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ABSTRACT
In a number of recent studies [4, 8] researchers have found
that because search engines repeatedly return currently pop-
ular pages at the top of search results, popular pages tend to
get even more popular, while unpopular pages get ignored by
an average user. This “rich-get-richer” phenomenon is par-
ticularly problematic for new and high-quality pages because
they may never get a chance to get users’ attention, decreas-
ing the overall quality of search results in the long run. In this
paper, we propose a new ranking function, called page qual-
ity that can alleviate the problem of popularity-based ranking.
We first present a formal framework to study the search en-
gine bias by discussing what is an “ideal” way to measure the
intrinsic quality of a page. We then compare how PageRank,
the current ranking metric used by major search engines, dif-
fers from this ideal quality metric. This framework will help
us investigate the search engine bias in more concrete terms
and provide clear understanding on why PageRank is effective
in many cases and exactly when it is problematic. We then
propose a practical way to estimate the intrinsic page quality
to avoid the inherent bias of PageRank. We derive our pro-
posed quality estimator through a careful analysis of a reason-
able web user model and we present experimental results that
show the potential of our proposed estimator. We believe that
our quality estimator has the potential to alleviate the rich-get-
richer phenomenon and help new and high-quality pages get
the attention that they deserve.

1. INTRODUCTION
Recent studies show that search engines play an increas-

ingly important role in people’s surfing of the web; when a
user wants to look up information from the web, the user often
goes to his favorite search engine, issues keyword queries, and
clicks on the returned pages. Given the sheer quantity of in-
formation available on the web, the widespread use of search
engines is not surprising. An individual simply cannot read
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billions of pages available on the web, so he gets help from
search engines to narrow the focus to a small number of pages
worth looking at.

Given this dominant role that search engines play in our
daily web access, it is now even claimed that “if your page
is not indexed by Google, your page does not exist on the
web [20].” While this statement may be an exaggeration, it
has an alarming bit of truth. Given that an individual does not
have the time to look at all web pages and identify relevant
ones, a page that is not returned by search engines is unlikely
to be viewed by many web users. In short, what people per-
ceive from the web may not necessarily be what exists on the
real web, but what is processed and presented by search en-
gines.

Recently, this potential “bias” introduced by search engines
on the users’ perception of the web has attracted significant
attention from the research community and has become an ac-
tive area of research [4, 8]. For example, Cho et al. [8] stud-
ied the property of PageRank, one of the core ranking metrics
used by web search engines, and presented a set of evidences
that the PageRank metric induces the “rich-get-richer” phe-
nomenon. That is, popular pages (the pages with high PageR-
ank values) get even more popular over time because search
engines repeatedly return them at the top of search results and
induce more people to visit them. In contrast, a newly-created
page gets completely ignored by users even if the page is of
very high quality because it is ranked at the bottom of search
results. In their study of Chilean web sites, Baeza-Yates et
al. [4] experimentally show that new pages have significantly
lower PageRank values than older ones and show that PageR-
ank does not work well in identifying new and high-quality
pages.

The main goal of this paper is to understand the limitation of
PageRank and to design a new ranking metric that can alleviate
the bias of PageRank. Towards this goal, we first explore what
might be a good way of measuring the true “quality” of a page
and how PageRank is related to this hypothetical quality met-
ric. We then propose a practical quality estimator that predicts
the true quality value of a page based on the evolution of the
link structure of the web. As we will see, our proposed quality
estimator has a strong theoretical foundation — it is derived
through a careful analysis of a reasonable web user model —
and can be viewed as an “improved” version of PageRank. It
considers both the current popularity of a page and its relative
popularity increase in measuring the quality of a page. We
also present an experimental evidence that suggests the effec-
tiveness of our quality estimator in a real-world setting. In



summary, we believe we make the following contributions in
this paper:

• We introduce a formal definition of page quality, which
we believe is a good way of capturing the intuitive con-
cept of “page quality.” By separating the notion of page
quality from actual ranking functions, such as PageR-
ank, we provide the formal framework to objectively
judge the effectiveness of a ranking function. (Section 4)

• By comparing our definition of page quality and PageR-
ank, we provide a formal justification on why PageR-
ank is an effective ranking metric in many scenarios.
We also show that PageRank is biased against unpopu-
lar pages, especially the ones that were created recently.
(Section 4)

• We propose a direct and practical way of estimating page
quality. Our proposed quality estimator is based on our
careful analysis of a simple and reasonable web user
model. (Sections 5 and 6)

• We conduct an experiment on real-world web data to
measure the effectiveness of our quality estimator. While
preliminary, this experiment will show the potential of
our estimator in estimating the quality of a page. (Sec-
tion 8)

2. RELATED WORK
[25] provides a good overview of the work done in the Infor-

mation Retrieval (IR) community that studies the problem of
identifying the best matching documents to a user query. This
body of work analyzes the content of the documents to find
the best matches. The boolean model [31], the vector-space
model [24] and the probabilistic model [23, 9] are some of the
well known models developed in this context. Some of these
models (particularly the vector-space model) were adopted by
most web search engines to find relevant documents to a given
query. PageRank and our proposed quality estimator is applied
to the set of relevant pages discovered using these models in
order to rank the pages.

A number of researchers have investigated using the link
structure of the web to improve search results and proposed
various ranking metrics. Hub and Authority [16] and PageR-
ank [21] are the most well known metrics that use the web link
structure. PageRank and its variations are currently being used
by major search engines. [1, 14, 15] describe various ways
to improve PageRank computation. [2] provides a theoretical
justification for the Hub and Authority metric and proposes a
mechanism to combine link and text analysis for page ranking.
[13] studies personalization of the PageRank metric by giving
different weights to pages. [28] proposes a modification of
PageRank equation to tailor it for web administrators. [30] de-
scribes how to compute the global PageRank based on local
link structure within each site and the inter-site link informa-
tion. [26] proposes to rank web pages by the user traffic to
the pages and suggests a traffic-prediction model based on en-
tropy maximization. In the database community, researchers
also developed ways to rank database objects by modeling the
object relationship as a graph and use the graph structure to
rank them [11, 10, 5].

There exists a large body of work that investigates the prop-
erties of the web link structure [3, 6, 7, 22]. For example, [7]

shows that the global link structure of the web is similar to a
“bow tie.” [3, 7] shows that the number of in-bound or out-
bound links follow a power-law distribution. [6, 22] propose
potential models on the web link structure.

[4, 8] provide experimental evidences that PageRank is bi-
ased against new pages. In their study of Chilean web sites,
Baeza-Yates et al. [4] show that new pages have significantly
lower PageRank values than others and propose to consider
the last-modified date of a page in measuring the quality of a
page.

The probabilistic model [9, 23] developed in the IR com-
munity is similar to our quality metric in that both definitions
take a probabilistic approach. The probabilistic model, how-
ever, measures the probability that a page belongs to the rele-
vant set given a particular user query, while our quality metric
measures the general probability that a user will like a page
when the user looks at the page.

