exchange between C-proc’s.

3.1 URL exchange minimization
To reduce URL exchange, a crawler based on the exchange

mode may use some of the following techniques:

1. Batch communication: Instead of transferring an
inter-partition URL immediately after it is discovered,
a C-proc may wait for a while, to collect a set of URLs
and send them in a batch. That is, with batching, a
C-proc collects all inter-partition URLs until it down-
loads k pages. Then it partitions the collected URLs
and sends them to an appropriate C-proc. Once these
URLs are transferred, the C-proc then purges them
and starts to collect a new set of URLs from the next
downloaded pages. Note that a C-proc does not main-
tain the list of all inter-partition URLs discovered so
far. It only maintains the list of inter-partition links
in the current batch, in order to minimize the memory
overhead for URL storage.

This batch communication has various advantages over
incremental communication. First, it incurs less com-
munication overhead, because a set of URLs can be
sent in a batch, instead of sending one URL per mes-
sage. Second, the absolute number of exchanged URLs
will also decrease. For example, consider C1 in Fig-
ure 2. The link to page g appears twice, in page a and
in page c. Therefore, if C1 transfers the link to g after
downloading page a, it needs to send the same URL

again after downloading page c.2 In contrast, if C1

waits until page c and sends URLs in batch, it needs
to send the URL for g only once.

2. Replication: It is known that the number of incom-
ing links to pages on the Web follows a Zipfian dis-
tribution [3, 2, 29]. That is, a small number of Web
pages have an extremely large number of links pointing
to them, while a majority of pages have only a small
number of incoming links.

Thus, we may significantly reduce URL exchanges, if
we replicate the most “popular” URLs at each C-proc
(by most popular, we mean the URLs with most in-
coming links) and stop transferring them between C-
proc’s. That is, before we start crawling pages, we
identify the most popular k URLs based on the im-
age of the Web collected in a previous crawl. Then
we replicate these URLs at each C-proc, so that the
C-proc’s do not exchange them during a crawl. Since
a small number of Web pages have a large number of
incoming links, this scheme may significantly reduce
URL exchanges between C-proc’s, even if we replicate
a small number of URLs.

Note that some of the replicated URLs may be used
as the seed URLs for a C-proc. That is, if some URLs
in the replicated set belong to the same partition that
a C-proc is responsible for, the C-proc may use those
URLs as its seeds rather than starting from other pages.

Also note that it is possible that each C-proc tries to
discover popular URLs on the fly during a crawl, in-
stead of identifying them based on the previous im-
age. For example, each C-proc may keep a “cache”
of recently seen URL entries. This cache may pick
up “popular” URLs automatically, because the pop-
ular URLs show up repeatedly. However, we believe
that the popular URLs from a previous crawl will be
a good approximation for the popular URLs in the
current Web; Most popular Web pages (such as Ya-
hoo) maintain their popularity for a relatively long pe-
riod of time, even if their exact popularity may change
slightly.

3.2 Partitioning function
So far, we have mainly assumed that the Web pages are

partitioned by Web sites. Clearly, there exist multitude of
ways to partition the Web, including the following:

1. URL-hash based: Based on the hash value of the
URL of a page, we assign the page to a C-proc. In
this scheme, pages in the same site can be assigned
to different C-proc’s. Therefore, the locality of link
structure3 is not reflected in the partition, and there
will be many inter-partition links.

2. Site-hash based: Instead of computing the hash value
on an entire URL, we compute the hash value only
on the site name of a URL (e.g., cnn.com in http:

//cnn.com/index.html) and assign the page to a C-
proc.

2When it downloads page c, it does not remember whether
the link to g has been already sent.
3According to our experiments, about 90% of the links in a
page point to pages in the same site on average.

In this scheme, note that the pages in the same site
will be allocated to the same partition. Therefore, only
some of the inter-site links will be inter-partition links,
and thus we can reduce the number of inter-partition
links quite significantly compared to the URL-hash
based scheme.

3. Hierarchical: Instead of using a hash-value, we may
partition the Web hierarchically based on the URLs
of pages. For example, we may divide the Web into
three partitions (the pages in the .com domain, .net
domain and all other pages) and allocate them to three
C-proc’s. Even further, we may decompose the Web by
language or country (e.g., .mx for Mexico).

Because pages hosted in the same domain or country
may be more likely to link to pages in the same domain,
scheme may have even fewer inter-partition links than
the site-hash based scheme.

In this paper, we do not consider the URL-hash based scheme,
because it generates a large number of inter-partition links.
When the crawler uses URL-hash based scheme, C-proc’s
need to exchange much larger number of URLs (exchange
mode), and the coverage of the overall crawler can be much
lower (firewall mode).

In addition, in our later experiments, we will mainly use
the site-hash based scheme as our partitioning function. We
chose this option because it is much simpler to implement,
and because it captures the core issues that we want to
study. For example, under the hierarchical scheme, it is
not easy to divide the Web into equal size partitions, while
it is relatively straightforward under the site-hash based
scheme.4 Also, we believe we can interpret the results from
the site-hash based scheme as the upper/lower bound for
the hierarchical scheme. For instance, assuming Web pages
link to more pages in the same domain, the number of inter-
partition links will be lower in the hierarchical scheme than
in the site-hash based scheme (although we could not con-
firm this trend in our experiments).

