
A Fast Regular Expression Indexing Engine

Junghoo Cho
University of California, Los Angeles

cho@cs.ucla.edu

Sridhar Rajagopalan
IBM Almaden Research

sridhar@almaden.ibm.com

Abstract

In this paper, we describe the design, architecture, and
the lessons learned from the implementation of a fast reg-
ular expression indexing engine FREE. FREE uses a pre-
built index to identify the text data units which may con-
tain a matching string and only examines these further. In
this way, FREE shows orders of magnitude performance im-
provement in certain cases over standard regular expression
matching systems, such as lex, awk and grep [18, 4].

1 Introduction

The amount of data in text databases and the world wide
web continues to grow at a prodigious rate.1 This unprece-
dented increase in the size of modern datasets has made
otherwise simple and well understood tasks challenging. A
good instance of these challenges is the matching of reg-
ular patterns (i.e. find all substrings which satisfy a given
regular expression) in a corpus. For reasonably large text
databases, say, 100G bytes, matching a regular expression
takes several days. This paper addresses scale and perfor-
mance issues when we match regular expressions (a regex)
against a large corpus.

We propose and consider one of the simplest, perhaps
even obvious, methods to speed up a regex matching engine
– using a carefully designed index to restrict the amount of
data which needs to be examined. Even in this elementary
context, there are a fairly large set of interesting choices
and design decisions to make. We first illustrate how one
can use an index to speed up a regex matching.

Example 1.1 The following regex describes all
the URLs which point to MP3 files on the web.2

From the regex, it is apparent that any web page contain-

ing such a URL should contain the substring .mp3 as well.
1An Inktomi and NEC joint study [12] announced in early 2000 that

the web had exceeded 1,000,000,000 pages.
2In Table 1 we summarize the basic syntax of a regular expression and

our shorthand.

Thus, by looking up the string .mp3 in an index, and only
examining pages which contain the string, we could signif-
icantly reduce both the processing and the I/O workload. ✷

The example leaves behind several unanswered ques-
tions. For example, should the system also look up <a
href= from the index? For what strings should the sys-
tem create index entries? Should it create an entry for <a
href=?

A simple answer, commonly known as a k-gram index,
is to create an index entry for every sequence of k charac-
ters in the corpus. For example, setting k = 2 for the text
ABCDEF, there would be an index entry for each of AB, BC,
CD, DE, and EF. Then by creating k-gram indexes for rea-
sonable k values, say k = 2, 3, . . . , 10, the system looks
up any string within a given regex to identify what part of
the text may contain a matching string. However, this ap-
proach would be prohibitively expensive – both in the time
it would take to build such an index and the amount of stor-
age needed in maintaining it.

In this paper, we study how we can identify a set of use-
ful keys to be indexed, which maximize run-time perfor-
mance, while minimizing the size of the index. In partic-
ular, we propose an index structure, called a multigram in-
dex. A multigram is a consecutive sequence of characters
of arbitrary length. For instance, <a hre and .mp3 are
all multigrams of lengths 6 and 4 respectively. Our multi-
gram index automatically identifies “good” multigrams to
be indexed and provides a tradeoff between run-time per-
formance and index size. In summary, this paper makes the
following contributions:

1. Index design: An algorithm to identify a set of good
multigram entries to be indexed and provides theoreti-
cal and practical rationale validating our index design.

2. Index construction: An efficient index construction
algorithm. As we will see, this algorithm is related to
the frequent-item-set mining problem, which has been
extensively studied in the database community.

3. Query compilation: A framework to develop an effi-
cient execution plan given a query.

4. Query execution In the extended version of this pa-

1

per [10], we propose a new technique, called anchor-
ing, that significantly speeds up in-memory regular ex-
pression match.

Motives Text and hypertext corpora have been a subject
of interest in the recent database literature. There are two
popular approaches to dealing with large text databases.

1. Search: The user types in a list of keywords related to
a topic he is interested in, and the system returns pages
related to the keywords. Note that the system only di-
rects the user to potentially interesting pages. It is still
the responsibility of the user to read and understand
the returned pages and to extract the information the
user is looking for.

2. Data extraction or mining: The system extracts rela-
tional data (or other structured views) from the raw text
and inserts the extracted data to a traditional database
system. The user now can use the rich functionality
of the database system to summarize and extract the
information that she is looking for.