3. PAGERANK AND POPULARITY
We start our discussion with a brief overview of the PageR-

ank metric and explain how it is related to the notion of the
popularity of a page. A reader familiar with PageRank may
skip this section.

Intuitively, PageRank is based on the idea that a link from
page p1 to p2 may indicate that the author of p1 is interested in
page p2. Thus, if a page has many links from other pages, we
may conclude that many people are interested in the page and
that the page should be considered important, or of high qual-
ity. Furthermore, we expect that a link from an important page
(say, the Yahoo home page) carries more significance than a
link from a random web page (say, some individual’s home
page).

The PageRank metric PR(p), thus, defines the importance
of page p to be the sum of the importance of the pages that
point to p. Thus, if many important pages point to p, PR(p)
will be high. More formally, consider pages p1, . . . , pn, which
link to a page pi. Let cj be the total number of links going
out of page pj . If a page has no outgoing link, we assume
that it has outgoing links to every single web page. Then, the
PageRank of page pi is given by

PR(pi) = d + (1 − d) [PR(p1)/c1 + · · · + PR(pn)/cn]

Here, the constant d is called a damping factor whose intuition
is given below. Ignoring the damping factor for now, we can
see that PR(pi) is roughly the sum of PR(pj)’s that point
to pi. Under this formulation, we construct one equation per
web page pi with the equal number of unknown PR(pi) val-
ues. Thus, the equations can be solved for the PR(pi) values.
This computation is typically done through iterative methods,
starting with all PR(pi) values equal to 1.

A way to think intuitively about PageRank is to consider
a user “surfing” the web, starting from any page, and ran-
domly selecting from that page a link to follow. When the
user reaches a page with no outlinks, he jumps to a random
page. When the user is on a page, there is some probabil-
ity, d, that the next visited page will be completely random.
This damping factor d makes sense because users will only
continue clicking on links for a finite amount of time before
they get distracted and start exploring something completely
unrelated. With the remaining probability 1 − d, the user will
click on one of the cj links on page pj at random. The PR(pi)



values we computed above give us the probability that our ran-
dom surfer is at pi at any given time.

Given the definition, we can interpret the PageRank of a
page as its popularity on the web. High PageRank implies
that (1) many web users are interested in the page and that (2)
more users are likely to visit the page compared to low PageR-
ank pages. Given the effectiveness of Google’s search results
and its adoption by many web search engines [26], PageRank
seems to capture the importance or the quality of web pages
well. According to a recent survey the majority of users are
satisfied with the top-ranked results from Google and from
major search engines [19].

4. QUALITY AND PAGERANK
In the previous section, we went over the definition of PageR-

ank and explained that the PageRank of a page captures the
popularity of the page on the web. We also argued that the
widespread use of PageRank for web search engines indicates
its effectiveness for web searches.

Before we discuss the weaknesses of PageRank and devise
an improved quality metric, we first examine why PageRank
is effective in ranking web pages, so that we can build our
new metric on the strength of PageRank. The key feature of
PageRank is that it is based on the popularity of a web page. In
order for a page to be popular, may users must have examined
the page and liked it. Given this fact, when the PageRank of
a page is high — meaning that many previous users looked
at the page and liked it — it is reasonable to expect that a
new user seeing the page for the first time will also like it.
Overall, by returning high PageRank pages first in their search
results, search engines increase the probability that their users
like their first few results.

At the same time, PageRank is significantly biased against
unpopular pages, especially the ones that were recently cre-
ated [8, 4]. For example, consider a new page that has just
been created. We assume that the page is of very high quality
and anyone who looks at the page agrees that the page should
be ranked highly by search engines. Even so, because the page
is new, few people are aware of it and there exist only a few
(or no) links to it. This low popularity means the page will be
ranked at the bottom of search results, which in turn means that
few users will ever see the page. Because of the low traffic, it
takes a very long time for the page to become popular.

Given the above discussion, we argue that what we really
want to use as the ranking metric is not the current popularity
of the page, but the probability that a web user will like the
page when the user sees it for the first time. PageRank works
well in many cases because it captures this probability well for
well-known pages. At the same time, it is biased for new pages
because PageRank does not correlate with this probability for
new pages. To avoid this bias while preserving the strength of
PageRank, we propose to use the following definition as the
quality of a page:

Definition 1 (Page quality) We define the quality of a page
p, Q(p), as the conditional probability that an average user
will like the page when user sees the page for the first time.
Mathematically,

Q(p) = P (Lp|Ap)

where Ap represents the event that the user becomes newly
aware of the page p by visiting the page for the first time and

and Lp represents the event that the user likes the page. 2

Given this definition, we can hypothetically measure the
quality of page p by showing p to all web users. For example,
assuming the total number of web users is 100, if 90 web users
like page p after they read it, its quality Q(p) is 0.9. We dis-
cuss how we may measure page quality without explicit user
feedback in the next section.

We believe that our quality definition is reasonable given
that page quality can be a very subjective notion [17, 12]; one
person may regard a page very highly while another person
may consider the page completely useless. When individual
users have different opinions on the quality of a page, it is
reasonable to prefer the one that people are most likely to “vote
for.”

Note that PageRank of a page estimates the quality of a page
well if all web pages have been given the same chance to be
discovered by web users; when pages have been looked at by
the same set of people, its popularity or the number of peo-
ple who like the page is proportional to its quality. However,
new pages have not been given the same chance as old and
established pages, so the current popularity of new pages are
definitely lower than their quality.

Finally, under our definition, we note that it is possible that
page p1 is considered of higher quality than p2 simply because
p1 discusses a more popular topic. For example, if p1 is about
the movie “Star Wars” and p2 is about the movie “Latino” (a
1985 movie produced by George Lucas), p1 may be consid-
ered of higher quality simply because the movie “Star Wars”
is more popular than “Latino.” We believe this “topic bias” is
not important in our context. Before search engines use our
quality metric (or PageRank) to rank pages, they first use a
relevance metric (such as the tf.idf metric [25]) to select the
set of pages relevant to the query issued by the user. It is only
within this set of pages (say, pages on the movie Latino) that
the quality metric is applied. Therefore, only the relative qual-
ity within a particular relevant set of documents will actually
be important in determining the results returned in response
to a query. Thus, the absolute difference in the quality value
among the documents on different topics does not hurt the ef-
fectiveness of a search engine.

4.1 Measuring page quality
Given our definition of page quality, the main challenge is

how we can measure it. If we want to measure the quality
in the strictest sense, we need to contact a large number of
web users who visited the page and obtain their feedback on
whether they liked the page or not. As previous studies point
out, obtaining explicit user feedback is a challenging task and
often impractical in real-world settings. Then how can we
measure the quality of a page without asking for user feed-
back?

Our main idea is based on that (1) the creation of a link
often indicates that a user likes the page and (2) a high quality
page will be liked by most of its visitors, so its popularity may
increase more rapidly than others.