In Figure 3, we summarize the options that we have dis-
cussed so far. The right-hand table in the figure shows
more detailed view on the static coordination scheme. In
the diagram, we highlight the main focus of our paper with
dark grey. That is, we mainly study the static coordination
scheme (the third column in the left-hand table) and we use
the site-hash based partitioning for our experiments (the
second row in the second table). However, during our dis-
cussion, we will also briefly explore the implications of other
options. For instance, the firewall mode is an “improved”
version of the independent coordination scheme (in the first
table), so our study on the firewall mode will show the impli-
cations of the independent coordination scheme. Also, we
roughly estimate the performance of the URL-hash based
scheme (first row in the second table) when we discuss the
results from the site-hash based scheme.

Given our table of crawler design space, it would be very
interesting to see what options existing search engines se-
lected for their own crawlers. Unfortunately, this informa-
tion is impossible to obtain in most cases because compa-
nies consider their technologies proprietary and want to keep

4While the sizes of individual Web site vary, the sizes of
partitions are similar, because each partition contains many
Web sites and their average sizes are similar among parti-
tions.

Type

URL-hash

Site-hash

Hierarchical
Distributed

Intra-site

Independent Dynamic Static Batch Replication None

Main focus Also discussed

Partitioning

ExchangeCoordination

Firewall Cross-over

Mode
Not discussed further

Figure 3: Summary of the options discussed

them secret. The only two crawler designs that we know of
are the prototype Google crawler [23] (when it was devel-
oped at Stanford) and the Mercator crawler [14] at Compaq.
The prototype google crawler used the intra-site, static and
site-hash based scheme and ran in exchange mode [23]. The
Mercator crawler uses the site-based hashing scheme.

4. EVALUATION MODELS
In this section, we define metrics that will let us quantify

the advantages or disadvantages of different parallel crawl-
ing schemes. These metrics will be used later in our experi-
ments.

1. Overlap: When multiple C-proc’s are downloading
Web pages simultaneously, it is possible that differ-
ent C-proc’s download the same page multiple times.
Multiple downloads of the same page are clearly unde-
sirable.

More precisely, we define the overlap of downloaded
pages as N−I

I
. Here, N represents the total number of

pages downloaded by the overall crawler, and I repre-
sents the number of unique pages downloaded, again,
by the overall crawler. Thus, the goal of a parallel
crawler is to minimize the overlap.

Note that a parallel crawler does not have an overlap
problem, if it is based on the firewall mode (Section 3
Item 1) or the exchange mode (Section 3 Item 3). In
these modes, a C-proc downloads pages only within its
own partition, so the overlap is always zero.

2. Coverage: When multiple C-proc’s run independently,
it is possible that they may not download all pages that
they have to. In particular, a crawler based on the fire-
wall mode (Section 3 Item 1) may have this problem,
because its C-proc’s do not follow inter-partition links
nor exchange the links with others.

To formalize this notion, we define the coverage of
downloaded pages as I

U
, where U represents the total

number of pages that the overall crawler has to down-
load, and I is the number of unique pages downloaded
by the overall crawler. For example, in Figure 2, if C1

downloaded pages a, b and c, and if C2 downloaded
pages f through i, the coverage of the overall crawler
is 7

9
= 0.77, because it downloaded 7 pages out of 9.

3. Quality: Often, crawlers cannot download the whole
Web, and thus they try to download an “important” or
“relevant” section of the Web. For example, a crawler
may have storage space only for 1 million pages and
may want to download the “most important” 1 mil-
lion pages. To implement this policy, a crawler needs
a notion of “importance” of pages, often called an im-
portance metric [8].

For example, let us assume that the crawler uses back-
link count as its importance metric. That is, the crawler
considers a page p important when a lot of other pages
point to it. Then the goal of the crawler is to download
the most highly-linked 1 million pages. To achieve this
goal, a single-process crawler may use the following
method [8]: The crawler constantly keeps track of how
many backlinks each page has from the pages that it
has already downloaded, and first visits the page with
the highest backlink count. Clearly, the pages down-
loaded in this way may not be the top 1 million pages,
because the page selection is not based on the entire
Web, only on what has been seen so far. Thus, we may
formalize the notion of “quality” of downloaded pages
as follows [8]:

First, we assume a hypothetical oracle crawler, which
knows the exact importance of every page under a cer-
tain importance metric. We assume that the oracle
crawler downloads the most important N pages in to-
tal, and use PN to represent that set of N pages. We
also use AN to represent the set of N pages that an ac-
tual crawler would download, which would not be nec-

essarily the same as PN . Then we define |AN∩PN |
|PN | as

the quality of downloaded pages by the actual crawler.
Under this definition, the quality represents the frac-
tion of the true top N pages that are downloaded by
the crawler.

Note that the quality of a parallel crawler may be
worse than that of a single-process crawler, because
many importance metrics depend on the global struc-
ture of the Web (e.g., backlink count). That is, each C-
proc in a parallel crawler may know only the pages that
are downloaded by itself, and thus have less informa-
tion on page importance than a single-process crawler
does. On the other hand, a single-process crawler
knows all pages it has downloaded so far. Therefore, a

C-proc in a parallel crawler may make a worse crawling
decision than a single-process crawler.

In order to avoid this quality problem, C-proc’s need to
periodically exchange information on page importance.
For example, if the backlink count is the importance
metric, a C-proc may periodically notify other C-proc’s
of how many pages in its partition have links to pages
in other partitions.