In both of these approaches, we believe having a fast
regex matching engine can be very helpful. First, consider
the following example to see how a regex engine can help
in the search context.

Example 1.2 (Improved search) How does one find the
middle name of Thomas Edison? Using a keyword-search
interface, the user may type in the keywords “Thomas Edi-
son” or even “Thomas NEAR Edison” and read through the
returned pages one by one, to identify the middle name.

Instead, assume a system which can match a regex
quickly and return matching strings in the order of their oc-
currence frequencies. Then by issuing a regular expression,
Thomas \a+ Edison to the system and looking at the
results, the user may immediately find a set of interesting
possibilities. In fact, when we issued this regex to FREE,
the most frequent matching string was Thomas Alva Edi-
son, which contains the correct middle name of the inventor,
Thomas Edison. ✷

While the above example might seem like a toy exam-
ple, it clearly shows that regexes provide a rich syntax in
which the user can express her “information need” more
concretely. Based on the user’s concrete description, the
system could summarize the result more compactly and
save the user from going through a very large dataset.

Second, regexes are very useful in extracting structured
information from text. For instance, Brin [8] proposed an
algorithm which can extract relational data from the web,
in which he used regex matching as a basic building block.
Other systems [15, 1] also use the regex syntax to extract
structured/semi-structured data from web pages. Therefore,
it seems clear that fast regex matching is a fundamental

primitive which will help advance the state of the art in both
the search and mining of large text databases.

1.1 Prior work

Suffix trees Baeza-Yates and Gonnet [5] studied how to
match a regular expression using a prebuilt index. In their
work, they represented all suffixes of a given text corpus as
a trie (called a suffix tree [21, 27, 19]) and performed regex
matches directly on the trie. This approach has a clear ad-
vantage over ours when the corpus size is relatively small
and the entire trie can be loaded into main memory: The
regex match can be performed directly on the trie and does
not need to refer back to the original corpus for final con-
firmation. However, the size of the trie is several times as
large as the original corpus, so it is not a good option for a
large corpus.

Recently, a disk-based index for strings was proposed in
reference [11]. We may build such an index on the text cor-
pus and perform regex match to the index. However, this
approach can potentially be very slow, because it will in-
volve a large number of unpredictable random seeks when
we traverse the index for regex matching. In our approach,
the index lookup is very fast, because all the keys in our
index can be cached in main memory due to its small size.
However, we need a final confirmation step to find the ac-
tual matching strings. It will be interesting to compare the
performance of these two approaches.

Finite automata There is a large body of literature study-
ing how to match a regex to a string (see the textbook [17]
and [22, 9, 25, 6] for instance). The approach is to first
convert a regex into an equivalent deterministic finite au-
tomaton (DFA), and then use the DFA to match the regex.
To expedite the matching, most systems allow the user to
save the constructed DFA, so that the user can reuse it when
she wants to match the same regex against different text.

With large text databases, the situation is somewhat dif-
ferent. In many cases, the user often needs to match differ-
ent regexes against the same text database. In this context,
due to the large size of text databases involved, performance
and scaling issues become paramount.

Inverted keyword indexes Inverted indexes are the most
common index structure for a large text database. Several
software vendors and many web search portals use inverted
indexes as base technology for their product offerings.
However, the key entries in an inverted index are English
words or other linguistic constructs [24, 14, 13, 26, 20].
Therefore, inverted indexes are not helpful in processing
regexes, which may contain substrings that are not linguis-
tically meaningful.

2

Symbol Meaning Example

. any character a.c matches abc
character . itself is represented as \.

* zero or more repetition of the previous character a* matches aaa
+ one or more repetition of the previous character a+ = aa*
? zero or one repetition of the previous character a? matches a or null character
| or connective a|b matches a or b
[] any character within the bracket [abc] = a|b|c
\a any alphabetic characters \a = [abc...z]
\d any numeric characters \d = [012...9]
[ˆabc] any character other than a, b or c [ˆabc] matches e

Table 1. Brief summary of regular expression symbols and our shorthands

HTML pages

Matching
Engine

Runtime

Crawler
Web

Construction
Engine

Index

Repository

Index

Web
Wide
World

User

Matching
Strings

Regex
Query

Figure 1. The architecture of FREE

Data mining To build our multigram index, we use some
of the data mining techniques. In data mining community,
many techniques have been developed to find frequent item
sets for a large dataset in order to find association rules
within data [2, 3, 23, 16]. While the goal of our project is
different, these techniques are clearly helpful to minimize
the index construction time for FREE.