First, the success of PageRank shows that when a user cre-
ates a link to a page it often indicates that the user is interested
in the page. Thus, by observing the existence and creation of
the links to a page, we get implicit feedback on the page and
can roughly estimate how many people currently like the page.

Second, a high quality page will increase its popularity much



more rapidly than others once the page is created, because a
large fraction of its visitors will like it when the see it. There-
fore, by observing the increase (or time derivative) of popu-
larity, we may estimate the quality of a page well. Here, we
note that the time derivative of popularity can be measured
relatively easily. For example, if we use PageRank as the pop-
ularity metric of a page, we may download the web multiple
times over a period of time, measure how much the PageRank
of each page changes over this time period.

The difficult question is exactly how we can use the popu-
larity increase in measuring quality. For instance, is quality di-
rectly proportional to popularity increase (i.e., Q(p) = dP(p)

dt
if P(p) is the popularity of page p)? Should we consider both
the current popularity and the popularity increase in measuring
quality? Exactly how should we combine these two measures?
How do we know whether a particular combination is good?

In order to answer these questions, we take the following
approach in this paper: We first assume a simple yet reason-
able web-user model that captures the core properties of how
users browse web pages. We then analyze this model to de-
rive how the popularity of a page evolves over time. Once
we obtain the popularity evolution function, we investigate its
property to see how we can estimate quality from popularity
evolution. Our analysis will show that we can estimate the
quality accurately through the following formula:

C ·
dP(p)/dt

P(p)
+ P(p), (1)

where C is a constant whose meaning will be clear from our
later discussion. The above formula shows that in order to es-
timate the quality well, we need to consider both the current
popularity P(p) and the popularity increase dP(p)/dt. Fi-
nally, we evaluate the effectiveness of this quality estimator in
an experimental setting. We believe this approach allows us
to investigate the problem in a disciplined way and provides
a scientific understanding on the core assumptions behind the
final ranking mechanism.

In Section 5, we describe the web-user model. In Section 6,
we analyze the popularity evolution and obtain the closed form
formula for the quality estimator. In Section 8 we present our
experimental result.

5. WEB-USER MODEL
We start the description of our web-user model with two

definitions of popularity: (simple) popularity and visit popu-
larity.

Definition 2 (Popularity) We define the popularity of page p
at time t, P(p, t), as the fraction of web users who like the
page. 2

Under this definition, if 100,000 users out of one million cur-
rently like page p1, its popularity is 0.1.

Notice the subtle difference between the quality of a page
and the popularity of a page. The quality is the probability
that a web user will like the page if the user discovers the
page, while the popularity is the current fraction of web users
who like the page. Thus, a high-quality page may have low
popularity because few users are currently aware of the page.
While the popularity of a page in its exact sense may be diffi-
cult to measure, we may substitute any popularity metric, such
as PageRank, as a surrogate to the popularity.

The second notion of popularity, visit popularity, measures
how many “visits” a page gets in a unit time interval.

Definition 3 (Visit popularity) We define the visit popularity
of a page p at time t, V(p, t), as the number of “visits” or
“page views” the page gets within a unit time interval at time
t. 2

For example, if 100 users visit page p1 in the unit time interval
from t, and if 200 users visit page p2 in the same time period,
V(p2, t) is twice as large as V(p1, t).

We also introduce the notion of user awareness.

Definition 4 (User awareness) We define the user awareness
of page p at time t, A(p, t), as the fraction of web users who
are aware of p at time t. 2

For example, if 100,000 users (say, out of one million) have
visited the page p1 so far and are aware of the page, its user
awareness, A(p1, t), is 0.1. Note that the user awareness of p
represents the number of web users who have already visited
the page and are aware of it whether they like it or not. In
contrast, the popularity of p represents the number of users
who know about the page and like it.

We assume that a user makes her decision on her liking the
page when the user visits the page for the first time and sticks
to the decision forever. This assumption is clearly an approxi-
mation because some users may arbitrarily change their mind
at a later point. However, without any further evidence, it is
reasonable to expect that if k users change their positive deci-
sion to a negative one, a similar number of users also change
their negative decision to a positive one, making the overall
number of users in each category the same.

Given the definitions, we can see the following relationship
between user awareness, popularity and page quality.

Lemma 1 The popularity of p at time t, P(p, t), is equal to
the fraction of web users who are aware of p at t, A(p, t),
times the quality of p.

P(p, t) = A(p, t) · Q(p) (2)

2

Proof In order for a web user to like the page p, the user has
to be aware of p and like the page. The probability that a ran-
dom web user is aware of the page is A(p, t) (Definition 4).
The probability that the user will like the page is Q(p) (Defi-
nition 1). Thus, P(p, t) = A(p, t) · Q(p). �

Note that P(p, t) and A(p, t) are functions of time t, but Q(p)
is not. That is, we assume that Q(p) is a static value that does
not change over time. Therefore, the popularity of page p,
P(p, t), changes over time not because its quality changes,
but because users’ awareness of the page changes. Later in
Section 6.3 we also study the case when the quality Q(p) may
also change over time.

We summarize our notation in Table 1.

5.1 Two hypotheses
We now explain two core hypotheses of our model on how

users visit web pages. The first hypothesis is based on the
random-surfer interpretation of PageRank. In Section 3 we ex-
plained that the PageRank of page p is equivalent to the prob-
ability that a user will visit the page when the user randomly



Symbol Meaning

PR(p) PageRank of page p (Section 3)
Q(p) Quality of p (Definition 1)
P(p, t) (Simple) popularity of p at t (Definition 2)
V(p, t) Visit popularity of p at t (Definition 3)
A(p, t) User awareness of p at t (Definition 4)
I(p, t) Relative popularity increase:

I(p, t) =
(

n
r

) dP(p,t)/dt
P(p,t)

r normalization constant: V(p, t) = rP(p, t)
n Total number of web users

Table 1: The symbols that are used throughout this paper
and their meanings

surfs the web. Given this interpretation, it is reasonable to as-
sume that the number of visitors to a page at time t, V(p, t),
is proportional to its current popularity P(p, t), which may be
measured by PageRank.

Proposition 1 (Popularity-equivalence hypothesis)
The number of visits to page p within a unit time interval at
time t is proportional to how many people like the page. That
is,

V(p, t) = rP(p, t) (or V(p, t) ∝ P(p, t))

where r is a normalization constant. 2

At an intuitive level, the above hypothesis makes sense be-
cause when a page is popular the page is likely to be visited by
many people.

Our second hypothesis is that a visit to page p can be done
by any web user with equal probability. That is, if there exist
n web users and if a page p was just visited by a user, the visit
may have been done by any web user with 1/n probability.