Note that this backlink exchange can be naturally in-
corporated in an exchange mode crawler (Section 3
Item 3). In this mode, crawling processes exchange
inter-partition URLs periodically, so a C-proc can sim-
ply count how many inter-partition links it receives
from other C-proc’s, to count backlinks originating in
other partitions. More precisely, if the crawler uses the
batch communication technique (Section 3.1 Item 1),
process C1 would send a message like [http://cnn.

com/index.html, 3] to C2, to notify that C1 has seen
3 links to the page in the current batch.5 On receipt of
this message, C2 then increases the backlink count for
the page by 3 to reflect the inter-partition links. By
incorporating this scheme, we believe that the quality
of the exchange mode will be better than that of the
firewall mode or the cross-over mode.

However, note that the quality of an exchange mode
crawler may vary depending on how often it exchanges
backlink messages. For instance, if crawling processes
exchange backlink messages after every page down-
load, they will have essentially the same backlink infor-
mation as a single-process crawler does. (They know
backlink counts from all pages that have been down-
loaded.) Therefore, the quality of the downloaded
pages would be virtually the same as that of a single-
process crawler. In contrast, if C-proc’s rarely ex-
change backlink messages, they do not have “accurate”
backlink counts from downloaded pages, so they may
make poor crawling decisions, resulting in poor qual-
ity. Later, we will study how often C-proc’s should
exchange backlink messages in order to maximize the
quality.

4. Communication overhead: The C-proc’s in a par-
allel crawler need to exchange messages to coordinate
their work. In particular, C-proc’s based on the ex-
change mode (Section 3 Item 3) swap their inter-partition
URLs periodically. To quantify how much communi-
cation is required for this exchange, we define com-
munication overhead as the average number of inter-
partition URLs exchanged per downloaded page. For
example, if a parallel crawler has downloaded 1,000
pages in total and if its C-proc’s have exchanged 3,000
inter-partition URLs, its communication overhead is
3, 000/1, 000 = 3. Note that a crawler based on the the
firewall and the cross-over mode do not have any com-
munication overhead, because they do not exchange
any inter-partition URLs.

In Table 1, we compare the relative merits of the three
crawling modes (Section 3 Items 1–3). In the table, “Good”
means that the mode is expected to perform relatively well

5If the C-proc’s send inter-partition URLs incrementally af-
ter every page, the C-proc’s can send the URL only, and
other C-proc’s can simply count these URLs.

Mode Coverage Overlap Quality Communication
Firewall Bad Good Bad Good
Cross-over Good Bad Bad Good
Exchange Good Good Good Bad

Table 1: Comparison of three crawling modes

for that metric, and “Bad” means that it may perform worse
compared to other modes. For instance, the firewall mode
does not exchange any inter-partition URLs (Communica-
tion: Good) and downloads pages only once (Overlap: Good),
but it may not download every page (Coverage: Bad). Also,
because C-proc’s do not exchange inter-partition URLs, the
downloaded pages may be of low quality than those of an
exchange mode crawler. Later, we will examine these issues
more quantitatively through experiments based on real Web
data.

5. DESCRIPTION OF DATASET
We have discussed various issues related to a parallel crawler

and identified multiple alternatives for its architecture. In
the remainder of this paper, we quantitatively study these
issues through experiments conducted on real Web data.

In all of the following experiments, we used 40 millions
Web pages in our Stanford WebBase repository. Because
the property of this dataset may significantly impact the
result of our experiments, readers might be interested in
how we collected these pages.

We downloaded the pages using our Stanford WebBase
crawler in December 1999 in the period of 2 weeks. In
downloading the pages, the WebBase crawler started with
the URLs listed in Open Directory (http://www.dmoz.org),
and followed links. We decided to use the Open Directory
URLs as seed URLs, because these pages are the ones that
are considered “important” by its maintainers. In addition,
some of our local WebBase users were keenly interested in
the Open Directory pages and explicitly requested that we
cover them. The total number of URLs in the Open Direc-
tory was around 1 million at that time. Then conceptually,
the WebBase crawler downloaded all these pages, extracted
URLs within the downloaded pages, and followed links in a
breadth-first manner. (The WebBase crawler uses various
techniques to expedite and prioritize crawling process, but
we believe these optimizations do not affect the final dataset
significantly.)

Because our dataset was downloaded by a crawler in a
particular way, our dataset may not correctly represent the
actual Web as it is. In particular, our dataset may be bi-
ased towards more “popular pages,” because we started from
Open Directory pages. Also, our dataset does not cover the
pages that are accessible only through a query interface. For
example, our crawler did not download the pages generated
by a keyword-based search engine, because it did not try
to “guess” appropriate keywords to fill in. However, we
emphasize that many of dynamically-generated pages were
still downloaded by our crawler. For example, the pages
on Amazon web site (http://amazon.com) are dynamically
generated, but we could still download most of the pages on
the site by following links.

In summary, our dataset may not necessarily reflect the
actual image of the Web, but we believe it represents the
image that a crawler would see in its crawl. In most cases,

2 4 8 16 32 64

0.2

0.4

0.6

0.8

1

Number of C-proc’s

40 M
20 M

Coverage

n

Figure 4: Number of processes vs. Coverage

crawlers are mainly interested in downloading “popular” or
“important” pages, and they download pages by following
links, which is what we did for our data collection.

Our dataset is relatively “small” (40 million pages) com-
pared to the full Web, but keep in mind that using a sig-
nificantly larger dataset would have made many of our ex-
periments prohibitively expensive. As we will see, each of
the graphs we present study multiple configurations, and
for each configuration, multiple crawler runs were made to
obtain statistically valid data points. Each run involves sim-
ulating how one or more C-proc would visit the 40 million
pages. Such detailed simulations are inherently very time
consuming. As we present our results, we will return to the
dataset size issue at various points, and discuss whether a
larger dataset would have changed our conclusions. In one
case where conclusions could be impacted, we run an addi-
tional experiment with 20 million pages, to understand the
impact of a growing dataset.