2 Architecture overview

In this section, we describe the general architecture of
FREE and explain the basic features of the system. FREE
can handle general textual data from any source (e.g. Web
pages, Net news articles, e-mail messages, etc.). Currently,
FREE hosts a large database of HTML pages gathered from
the web.

Figure 1 shows the high level architecture of FREE.
The FREE system has three main components: (1) a web
crawler, (2) an index construction engine and (3) a runtime

key

Directory

keykey

Repository

data
unit

page)
(web

Postings list

Postings list

Figure 2. High level structure of an index

matching engine. The user interacts only with the runtime
matching engine, through which she submits a regex query
and obtains matching strings. We briefly go over some of
these components now.

2.1 Index Construction Engine

Once pages are collected by the web crawler, the in-
dex construction engine constructs indexes on top of them.
FREE uses an index structure called a multigram index.

The multigram index has the general structure shown in
Figure 2. An index consists of a directory of keys and post-
ings lists. The postings list for a particular key points to the
data units where the keys appear. In a multigram index, keys
are k-grams for a range of k values. As we have described
earlier, not all k-grams are keys. We select very carefully
what grams to be indexed as keys. We will describe the
algorithm for key selection in Section 3.

2.2 Runtime Matching Engine

The runtime matching engine reads a regex query from
the user and returns matching strings. Figure 3 shows the
subsystems of the runtime matching engine.

3

Regex
Query In-memory

Matching
Regex
Parser

Matching
Strings

Execution EnginePlan Generator

...Generator
Physical Plan

Page
Read

Page
Read

Look up
IndexLogical Plan

Generator

Query Parser

Regex
Normalizer

Figure 3. The architecture of Runtime Matching Engine

The runtime process consists of three important phases:
(1) query parsing, (2) plan generation and (3) execution
phases. Once a regex query is issued by the user, the query
is parsed by the query parser and normalized into a stan-
dard form. This normalized regular expression then enters
the plan generation phase in which the system determines
what indexes to look up in what order. Based on this plan,
the system retrieves the postings lists and performs the final
match in the final execution phase.

The runtime system of FREE is interesting for two rea-
sons:

1. Similarity to an RDB engine: The basic architectural
blocks of the runtime resemble those in a typical rela-
tional database system.

2. Performance implication: The design of the index, the
entries to look up and the index look-up order (execu-
tion plan) have a direct and very significant impact on
performance.

We illustrate the second point using Example 2.1.

Example 2.1 Continuing on example 1.1, recall that describes pointers
to MP3 files on the Internet. Moreover, any page containing
such a URL should contain the substring .mp3. Thus, by
looking up .mp3 in an index, one could significantly reduce
the number of pages to read and examine.

Also, we notice that matches can occur only in pages
containing the string <a href=. However, because most
web pages contain at least one instance of the <a href=
tag, using this information may not aid the runtime perfor-
mance at all. In fact, it may even slow down the process, be-
cause of the additional overhead of looking through a large
postings list. ✷

The quandary posed in the example above is typical of one
in a relational database query optimization. To execute an
SQL query, there exist multiple possibilities, and the system
should carefully select a good execution plan to maximize
performance. We explain the Runtime Matching Engine in
more detail in Section 4.

3 Index structure

This section deals with the details of the index design
and construction. We provide algorithms for index con-
struction and mathematical reasoning behind our proposed
algorithms.

3.1 Multigram indexes

A k-gram is a string x = x1x2x3 · · ·xk, of length k
where each xi : 1 ≤ i ≤ k is a character. Formally, if
Σ is the set of characters, then the set of k-grams is Σk. The
term multigram (or simply gram) will denote any k-gram,
i.e. where k is arbitrary, i.e. M = ∪∞

k=1Σ
k is the set of all

multigrams. By a data unit, we mean the unit in which the
raw data is partitioned. This can be a web page (in the case
of a web search engine), a paragraph or a page (in the case
of a document corpus). Given any multigram x ∈ M, we
define the selectivity of x as the fraction of data units which
contain at least one occurrence of the gram.