Proposition 2 (Random-visit hypothesis) All web users will
visit a particular page with equal probability. 2

6. ANALYSIS OF WEB-USER MODEL
We now analyze our web-user model to derive a closed-

form formula for the quality estimator. Naively, given Equa-
tion 2, we may think that the quality Q(p) can be obtained sim-
ply by dividing the current popularity P(p, t) by the awareness
A(p, t). The problem with this solution is that we do not know
the current awareness of a page unless we know the entire his-
tory of the page and how many unique users have visited it.
Therefore, Q(p) cannot be measured through P(p, t)/A(p, t)
in most practical settings.

The above discussion brings up an important property de-
sired for the quality estimator: In order to be practical, the
quality estimator should rely only on the quantities that can
be measured easily, such as page popularity. As we briefly
described in Section 5, our main idea for quality estimation is
that the increase (or time derivative) of popularity may give us
a strong hint on the quality of a page. To formally investigate
this idea, in Section 6.1 we analyze the popularity evolution
of a page under our web-user model. Then in Section 6.2, we
take the time derivative of the popularity evolution function
and obtain the quality estimator that uses only quantities that
are easily measurable.

6.1 Popularity evolution
We now derive the popularity evolution function over time

under our model. Intuitively, if we know the current popular-
ity of the page p, we can estimate how many new users will
visit p based on Propositions 1 and 2. Then, out of these new
users, Q(p) is the fraction that will like the page p, so we can
estimate how much its popularity will increase. Therefore, as
long as we know the initial popularity of the page p, we can
derive its entire popularity evolution over time.

For formal derivation, we first prove the following lemma.
The lemma shows that we can learn the current user awareness
of a page from the history of its past popularity. For the proof,
we assume that there are n web users in total.

Lemma 2 The user awareness of p at t, A(p, t), can be com-
puted from its past popularity through the following formula:

A(p, t) = 1 − e−
r

n

∫

t

0
P(p,t)dt

2

Proof V(p, t) is the rate at which web users visit the page p at
t. Thus by time t, page p is visited

∫ t

0
V(p, t)dt = r

∫ t

0
P(p, t)dt

times.
Without loss of generality, we compute the probability that

user u1 is not aware of the page p when the page has been
visited k times. The probability that the ith visitor to p was
not u1 is (1− 1

n
). Therefore, when p has been visited k times,

the probability that u1 would have never visited p is (1− 1
n
)k.

By time t, the page is visited
∫ t

0
V(p, t)dt times. Then the

probability that the user is not aware of p at time t, 1−A(p, t),
is

1 −A(p, t) =

(

1 −
1

n

)

∫

t

0
V(p,t)dt

=

(

1 −
1

n

)r
∫

t

0
P(p,t)dt

=

[

(

1 −
1

n

)−n
]−

r

n

∫

t

0
P(p,t)dt

Here we will assume that the number of web users is quite
large, so we can approximate the above expression by observ-
ing that when n → ∞,

(

1 − 1
n

)−n
→ e. Thus,

1 −A(p, t) = e−
r

n

∫

t

0
P(p,t)dt (3)

�

Lemma 1 shows that the current popularity of a page can be
computed from its current awareness. Lemma 2 shows that the
current awareness can be computed from its past popularity.
By combining the two lemmas we can compute the current
popularity of a page from its past popularity. The following
theorem shows the popularity evolution function.

Theorem 1 The popularity of page p evolves over time through
the following formula:

P(p, t) =
Q(p)

1 + [ Q(p)
P(p,0)

− 1] e−[ r

n
Q(p)]t

Here, P(p, 0) is the popularity of the page p at time zero when
the page was first created. 2

Proof From Lemmas 1 and 2,

P(p, t) =
[

1 − e−
r

n

∫

t

0
P(p,t)dt

]

Q(p)
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Figure 1: Time evolution of page popularity

If we substitute e−
r

n

∫

t

0
P(p,t)dt with f(t), P(p, t) is equiva-

lent to (−n
r
)( df

dt
/f). Thus,

(

−
n

r

)

(

1

f

)

df

dt
= (1 − f) Q(p) (4)

Equation 4 is known as a Verhulst equation (or logistic growth
equation) which often arises in the context of population growth [29].
The solution to the equation is

f(t) =
1

1 + Ce
r

n
Q(p)t

where C is a constant to be determined by the boundary con-
dition. Since f(t) = e−

r

n

∫

t

0
P(p,t)dt,

e−
r

n

∫

t

0
P(p,t)dt =

1

1 + Ce
r

n
Q(p)t

. (5)

If we take the logarithm of both sides of Equation 5 and dif-
ferentiate by t,

(

−
r

n

)

P(p, t) = −

(

r
n

)

Q(p) C e
r

n
Q(p)t

1 + Ce
r

n
Q(p)t

.

After rearrangement, we get

P(p, t) =
CQ(p)

C + e−
r

n
Q(p)t

. (6)

We now determine the constant C. From Equation 6

P(p, 0) =
CQ(p)

C + 1
. (7)

Thus,

C =
P(p, 0)

Q(p) − P(p, 0)
(8)

After rearrangement, we finally get

P(p, t) =
Q(p)

1 + [ Q(p)
P(p,0)

− 1] e−[ r

n
Q(p)]t �

Based on the result of the above theorem, we show an ex-
ample of the popularity evolution of a page in Figure 1. We
assume Q(p) = 0.8, n = 108, r = 108 and P(p, 0) = 10−8.
Roughly, these parameters correspond to the case where there
are 100 million web users and only one user liked the page p at
its creation. The quality is relatively high at 0.8. The horizon-
tal axis corresponds to the time. The vertical axis corresponds
to the popularity P(p, t) at the given time.

From the graph, we can see that a page roughly goes through
three stages after its birth: the infant stage, the expansion stage,
and the maturity stage. In the first infant stage (between t = 0

and t = 15) the page is barely noticed by web users and has
practically zero popularity. At some point (t = 15), however,
the page enters the second expansion stage (t = 15 and 30),
where the popularity of the page suddenly increases. In the
third maturity stage, the popularity of the page stabilizes at a
certain value. Note that this “sigmoidal” evolution of popu-
larity has been experimentally observed in the site popularity-
evolution data collected by web tracking companies (e.g., Ne-
tRatings [18]).

We also note that the eventual popularity of p is equal to
its quality value 0.8. The following corollary shows that this
equality holds in general.

Corollary 1 The popularity of page p, P(p, t), eventually con-
verges to Q(p). That is, when t → ∞, P(p, t) → Q(p). 2

Proof From Theorem 1,

P(p, t) =
A(p, 0) Q(p)

A(p, 0) + [1 −A(p, 0)] e−[ r

n
Q(p)]t

.

When t → ∞, e−[ r

n
Q(p)]t → 0. Thus,

P(p, t) =
A(p, 0) Q(p)

A(p, 0) + [1 −A(p, 0)] e−[ r

n
Q(p)]t

→
A(p, 0) Q(p)

A(p, 0)
= Q(p). �

The result of this corollary is reasonable. When all users are
aware of the page, the fraction of all web users who like the
page is the quality of the page.