6. FIREWALL MODE AND COVERAGE
A firewall mode crawler (Section 3 Item 1) has mini-

mal communication overhead, but it may have coverage and
quality problems (Section 4). In this section, we quantita-
tively study the effectiveness of a firewall mode crawler using
the 40 million pages in our repository. In particular, we es-
timate the coverage (Section 4 Item 2) of a firewall mode
crawler when it employs n C-proc’s in parallel. (We discuss
the quality issue of a parallel crawler later.)

In our experiments, we considered the 40 million pages
within our WebBase repository as the entire Web, and we
used site-hash based partitioning (Section 3.2 Item 2). As
the seed URLs, each C-proc was given 5 random URLs from
its own partition, so 5n seed URLs were used in total by the
overall crawler. (We discuss the effect of the number of seed
URLs shortly.) Since the crawler ran in firewall mode, C-
proc’s followed only intra-partition links, not inter-partition
links. Under these settings, we let the C-proc’s run until
they ran out of URLs. After this simulated crawling, we
measured the overall coverage of the crawler. We performed
these experiments with 5n random seed URLS and repeated
the experiments multiple times with different seed URLs. In
all of the runs, the results were essentially the same.

In Figure 4, we summarize the results from the exper-
iments. The horizontal axis represents n, the number of
parallel C-proc’s, and the vertical axis shows the coverage of
the overall crawler for the given experiment. The solid line
in the graph is the result from the 40M page experiment.

64 4096 10000 20000 30000

0.2

0.4

0.6

0.8

1

64

32

8

2 processes

processes

processes

processes

Coverage

Number of Seeds
s

Figure 5: Number of seed URLs vs. Coverage

(We explain the dotted line later on.) Note that the cov-
erage is only 0.9 even when n = 1 (a single-process). This
result is because the crawler in our experiment started with
only 5 URLs, while the actual dataset was collected with 1
million seed URLs. Thus, some of the 40 million pages were
unreachable from the 5 seed URLs.

From the figure it is clear that the coverage decreases as
the number of processes increases. This trend is because the
number of inter-partition links increases as the Web is split
into smaller partitions, and thus more pages are reachable
only through inter-partition links.

From this result we can see that we may run a crawler in a
firewall mode without much decrease in coverage with fewer
than 4 C-proc’s. For example, for the 4 process case, the
coverage decreases only 10% from the single-process case.
At the same time, we can also see that the firewall mode
crawler becomes quite ineffective with a large number of C-
proc’s. Less than 10% of the Web can be downloaded when
64 C-proc’s run together, each starting with 5 seed URLs.

Clearly, coverage may depend on the number of seed URLs
that each C-proc starts with. To study this issue, we also
ran experiments varying the number of seed URLs, s, and
we show the results in Figure 5. The horizontal axis in
the graph represents s, the total number of seed URLs that
the overall crawler used, and the vertical axis shows the
coverage for that experiment. For example, when s = 128,
the overall crawler used 128 total seed URLs, each C-proc
starting with 2 seed URLs when 64 C-proc’s ran in parallel.
We performed the experiments for 2, 8, 32, 64 C-proc cases
and plotted their coverage values. From this figure, we can
observe the following trends:

• When a large number of C-proc’s run in parallel, (e.g.,
32 or 64), the total number of seed URLs affects the
coverage very significantly. For example, when 64 pro-
cesses run in parallel the coverage value jumps from
0.4% to 10% if the number of seed URLs increases
from 64 to 1024.

• When only a small number of processes run in parallel
(e.g., 2 or 8), coverage is not significantly affected by
the number of seed URLs. While coverage increases
slightly as s increases, the improvement is marginal.

Based on these results, we draw the following conclusions:

1. When a relatively small number of C-proc’s are running
in parallel, a crawler using the firewall mode provides
good coverage. In this case, the crawler may start with
only a small number of seed URLs, because coverage
is not much affected by the number of seed URLs.

2. The firewall mode is not a good choice if the crawler
wants to download every single page on the Web. The
crawler may miss some portion of the Web, particu-
larly when it runs many C-proc’s in parallel.

Our results in this section are based on a 40 million page
dataset, so it is important to consider how coverage might
change with a different dataset, or equivalently, how it might
change as the Web grows or evolves. Unfortunately, it is dif-
ficult to predict how the Web will grow. On one hand, if all
“newly created” pages are well connected to existing pages
at their creation site, then coverage will increase. On the
other hand, if new pages tend to form disconnected groups,
the overall coverage will decrease. Depending on how the
Web grows, coverage could go either way.

As a preliminary study of the growth issue, we conducted
the same experiments with a subset of 20M pages and mea-
sured how the coverage changes.6 We first randomly selected
a half of the sites in our dataset, and ran the experiments
using only the pages from those sites. Thus, one can roughly
view the smaller dataset as a smaller Web, that then “over
time” doubled its number of sites to yield the second dataset.
The dotted line in Figure 4 shows the results from the 20M-
page experiments. From the graph we can see that as “our
Web doubles in size,” one can double the number of C-proc’s
and retain roughly the same coverage. That is, the new sites
can be visited by new C-proc’s without significantly changing
the coverage they obtain. If the growth did not exclusively
come from new sites, then one should not quite double the
number of C-proc’s each time the Web doubles in size, to
retain the same coverage.

Example 1. (Generic search engine) To illustrate how
our results could guide the design of a parallel crawler, con-
sider the following example. Assume that to operate a Web
search engine, we need to download 1 billion pages7 in one
month. Each machine that we plan to run our C-proc’s on
has 10 Mbps link to the Internet, and we can use as many
machines as we want.

Given that the average size of a web page is around 10K
bytes, we roughly need to download 104 × 109 = 1013 bytes
in one month. This download rate corresponds to 34 Mbps,
and we need 4 machines (thus 4 C-proc’s) to obtain the rate.
If we want to be conservative, we can use the results of our
40M-page experiment (Figure 4), and estimate that the cov-
erage will be at least 0.8 with 4 C-proc’s. Therefore, in this
scenario, the firewall mode may be good enough, unless it is
very important to download the “entire” Web.

Example 2. (High freshness) As a second example, let us
now assume that we have strong “freshness” requirement on
the 1 billion pages and need to revisit every page once every
week, not once every month. This new scenario requires
approximately 140 Mbps for page download, and we need to
run 14 C-proc’s. In this case, the coverage of the overall
crawler decreases to less than 0.5 according to Figure 4. Of
course, the coverage could be larger than our conservative
estimate, but to be safe one would probably want to consider
using a crawler mode different than the firewall mode.

6We recently completed a crawl of about 130M pages, and
we are also running the experiments on this new dataset.
(Each run takes over a week to complete.) We will include
the results in the final version of this paper.
7Currently the Web is estimated to have around 1 billion
pages.

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3
overlap

coverage

n=64

n=32

: number of n ’sC-proc

n=
4

n=
8

n=
2n=16

Figure 6: Coverage vs. Overlap for a cross-over
mode crawler

7. CROSS-OVER MODE AND OVERLAP
In this section, we study the effectiveness of a cross-over

mode crawler (Section 3, Item 2). A cross-over crawler may
yield improved coverage of the Web, since it follows inter-
partition links when a C-proc runs out of URLs in its own
partition. However, this mode incurs overlap in downloaded
pages (Section 4, Item 1), because a page can be downloaded
by multiple C-proc’s. Therefore, the crawler increases its
coverage at the expense of overlap in the downloaded pages.

In Figure 6, we show the relationship between the coverage
and the overlap of a cross-over mode crawler obtained from
the following experiments. We partitioned the 40M pages
using site-hash partitioning and assigned them to n C-proc’s.
Each of the n C-proc’s then was given 5 random seed URLs
from its partition and followed links in the cross-over mode.
During this experiment, we measured how much overlap the
overall crawler incurred when its coverage reached various
points. The horizontal axis in the graph shows the coverage
at a particular time and the vertical axis shows the overlap
at the given coverage. We performed the experiments for
n = 2, 4, . . . , 64.

Note that in most cases the overlap stays at zero until the
coverage becomes relatively large. For example, when n =
16, the overlap is zero until coverage reaches 0.5. We can un-
derstand this result by looking at the graph in Figure 4. Ac-
cording to that graph, a crawler with 16 C-proc’s can cover
around 50% of the Web by following only intra-partition
links. Therefore, even a cross-over mode crawler will fol-
low only intra-partition links until its coverage reaches that
point. Only after that, each C-proc starts to follow inter-
partition links, thus increasing the overlap. For this reason,
we believe that the overlap would have been much worse in
the beginning of the crawl, if we adopted the independent
model (Section). By applying the partitioning scheme to
C-proc’s, we make each C-proc stay in its own partition in
the beginning and suppress the overlap as long as possible.

While the crawler in the cross-over mode is much better
than one based on the independent model, it is clear that the
cross-over crawler still incurs quite significant overlap. For
example, when 4 C-proc’s run in parallel in the cross-over
mode, the overlap becomes almost 2.5 to obtain coverage
close to 1. For this reason, we do not recommend the cross-
over mode, unless it is absolutely necessary to download
every page without any communication between C-proc’s.

2 4 8 16 32 64

0.5

1

1.5

2

2.5

3

URL Hash

Site Hash

Communication overhead

n

Number of C-proc’s

Figure 7: Number of crawling processes vs. Number
of URLs exchanged per page

10000 50000 100000 150000 200000

0.2

0.4

0.6

0.8

1

2

8

64

Processes

Communication overhead

k

Number of replicated URLs

Figure 8: Number of replicated URLs vs. Number
of URLs exchanged per page

8. EXCHANGE MODE AND COMMUNICA-
TION

To avoid the overlap and coverage problems, an exchange
mode crawler (Section 3, Item 3) constantly exchanges inter-
partition URLs between C-proc’s. In this section, we study
the communication overhead (Section 4, Item 4) of an ex-
change mode crawler and how much we can reduce it by
replicating the most popular k URLs. For now, let us as-
sume that a C-proc immediately transfers inter-peartition
URLs. (We will discuss batch communication later when
we discuss the quality of a parallel crawler.)

In the experiments, again, we split the 40 million pages
into n partitions based on site-hash values and ran n C-
proc’s in the exchange mode. At the end of the crawl, we
measured how many URLs had been exchanged during the
crawl. We show the results in Figure 7. In the figure, the
horizontal axis represents the number of parallel C-proc’s,
n, and the vertical axis shows the communication overhead
(the average number of URLs transferred per page). For
comparison purposes, the figure also shows the overhead for
a URL-hash based scheme, although the curve is clipped at
the top because of its large overhead values.