The result of Figure 1 confirms our earlier assertion that the
popularity of a page is not a good estimator of its quality for
new pages: During the infant and the expansion stage (t <
30), the popularity of the page is significantly lower than its
true quality value. It is only in the maturity stage when the
popularity reflects the true quality of the page.

Finally, we note that the popularity evolution in Figure 1
is monotone since we assume that the quality of a page is a
static value that does not change. The quality, however, may
also change over time, for example, when the page is updated
or when many high-quality pages appear on the web and the
users’ expectation on the page gets higher. In Section 6.3 we
extend our model and study the case when the quality of a page
changes. For now, we assume that the quality value of a page
is static.

6.2 Quality estimator
We can analyze the popularity evolution function derived in

the previous section to explore whether its time derivative can
be used to estimate the quality of a page. The following lemma
provides the core relationship between the time derivative of
page popularity and page quality.

Lemma 3 The quality of a page is proportional to its popu-
larity increase and inversely proportional to its current pop-
ularity. It is also inversely proportional to the fraction of the
users who are unaware of the page, 1 −A(p, t).

Q(p) =
(n

r

) dP(p, t)/dt

P(p, t) (1 −A(p, t))
(9)

2
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Figure 2: Time evolution of I(p, t) and P(p, t) as predicted
by the model.

Proof By differentiating the equation in Lemma 1, we get

dP

dt
=

dA

dt
Q(p). (10)

From Lemma 2,

dA

dt
= −

d

dt
e−

r

n

∫

t

0
P(p,t)dt

= −
(

e−
r

n

∫

t

0
P(p,t)dt

) (

−
r

n
P(p, t)

)

= (1 −A(p, t))
( r

n
P(p, t)

)

. (11)

From Equations 10 and 11, we get

Q(p) =
(n

r

) dP(p, t)/dt

P(p, t) (1 −A(p, t))
. �

In Equation 9, note that two main factors, dP(p, t)/dt and
P(p, t), are measurable in practice by downloading the web
multiple times while 1 − A(p, t) cannot be easily measured.
Therefore, for now, we ignore the unmeasurable factor 1 −
A(p, t) from the equation and study the property of the re-
maining factors

(

n
r

) dP(p,t)/dt
P(p,t)

as the quality estimator. Intu-
itively, dP(p, t)/dt is the popularity increase of the page and
P(p, t) is the current popularity, so the ratio dP(p,t)/dt

P(p,t)
is the

relative popularity increase of the page. For convenience, we
use the symbol I(p, t) to represent

(

n
r

) dP(p,t)/dt
P(p,t)

and refer
to it as the relative popularity increase function.

In Figure 2, we show the time evolution of I(p, t) when
Q(p) = 0.2, n = 108, r = 108, and P(p, 0) = 10−9. The
horizontal axis is the time and the vertical axis shows the value
of the function. The solid line in the graph shows the relative
popularity increase I(p, t). We also show the time evolution
of the popularity P(p, t) as a dashed line in the figure for the
comparison purpose. We obtained these graphs analytically
using the equation of Theorem 1.

From the graph, we can see that the relative popularity in-
crease, I(p, t), is an excellent estimator for the page quality
Q(p) when the page has just been created (t < 70). During
this time, I(p, t) ≈ 0.2 = Q(p). As time goes on, how-
ever, I(p, t) loses its merit as the estimator of Q(p): I(p, t)
gets much smaller than Q(p) for t > 120. Fortunately, when
I(p, t) is not a good quality estimator, we can see that P(p, t)
is a very good estimator of Q(p) (t > 120). That is, I(p, t)
and P(p, t) are complementary to each other as the quality es-
timator.

Intuitively, the relative effectiveness of P(p, t) and I(p, t)
as the quality estimator makes sense. When a page has just
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Figure 3: Time evolution of I(p, t) + P(p, t).

been created, most users are unaware of the page, so its pop-
ularity P(p, t) does not reflect its quality well. However, the
users who visit the page are mostly first-time visitors, so if the
page is of high quality, its popularity will increase very rapidly,
making the relative popularity increase I(p, t) a good quality
estimator. As time goes on, however, most users get aware of
the page, so the popularity of the page cannot increase any fur-
ther. Fortunately at this point, the fraction of web users who
like the page P(p, t) is equivalent to its quality, making it a
good quality estimator.

From the shape of the two curves in Figure 2 we can ex-
pect that we may estimate the quality of the page accurately
if we add these two functions. In Figure 3, we show the time
evolution of this addition, I(p, t) + P(p, t), for the same pa-
rameters as in Figure 2. We can see that I(p, t) + P(p, t) is
a straight line at the quality value 0.2. The following theorem
generalizes this observation and shows that I(p, t) + P(p, t)
is indeed an accurate quality estimator.

Theorem 2 The quality of page p, Q(p), is always equal to
the sum of its relative popularity increase I(p, t) and its pop-
ularity P(p, t).

Q(p) = I(p, t) + P(p, t) 2

Proof We first restate Equation 11:

dA(p, t)

dt
= (1 −A(p, t))

( r

n

)

P(p, t)

If we multiply the above equation by Q(p), we get

Q(p)
dA(p, t)

dt
= (Q(p) − Q(p)A(p, t))

( r

n

)

P(p, t),

which can be simplified to

dP(p, t)

dt
= (Q(p) − P(p, t))

( r

n

)

P(p, t).

If we divide the equation by r
n
P(p, t) and add P(p, t) to both

sides, we get

dP(p, t)/dt

(r/n)P(p, t)
+ P(p, t) = Q(p) �

The above theorem shows that under our web user model
we can compute the quality of a page by measuring its relative
popularity increase and current popularity. Based on this re-
sult, we define I(p, t) + P(p, t) as the quality estimator of p,
Q̂(p, t):

Q̂(p, t) = I(p, t) + P(p, t)

=
(n

r

)

(

dP(p, t)/dt

P(p, t)

)

+ P(p, t) (12)



Later in Section 8, we evaluate the effectiveness of the above
quality estimator experimentally.

6.3 Changing quality
So far we have assumed that the quality Q(p) of a page

is a constant that does not change over time. In this section,
we analyze the scenario where the quality also changes. Our
main goal is to understand how our quality estimator should be
updated to handle this scenario. Before we describe our formal
analysis and result, we use a simple example to illustrate our
main finding.

Example 1 We assume that the page p was originally of qual-
ity Q1 = 0.8 from t = 0 until t = 30. At t = 30, the quality
suddenly drops to Q2 = 0.4. We show the popularity evolu-
tion under this scenario in Figure 4. The graph was obtained
analytically based on the same parameters as in Section 6.1.