To explain the graph, we first note that an average page
has 10 out-links, and about 9 of them point to pages in
the same site. Therefore, the 9 links are internally followed
by a C-proc under site-hash partitioning. Only the remain-
ing 1 link points to a page in a different site and may be
exchanged between processes. Figure 7 indicates that this
URL exchange increases with the number of processes. For
example, the C-proc’s exchanged 0.4 URLs per page when
2 processes ran, while they exchanged 0.8 URLs per page
when 16 processes ran. Based on the graph, we draw the

following conclusions:

• The site-hash based partitioning scheme significantly
reduces communication overhead, compared to the URL-
hash based scheme. We need to transfer only up to
one link per page (or 10% of the links), which is sig-
nificantly smaller than the URL-hash based scheme.
For example, when we ran 2 C-proc’s using the URL-
hash based scheme the crawler exchanged 5 links per
page under the URL-hash based scheme, which was
significantly larger than 0.5 links per page under the
site-hash based scheme.

• The network bandwidth used for the URL exchange is
relatively small, compared to the actual page down-
load bandwidth. Under the site-hash based scheme,
at most 1 URL will be exchanged per page, which is
about 40 bytes.8 Given that the average size of a Web
page is 10 KB, the URL exchange consumes less than
40/10K = 0.4% of the total network bandwidth.

• However, the overhead of the URL exchange on the
overall system can be quite significant. The processes
need to exchange up to one message per page, and the
message has to go through the TCP/IP network stack
at the sender and the receiver. Thus it is copied to and
from kernel space twice, incurring two context switches
between the kernel and the user mode. Since these op-
erations pose significant overhead even if the message
size is small, the overall overhead can be important if
the processes exchange one message per every down-
loaded page.

In order to study how much we can reduce this overhead
by replication (Section 3.1, Item 2), in Figure 8 we show
the communication overhead when we replicate the top k
popular URLs. In the figure, the horizontal axis shows the
number of replicated URLs, k, and the vertical axis shows
the communication overhead.

Remember that in a real-world scenario, we would iden-
tify the most popular URLs based on the image of the Web
from a previous crawl. However, in our experiment, we iden-
tified the top k URLs based on the 40 million pages in our
current WebBase repository, which was also used for our ex-
periments. Therefore, there had been no change over time,
and the replicated URLs were exactly the most popular ones
in the repository. For this reason, in a real-world scenario,
the actual communication overhead might be slightly worse
than what our results show.

From Figure 8 it is clear that we can significantly reduce
the communication overhead by replicating a relatively small
number of URLs. For example, when 64 C-proc’s run in
parallel, the overhead reduces from 0.86 URLs/page to 0.52
URLs/page (40% reduction) when we replicate only 10, 000
URLs. From the figure, we can also see that this reduction
diminishes as the number of replicated URLs increases. For
example, when we replicate 100, 000 URLs, we can get about
51% reduction (from 0.86 to 0.42, 64 process case), while
we can get only 53% reduction when we replicate 200, 000
URLs. Based on this result, we recommend replicating be-
tween 10, 000 to 100, 000 UCLs in each C-proc, in order to
minimize the communication overhead while maintaining a
low replication overhead.

8In our estimation, an average URL was about 40 bytes
long.

While our experiments were based on 40 million pages, the
results will be similar, even if we were to run our experiments
on a larger dataset. Note that our results depend on the
fraction of links pointing to the top k URLs. We believe
that the links in our experiments are good samples for the
Web, because the pages were downloaded from the Web and
the links in the pages were created by independent authors.
Therefore, a similar fraction of links would point to the top
k URLs, even if we download more pages, or equivalently, if
the Web grows over time.

9. QUALITY AND BATCH COMMUNICA-
TION

As we discussed, the quality (Section 4, Item 3) of a
parallel crawler can be worse than that of a single-process
crawler, because each C-proc may make crawling decisions
solely based on the information collected within its own par-
tition. We now study this quality issue. In the discussion we
also study the impact of the batch communication technique
(Section 3.1 Item 1) on quality.

Throughout the experiments in this section, we assume
that the crawler uses the number of backlinks to page p as
the importance of p, or I(p). That is, if 1000 pages on the
Web have links to page p, the importance of p is I(p) = 1000.
Clearly, there exist many other ways to define the impor-
tance of a page, but we use this metric because it (or its
variations) is being used by some existing search engines [23,
12]. Also, note that this metric depends on the global struc-
ture of the Web. If we use an importance metric that solely
depends on a page itself, not on the global structure of the
Web, the quality of a parallel crawler will be essentially the
same as that of a single crawler, because each C-proc in a
parallel crawler can make good decisions based on the pages
that it has downloaded.

Under the backlink metric, each C-proc in our experiments
counted how many backlinks a page has from the down-
loaded pages and visited the page with the most backlinks
first. Remember that the C-proc’s need to periodically ex-
change messages to inform others of the inter-partition back-
links. Depending on how often they exchange messages, the
quality of the downloaded pages will differ. For example,
if C-proc’s never exchange messages, the quality will be the
same as that of a firewall mode crawler, and if they exchange
messages after every downloaded page, the quality will be
similar to that of a single-process crawler.