10 20 30 40 50 60
t
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0.6

0.8

P(p, t)

Figure 4: Popularity evolution when quality drops at t =
30

As before, the popularity increases from t = 0 until t = 30
as more people visit the page and get aware of it. By t = 30,
the popularity becomes close to its quality value 0.8. After
t = 30, however, the popularity gradually decreases due to
the drop in quality: the people who visit the page again after
t = 30 realize that its quality is not as good as it used to be and
many of them stop liking the page. This decrease continues
until the popularity stabilizes at the new quality value 0.4. 2

In the above example, we note that the situation between
t = 0 and t = 30 is essentially the same as in the previous
section, so

(

n
r

) dP(p,t)/dt
P(p,t)

+ P(p, t) is a good quality estima-
tor during this time. But what will be a good quality estimator
after t = 30? Does our estimator still work well in this region
and estimate the correct quality value Q2 after t = 30? Our
analysis shows that our estimator is still valid even in this re-
gion. That is,

(

n
r

) dP(p,t)/dt
P(p,t)

+ P(p, t) = Q2 for t > 30. In
general, we can prove the following theorem that shows that
our estimator is still valid even after a quality change:

Theorem 3 We assume that the quality of page p, Q(p), changes
from Q1 to Q2 at time T . Then

Q2 =
(n

r

) dP(p, t)/dt

P(p, t)
+ P(p, t) for t > T (13)

2

Proof After time T , we can put users into three groups: (1)
the users who visited the page before T (2) the users who vis-
ited the page after T and (3) the users who never visited the
page. Of course, some users may belong to both groups (1)
and (2) if they visited the page before and after T . We use
the the notation u1 and u2 to represent the group (1) and (2),

respectively. In Figure 5, we show the Venn diagram showing
u1, u2 and the total user group U . We use |u1| and |u2| to
represent the relative size of each group: i.e., the fraction of
users who belong to u1 and u2, respectively.

U

u1
u2

Figure 5: Venn diagram for user groups after time T

At time t > T , we note that the users who belong to u2

have seen the page when its quality is Q2, so Q2 fraction of
the users in u2 end up liking the page. The users who belong
to (u1 − u2) group (the users who visited the page before T
but not after T ) still believes that the quality of the page is
Q1 because they haven’t seen the new page. Therefore, out
of |u1 − u2| users, Q1 fraction still like the page. Of course,
the users who are not in either u1 or u2 cannot like the page
because they have never visited the page. Overall, the fraction
of web users who like the page at time t > T is

P(p, t) = Q1|u1 − u2| + Q2|u2|.

Note that after t > T , the u1 group remains the same but the
u2 group gradually expands as more people visit the page after
T . We denote this time dependence using the notation u2(t)
for u2 but simply u1 for u1. Then,

P(p, t) = Q1|u1 − u2(t)| + Q2|u2(t)| for t > T. (14)

We now compute |u2(t)| and |u1 − u2(t)| in order to com-
pute P(p, t). |u2(t)| is the fraction of users who visit p from
time T to t. From the proof of Lemma 2, it is easy to see that
this fraction is given by

|u2(t)| = 1 − e−
r

n

∫

t

T
P(p,t)dt. (15)

In computing |u1 − u2(t)|, we note that the user groups u1

and u2 are independent. That is, according to our random-visit
hypothesis, the probability that a user visits the page p at t is
independent of his past visit history, so whether the user visits
p after time T is independent of whether he visited the page
before T . Given this independence, the size of the intersection
u1 ∩ u2(t) can be computed by simple multiplication

|u1 ∩ u2(t)| = |u1| · |u2(t)|.

Then

|u1 − u2(t)| = |u1| − |u1 ∩ u2(t)| = |u1| − |u1||u2(t)|

and

P(p, t) = Q1|u1 − u2(t)| + Q2|u2(t)|

= Q1|u1| − Q1|u1||u2(t)| + Q2|u2(t)|

= Q1|u1| + (Q2 − Q1|u1|)|u2(t)|.

We now differentiate this equation by t and get

dP(p, t)

dt
= (Q2 − Q1|u1|)

d|u2(t)|

dt
. (16)



From Equation 15, we know that

d|u2(t)|

dt
=

r

n
P(p, t)e−

r

n

∫

t

0
P(p,t)dt

=
r

n
P(p, t)(1 − |u2(t)|).

Therefore, Equation 16 becomes

dP(p, t)

dt
= (Q2 − Q1|u1|)

r

n
P(p, t)(1 − |u2(t)|)

=
r

n
P(p, t)[Q2 − {Q1|u1| − Q1|u1||u2(t)|

+ Q2|u2(t)|}]

=
r

n
P(p, t)[Q2 − {Q1|u1 − u2(t)| + Q2|u2(t)|}]

=
r

n
P(p, t)[Q2 − P(p, t)] (from Eq. 14)

If we divide the above equation by r
n
P(p, t) and add P(p, t),

we get
(n

r

) dP(p, t)/dt

P(p, t)
+ P(p, t) = Q2. �

7. MEASURING QUALITY FROM WEB
SNAPSHOTS

In the previous sections we discussed how we can estimate
the quality of a page on the basis of its present popularity and
its instantaneous time derivative. In practice, however, the
time derivative cannot be measured instantaneously, but only
can be approximated through the increase of PageRank at dis-
crete time points. That is, we take the snapshots of the web
at times t1, t2, t3, . . . , compute PageRank of pages from each
snapshot and approximate Equation 12 with

Q̂(p, ti) =
n

r

[

∆PR(p, ti)/∆ti

PR(p, ti)

]

+ PR(p, ti) (17)

where, PR(p, ti) is the PageRank of p at ti, ∆PR(p, ti) =
PR(p, ti) − PR(p, ti−1), and ∆ti = ti − ti−1.

Unfortunately, this discrete measurement may lead to an er-
ror for the following reasons.

1. Approximation error: ∆PR(p)/∆t is an approxima-
tion of dPR(p)/dt. Thus, the values can be different,
particularly when ∆t is large.

2. Quality change during measurement: In our theoret-
ical derivations, we assumed that the quality remains
constant during measurement.1 This assumption is rea-
sonable when we can measure the derivative instanta-
neously, but when it is measured over a time period, it is
possible that the quality may change during the time.

3. Time lag: Consider the time period after t2 but before
t3. Since we haven’t captured the t3 snapshot, the most
recent quality estimate is the one computed from the t1
and t2 snapshots. That is, during the interval (t2, t3), we
use the quality value measured in (t1, t2). This time lag
between the quality measurement and its use may lead

1Note that our result in Section 6.3 shows that a quality change be-
fore or after measurement does not affect the validity of our estimator.
However, our analysis does not guarantee its correctness if there is a
change during measurement.
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Figure 6: True and estimated quality values for a static
quality scenario
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Figure 7: Error values as we increase the time interval be-
tween two consecutive popularity measurements

to an error if the quality changes after t2 even if it did
not change during (t1, t2).

To investigate the the impact of these errors, we use the fol-
lowing three scenarios.