To study these issues, we compared the quality of the
downloaded pages when C-proc’s exchanged backlink mes-
sages at various intervals and we show the results in Fig-
ures 9(a), 10(a) and 11(a). Each graph shows the quality
achieved by the overall crawler when it downloaded a total
of 500K, 2M, and 8M pages, respectively. The horizontal
axis in the graphs represents the total number of URL ex-
changes during a crawl, x, and the vertical axis shows the
quality for the given experiment. For example, when x = 1,
the C-proc’s exchanged backlink count information only once
in the middle of the crawl. Therefore, the case when x = 0
represents the quality of a firewall mode crawler, and the
case when x → ∞ shows the quality a single-process crawler.
In Figure 9(b), 10(b) and 11(b), we also show the commu-
nication overhead (Section 4, Item 4); that is, the average
number of [URL, backlink count] pairs exchanged per a
downloaded page.

0 1 2 4 10 20 50 100 500 1000

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2
Quality

Number of URL exchanges

2
8
64

Processes

x

(a) URL exchange vs. Quality

0 1 2 4 10 20 50

0.2

0.4

0.6

0.8

1.0

Number of URL exchanges

2
8
64

Processes

x

Communication overhead

(b) URL exchange vs. Communication

Figure 9: Crawlers downloaded 500K pages (1.2% of
40M)

From these figures, we can observe the following trends:

• As the number of crawling processes increases, the qual-
ity of downloaded pages becomes worse, unless they ex-
change backlink messages often. For example, in Fig-
ure 9(a), the quality achieved by a 2 process crawler
(0.12) is significantly higher than that of a 64 process
crawler (0.025) in the firewall mode (x = 0). Again,
this result is because each C-proc learns less about
the global backlink counts when the Web is split into
smaller parts.

• The quality of the firewall mode crawler (x = 0) is sig-
nificantly worse than that of the single-process crawler
(x → ∞) when the crawler downloads a relatively small
fraction of the pages (Figure 9(a) and 10(a)). How-
ever, the difference is not very significant when the
crawler downloads a relatively large fraction (Figure 11
(a)). In other experiments, when the crawler down-
loaded more than 50% of the pages, the difference was
almost negligible in any case. (Due to space limita-
tions, we do not show the graphs.) Intuitively, this
result makes sense because quality is an important is-
sue only when the crawler downloads a small portion
of the Web. (If the crawler will visit all pages anyway,
quality is not relevant.)

• The communication overhead does not increase lin-
early as the number of URL exchange increases. The
graphs in Figure 9(b), 10(b) and 11(b) are not straight

0 1 2 4 10 20 50 100 500 1000

0.05

0.1

0.15

0.2

0.25

Number of URL exchanges

Quality

2
8
64

Processes

x

(a) URL exchange vs. Quality

0 1 2 4 10 20 50100 5001000

0.25

0.5

0.75

1

2
8
64

Communication overhead

x

Number of URL exchanges

Processes

(b) URL exchange vs. Communication

Figure 10: Crawlers downloaded 2M pages (5% of
40M)

lines. This result is because a popular URL appear
multiple times between backlink exchanges. There-
fore, a popular URL can be transferred as one entry
(URL and its backlink count) in the exchange, even if
it appeared multiple times. This reduction increases
as C-proc’s exchange backlink messages less frequently.

• One does not need a large number of URL exchanges
to achieve high quality. Through multiple experiments,
we tried to identify how often C-proc’s should exchange
backlink messages to achieve the highest quality value.
From these experiments, we found that a parallel crawler
can get the highest quality values even if the processes
communicate less than 100 times during a crawl.

We use the following example to illustrate how one can
use the results of our experiments.

Example 3. (Medium-Scale Search Engine) Say we plan
to operate a medium-scale search engine, and we want to
maintain about 20% of the Web (200 M pages) in our index.
Our plan is to refresh the index once a month. The machines
that we can use have individual T1 links (1.5 Mbps) to the
Internet.

In order to update the index once a month, we need about
6.2 Mbps download bandwidth, so we have to run at least
5 C-proc’s on 5 machines. According to Figure 11(a) (20%
download case), we can achieve the highest quality if the C-
proc’s exchange backlink messages 10 times during a crawl
when 8 processes run in parallel. (We use the 8 process

0 1 2 4 10 20 50 100 500 1000

0.1

0.2

0.3

0.4

0.5

0.6

Number of URL exchanges

Quality

2
8
64

Processes

x

(a) URL exchange vs. Quality

0 1 2 4 10 20 50 100 5001000

0.5

0.4

0.3

0.2

0.1

2
8
64

Communication overhead

Processes

x

Number of URL exchanges

(b) URL exchange vs. Communication

Figure 11: Crawlers downloaded 8M pages (20% of
40M)

case because it is the closest number to 5). Also, from Fig-
ure 11(b), we can see that when C-proc’s exchange messages
10 times during a crawl they need to exchange fewer than
0.17 × 200M = 34M [URL, backlink count] pairs in to-
tal. Therefore, the total network bandwidth used by the back-
link exchange is only (34M · 40)/(200M · 10K) ≈ 0.06% of
the bandwidth used by actual page downloads. Also, since
the exchange happens only 10 times during a crawl, the
context-switch overhead for message transfers (discussed in
Section 8) is minimal.

Note that in this scenario we need to exchange 10 back-
link messages in one month or one message every three days.
Therefore, even if the connection between C-proc’s is unreli-
able or sporadic, we can still use the exchange mode without
any problem.

10. CONCLUSION
Crawlers are being used more and more often to collect

Web data for search engine, caches, and data mining. As
the size of the Web grows, it becomes increasingly impor-
tant to use parallel crawlers. Unfortunately, almost nothing
is known (at least in the open literature) about options for
parallelizing crawlers and their performance. Our paper ad-
dresses this shortcoming by presenting several architectures
and strategies for parallel crawlers, and by studying their
performance. We believe that our paper offers some useful
guidelines for crawler designers, helping them for example,

select the right number of crawling processes, or select the
proper inter-process coordination scheme.

In summary, the main conclusions of our study were the
following:

• When a small number of crawling processes run in par-
allel (in our experiment, 4 or fewer), the firewall mode
provides good coverage. Given that firewall mode crawlers
can run totally independently and are easy to imple-
ment, we believe that it is a good option to consider.
The cases when the firewall mode might not be appro-
priate are:

1. when we need to run more than 4 crawling pro-
cesses or

2. when we download only a small subset of the Web
and the quality of the downloaded pages is impor-
tant.

• A crawler based on the exchange mode consumes small
network bandwidth for URL exchanges (less than 1%
of the network bandwidth). It can also minimize other
overheads by adopting the batch communication tech-
nique. In our experiments, the crawler could maximize
the quality of the downloaded pages, even if it ex-
changed backlink messages fewer than 100 times dur-
ing a crawl.

• By replicating between 10, 000 and 100, 000 popular
URLs, we can reduce the communication overhead by
roughly 40%. Replicating more URLs does not signif-
icantly reduce the overhead.

11. REFERENCES
[1] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A.

Patterson, D. S. Roselli, and R. Y. Wang. Serverless
network file systems. In Proceedings of the 15th
Symposium on Operating Systems Principles, 1995.

[2] A. Barabasi and R. Albert. Emergence of scaling in
random networks. Science, 286(509), 1999.

[3] A. Z. Broder, S. R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. L.
Wiener. Graph structure in the web. In Proceedings of
the Ninth World-Wide Web Conference, 2000.

[4] M. Burner. Crawling towards eterneity: Building an
archive of the world wide web. Web Techniques
Magazine, 2(5), May 1998.

[5] S. Chakrabarti, M. van den Berg, and B. Dom.
Focused crawling: A new approach to topic-specific
web resource discovery. In The 8th International
World Wide Web Conference, 1999.

[6] J. Cho and H. Garcia-Molina. The evolution of the
web and implications for an incremental crawler. In
Proceedings of the Twenty-sixth International
Conference on Very Large Databases, 2000.

[7] J. Cho and H. Garcia-Molina. Synchronizing a
database to improve freshness. In Proceedings of the
2000 ACM SIGMOD, 2000.

[8] J. Cho, H. Garcia-Molina, and L. Page. Efficient
crawling through URL ordering. Computers networks
and ISDN systems, 30:161–172, 1998.

[9] E. Coffman, Jr., Z. Liu, and R. R. Weber. Optimal
robot scheduling for web search engines. Technical
report, INRIA, 1997.

[10] M. Diligenti, F. M. Coetzee, S. Lawrence, C. L. Giles,
and M. Gori. Focused crawling using context graphs.
In Proceedings of the Twenty-sixth International
Conference on Very Large Databases, 2000.

[11] D. Eichmann. The RBSE spider: Balancing effective
search against web load. In Proceedings of the First
World-Wide Web Conference, 1994.

[12] Google Inc. http://www.google.com.

[13] A. Heydon and M. Najork. Mercator: A scalable,
extensible web crawler. Word Wide Web,
2(4):219–229, December 1999.

[14] A. Heydon and M. Najork. High-performance web
crawling. Technical report, SRC Research Report, 173,
Compaq Systems Research Center, September 2001.

[15] D. Hirschberg. Parallel algorithms for the transitive
closure and the connected component problem. In
Proceedings of the 8th Annual ACM Symposium on
the Theory of Computing, 1976.

[16] M. Koster. Robots in the web: threat or treat?
ConneXions, 4(4), April 1995.

[17] K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM Transactions on
Computer Systems, 7(4):321–357, November 1989.

[18] O. A. McBryan. GENVL and WWWW: Tools for
taming the web. In Proceedings of the First
World-Wide Web Conference, 1994.

[19] R. C. Miller and K. Bharat. SPHINX: a framework for
creating personal, site-specific web crawlers. In
Proceedings of the Seventh World-Wide Web
Conference, 1998.

[20] D. S. MiloJicic, F. Douglis, Y. Paindaveine,
R. Wheeler, and S. Zhou. Process migration. ACM
Computing Surveys, 32(3):241–299, September 2000.

[21] D. Nassimi and S. Sahni. Parallel permutation and
sorting algorithms and a new generalized connection
network. Journal of ACM, 29:642–667, July 1982.

[22] M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, 1999.

[23] L. Page and S. Brin. The anatomy of a large-scale
hypertextual web search engine. In Proceedings of the
Seventh World-Wide Web Conference, 1998.

[24] B. Pinkerton. Finding what people want: Experiences
with the web crawler. In Proceedings of the Second
World-Wide Web Conference, 1994.

[25] M. J. Quinn and N. Deo. Parallel graph algorithms.
ACM Computing Surveys, 16(3), September 1984.

[26] Robots exclusion protocol. http://info.webcrawler.
com/mak/projects/robots/exclusion.html.

[27] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E.
Okasaki, E. H. Siegel, and D. C. Steere. Coda: a
highly available file system for a distributed
workstation environment. IEEE Transactions on
Computers, 39(4):447–459, April 1990.

[28] A. S. Tanenbaum and R. V. Renesse. Distributed
operating systems. ACM Computing Surveys, 17(4),
December 1985.

[29] G. K. Zipf. Human Behaviour and the Principle of
Least Effort: an Introduction to Human Ecology.
Addison-Wesley, 1949.