1. Static quality: We consider a page p whose quality value
Q remains constant at 0.5. We assume that we take the
snapshot of the web every t = 1 time unit, and we
recompute the quality value using the most two recent
snapshots. That is, at t = i, we estimate Q̂ from the
popularity values at t = i and t = i − 1. We use the
quality value estimated at t = i during t ∈ (i, i + 1).
Figure 6 shows the true quality Q, the popularity P , and
the estimated quality Q̂ over time under this setting.

In this scenario, the only source of error is the approxi-
mation error, because the quality value remains the same
all the time. The figure shows that this error is negligible
in this scenario; Q and Q̂ are almost identical. We also
see that our quality estimator Q̂ works well as a “even-
tual popularity predictor.” That is, at any time point, Q̂
gives the value 0.5, which is the same as the eventual
popularity of the page. In contrast, the current popular-
ity P is not a good predictor of the eventual popularity;
From t = 1 until t = 400, P is significantly smaller
than 0.5.

The magnitude of the approximation error will clearly
depend on the length of interval ∆t. In order to study
this impact, we repeat the same experiment for different
∆t values and show the result in Figure 7. The horizon-
tal axis is ∆t and the vertical axis is the error, |Q − Q̂|,
for the given ∆t. As we expect, the error becomes larger
at ∆t grows. For example, when ∆t = 45 (about 10%
of the time it took for the page to obtain the eventual
popularity), the error is 0.33 (67% relative error).

2. Slow change in quality: We consider a page p whose ini-
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Figure 9: Graph showing error values as we increase the
rate of change in quality

tial quality Q is 0.4. The quality value increases slowly
over time according to the relation Q(t) = 0.4+0.0006t,
reaching 0.7 at t = 500. We measure the quality esti-
mate Q̂ after every unit time interval. We plot the true
quality, the popularity, and the estimated quality values
in Figure 8 under this scenario.

From the figure, we observe the following:

(a) Our estimator Q̂ still measures the true quality well;
At every time point, Q̂ ≈ Q.

(b) Q̂ is not a good predictor of the eventual popu-
larity. For example Q̂ ≈ 0.4 at t = 1, but the
eventual popularity is 0.7 at t = 500 in this graph.
It should be noted, however, that Q̂ is a better pre-
dictor of the eventual popularity than the current
popularity P . For example, Q̂ ≈ 0.4 at t = 1,
which is much closer to the eventual popularity 0.7
than P ≈ 0 at t = 1.

The magnitude of the error in Q̂ may depend on the
rate of change of the quality in this scenario. To in-
vestigate this issue, we repeat the same analysis using
Q(t) = 0.5+ct for multiple values of c. Figure 9 shows
the result, where the horizontal axis is c, the change rate,
and the vertical axis is the error |Q − Q̂| at the given c.
For example, when c = 0.005 (about 1% increase in
quality in one time unit), |Q − Q̂| ≈ 0.1 (20% rela-
tive error in the quality estimation). As expected, with
increase in the value of c, the error also increases.

3. Rapid change in quality: Finally, we consider a scenario
where the quality Q of the page rapidly fluctuates over
time. As we show in Figure 10, the quality of the page
changes according to a sinusoidal relation. We assume
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Figure 10: Graph of actual and measured quality values

that we measure the quality of the page after every unit
time interval.

Overall, we can see that the overall shapes of Q and Q̂
graphs are similar. However, the time lag becomes an
important source of error in this scenario; The Q̂ curve
is one time unit behind the Q curve, which makes the
two values very different at many time points. Also, Q̂
is a very crude approximation of Q; Even if we ignore
the time-lag error, Q̂ and Q values are significantly dif-
ferent sometimes due to the jagged nature of Q̂. Finally,
we note that Q̂ is not a good predictor of the eventual
popularity; Because Q fluctuates frequently, there is no
correlation between the current quality estimate Q̂ and
the eventual popularity. In summary, Q̂ is not very ef-
fective when the quality rapidly changes over time.

8. EXPERIMENTS
Given that our ultimate goal is to find high-quality pages and

rank them highly in search results, the best way to evaluate
our quality estimator is to implement it on a search engine
and see how well users perceive our new ranking. Before we
embark on this enormous endeavor, we wanted to check the
potential of our proposed quality estimator in a more practical
and manageable setting.

Evaluating a web ranking metric is a challenging task be-
cause of its subjectivity and the lack of standard corpus. The
relevance and quality of a page is clearly a subjective notion,
so the best way of measuring the effectiveness of a ranking
metric is to ask a large number of users to go over a collection
of web pages carefully and provide their feedback on the per-
ceived quality of each page. This task is clearly time consum-
ing and expensive. Recognizing this challenge, the IR com-
munity has collaboratively constructed a standard evaluation
corpus, called TREC [27], which also includes a special sub-
collection of web documents. Unfortunately, this dataset is
not well suited for our evaluation, because (1) it only contains
a single snapshot of the web, making it impossible to measure
the evolution of PageRank and (2) the dataset indicates only
the binary relevance (either 0 or 1) of each page to a number
of predefined queries. With the binary relevance, we cannot
rank the pages based on their quality and compare this rank-
ing to the one from our quality metric.

Thus, we take an alternative approach to evaluating the po-
tential of our quality estimator. Our main idea for evaluation
is that when the quality value does not change significantly
over time, the popularity of a page eventually converges to its
quality. That is, the eventual popularity of a page is a good es-
timator of its quality. Thus, for the pages with stable quality, if



we can wait long enough, our estimated quality should a good
“predictor” of the eventual PageRank. Based on this idea, we
capture multiple snapshots of the web, compute page quality,
and compare today’s quality value with the PageRank value in
the future. Admittedly, this evaluation is not perfect because
the quality is compared against future PageRank, a metric that
it tries to replace. However, with the lack of the true qual-
ity value for each page we believe that this comparison, at the
very least, will show the potential of our estimator.

8.1 Description of dataset
Due to our limited network and storage resources, we had

to restrict our experiments to a relatively small subset of the
web. In our experiment we downloaded pages on 154 web
sites (e.g., acm.org, hp.com, etc.) four times over the pe-
riod of six months. The list of the web sites were collected
from the Open Directory (http://dmoz.org). The time-
line of our snapshots is shown in Figure 11. Roughly, the first
three snapshots were taken with one-month intervals between
them and the last snapshot was taken four months after the
third snapshot. We refer to the times of the four snapshots as
t1, t2, t3 and t4. Later in this section, we will use the first three
snapshots to compute the quality of pages and evaluate how
well the earlier quality values “predict” the “future” PageR-
anks at t4.

Our snapshots were quite complete mirrors of the 154 web
sites. We downloaded pages from each site until we could not
reach any more pages from the site or we downloaded the max-
imum of 200,000 pages. Out of 154 web sites, only four web
sites had more than 200,000 pages. The number of pages that
we downloaded in each snapshot ranged between 4.6 million
pages and 5 million pages. Since we were interested in com-
paring our estimated page quality with the future PageRank,
we first identified the set of pages downloaded in all snapshots.
Out of 5 million pages, 2.7 million pages were common in all
four snapshots. We then computed the PageRank values from
the subgraph of the web obtained from these 2.7 million pages
for each snapshot.

8.2 Quality and future PageRank
Using the dataset just described, we now investigate how

well our quality estimator predicts the future PageRank.

Stability of quality. In Section 7 we showed that our qual-
ity estimator is a good predictor of the future PageRank only
when the quality does not change significantly over time.2 We
first investigate how many pages in our snapshots have stable
quality values.

To check the stability, we compute three quality values, Q̂2,
Q̂3 and Q̂4, from our four snapshots, where Q̂i is measured
based on the PageRank values of the ti and ti−1 snapshots us-
ing Equation 17 assuming 0.1 for r/n. (The choice of 0.1 is
explained later). In Figure 12 we show the histogram of the
relative quality difference between Q̂2 and Q̂3 (white bars)
and between Q̂3 and Q̂4 (gray bars). From the histogram we
can see that the vast majority of pages in our snapshots have
stable quality. For example, the first white and gray bars in-

2This statement does not mean that our quality estimator is not useful
when there are quality changes. Our estimator still measures the true
quality value well even with quality changes, but the true quality value
may not be the same as the future PageRank.
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dicate that more than 99% pages show less than 10% relative
difference between Q̂2 and Q̂3 and about 90% pages show less
than 10% difference between Q̂3 and Q̂4.

Prediction accuracy. We now compare the prediction ac-
curacy of the “future” PageRank PR(p, t4) when we use the
“current” PageRank PR(p, t3) or our quality estimator Q̂3(p)
as the PR(p, t4) predictor. For the comparison, we compute
the following average relative “error”:

err(p) =
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From this comparison, we observe that the average error is
0.45 for Q̂3(p) while it is 0.74 for PR(p, t3). That is, our
quality estimator Q̂3(p) shows about 39% more accuracy in
predicting the future PageRank on average.3 Assuming that
the PageRank at t4 is closer to the true quality of pages, this
result strongly indicates that our estimator measures the qual-
ity much more accurately than the current PageRank.

In Figure 13, we report more detailed result from this com-
parison. In the graph, we show the distribution of the rela-
tive errors for Q̂3(p) and PR(p, t3). The white bars corre-
spond to the histogram of Q̂3(p) and the gray bars correspond
to PR(p, t3). For example, from the first bars of the graph
we can see that Q̂3(p) shows less than 0.1 relative error for
56% pages, while PR(p, t3) shows similar error for 45% of
the pages. When the relative error is larger than 1, we put

3To show their difference more clearly we compute the average error
only for the pages for which Q̂3(p) and PR(p, t3) give more than
5% different prediction for the future PageRank.
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them into the last bin labeled as 1. This graph shows that our
quality estimator Q̂3(p) leads to smaller errors for more pages
than PR(p, t3). We also conducted similar comparison us-
ing Q̂2(p) as the quality estimator and obtained comparable
results.

Estimation of n/r. We now explain our choice of 0.1 for
the parameter n/r. In our theoretical model, n corresponds
to the total number of web users and r is the normalization
constant in our popularity-equivalence hypothesis. In practice,
n/r determines how much “weight” we assigns to the relative
popularity increase term. For example, when n/r = 0, our
quality estimator reduces to Q̂(p, t) = P(p, t), which com-
pletely ignore the popularity increase in estimating quality.
That is, when r/n is small, our estimator becomes closer to
the traditional PageRank metric and gets more “conservative”
in using the popularity increase.

To determine the best choice for n/r, we use the following
approach: We measure the relative error between Q̂(p) and
PR(p, t4) for multiple n/r values and we pick the value that
leads to the smallest difference. In Figure 14, we show the er-
ror between Q̂2 and PR(t4) and between Q̂3 and PR(t4) for
multiple n/r values. From the graph, we can see that we get
minimal error around n/r = 0.1 both for Q2 and Q3. Based
on this result, we use n/r = 0.1 for other experiments in this
section. We emphasize, however, that our quality estimator
is still as good as or better than the current PageRank as the
future PageRank predictor when we use any value between 0
and 0.1 for n/r: As n/r gradually decreases from 0.1 to 0, our
estimator becomes closer to PageRank and error gets closer to
that of PageRank.

9. CONCLUSION
In this paper, we investigated the problem of page quality,

including how to quantify the subjective notion of page qual-
ity, how well existing search engines measure the quality, and
how we might measure the quality of a page more directly. In
our study, we proposed a reasonable definition for page quality

and we derived a practical way of estimating the quality based
on a careful analysis of a reasonable web-user model. Finally,
we evaluated the potential of our quality estimator through an
experiment.

At a very high level, we may consider our proposed qual-
ity estimator as a third-generation ranking metric. The first-
generation ranking metric (before PageRank) judged the rele-
vance and quality of a page mainly based on the content of a
page without much consideration of web link structure. Then
researchers [16, 21] proposed second-generation ranking met-
rics that exploited the link structure of the web. In our study,
we argued that we can further improve the ranking metrics by
considering not just the current link structure, but also the evo-
lution and change in the link structure.

As more digital information becomes available, and as the
web further matures, it will get increasingly difficult for new
pages to be discovered by users and get the attention that they
deserve. We believe that our new ranking metric will help us
alleviate this “information imbalance” problem that only es-
tablished pages are repeatedly looked at by users. Our metric
can identity these high-quality pages much earlier than exist-
ing metrics and shorten the time it takes for new pages to get
noticed.

9.1 Discussion and future work
While our result indicates that our quality metric is a good

way to measure the quality of a page in practice, we discuss
some of the limitations of our work and potential venues for
future work.

• Statistical Noise: One potential problem with the quality
metric is that it may be adversely affected by noise for
pages with very low popularity. When we are measuring
the rare event of a page with low popularity receiving
a new link, there is the potential that noise could cause
such a page to be promoted prematurely. Further work is
required to investigate how best to smooth out the curve,
including perhaps adjusting the web download intervals
depending on the current PageRank values. For exam-
ple, for low-PageRank pages, we may want to compute
the PageRank increase over a longer period than high-
PageRank pages in order reduce the impact of noise.

• Scale of the data: Our experiment was based on a small
subset of the web. While our result indicated improve-
ment over the PageRank metric, it will be interesting to
see how well our quality estimator works for a larger
dataset.

• Application to web traffic data: While in this paper we
used the web link structure and its evolution to mea-
sure popularity (and thus quality), our estimator can be
similarly applied to the web traffic data. That is, assum-



ing that the visit popularity is equivalent to the (sim-
ple) popularity (Proposition 1), if we can measure how
many people visit a particular web site and how quickly
the number of visits increases over time, we can use our
quality estimator to measure the quality of the site based
on this traffic data. It will be interesting to see how this
traffic-based quality estimate is different from our link-
based quality estimate and which quality estimate users
prefer.
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