Definition 3.1 (Gram and expression selectivity) Let x ∈
M be an arbitrary gram. Let there be N data units in our
database, and let M(x) denote the number of data units
which contain x. Then the selectivity of the gram x, de-
noted sel(x), is

sel(x) = M(x)/N

Analogously, if r is any regex, we denote by M(r) the num-
ber of data units which contain a string matching r, and use
sel(r) to denote M(r)/N . ✷

Definition 3.2 (Gram and expression filter factor) The
filter factor of a gram x ∈ M is given by ff(x) is 1−sel(x).
and likewise for regexes. ✷

Example 3.3 Continuing our earlier example, let r =
. Let us further
assume that ff(.mp3) = 0.99. Thus, sel(.mp3) = 0.01.
Only 1% of data units contain the gram .mp3, so poten-
tially we can “filter-out” 99% of data units by looking up
.mp3 from a gram index. We need to scan only the remain-
ing 1% of the pages for r. ✷

4

Thus, if the selectivity of a gram is small, then it is a
useful gram for our purposes. Conversely, when the selec-
tivity of a gram x is large, the gram is not very useful for
candidate data unit selection. For example, one would ex-
pect sel(<a href=) ≈ 1, making the gram not very useful
for us. This motivates our definition of useful and useless
grams.

Definition 3.4 (Useful and useless grams) For any 0 ≤
c ≤ 1, a gram x is c-useful if sel(x) ≤ c. A gram which is
not c-useful is c-useless. When the value of c is clear from
context, we will call grams useful or useless. ✷

In our applications, c will be chosen based on several
system parameters, particularly processor speed and I/O
subsystem performance. For instance, if a random access
to data units on disk is 10 times slower than sequential ac-
cess, then 0.1 would be a good candidate for the value of c.
We treat c as a tunable parameter which is adjusted to match
individual system performance.

Example 3.5 Does keeping useless grams in the index re-
sult in any meaningful benefit? The answer is not en-
tirely clear. Consider for instance the regular expression
r = bb.*cc.*dd.+zz. While each of the 2-grams in r,
bb, cc, dd and zz is likely to be useless, sel(r) is probably
small. Thus, a regex with small selectivity need not contain
any useful sub-grams. Therefore, if an index contains use-
ful grams only, the system may not show any performance
increase at all, compared to the case when the system scans
the entire corpus sequentially. ✷

While the user may indeed issue the types of queries
described above, we feel that such instances are rare and
pathological. Therefore, we chose to keep only useful
grams in our multigram index. (As our later experiment
shows, we can still get quite significant speed-up for many
interesting regular expressions, even if we keep useful
grams only.) This choice results in two potential benefits:
First, the number of indexed grams is decreased. Second,
the eliminated grams are exactly those with large postings
lists, thus the size of the index would decrease even more
dramatically.

Even if we index only useful grams, we still have a large
number of useful grams: Any extension of a useful gram is
useful by definition. For example, if the gram DELLPC is
useful within a text “DELLPC is great”, then any ex-
tension of DELLPC (e.g., DELLPC i, DELLPC is gre,
etc.) will be a useful gram. For this reason, we propose
to maintain only the minimal useful grams in the index. In
the above example, only the gram DELLPCwill be indexed,
because it is minimal (or the shortest one).

When we index only the minimal useful grams, we can
prove that the size of the index does not exceed the size of

the original text corpus. To explain this fact, we introduce
the notion of a prefix-free set.

Definition 3.6 (Prefix free sets) A set of grams X ⊆ M is
prefix free if no x ∈ X is a prefix of any other x ′ ∈ X . ✷

Example 3.7 The set X1 = {ab,ac,abc} is not prefix
free because ab is a prefix of abc. ✷

It is easy to see that the set of minimal useful grams is
prefix free: Otherwise, we would have two grams x, x ′ such
that x′ is a prefix of x, contradicting the minimality of x. If
the keys for an index are minimally useful (thus prefix free),
we can show that the total size of the postings lists of the
index does not exceed the original corpus size.

Observation 3.8 Let D = {T1, T2, · · ·TN} be a finite col-
lection of finite data units. Let |Ti| denote the length of Ti

(in characters). Moreover, let |D| =
∑

i |Ti|. |D| repre-
sents the total size of the corpus. Let X be any prefix-free
set of grams extracted from D. Then,

∑

x∈X

M(x) ≤ |D|

Proof Assume the contrary. Then (by the pigeon hole prin-
ciple) there is a data unit Ti such that more than |Ti| grams
in X occur in it. Therefore, there must be two different
grams x and x′, both members of X such that they occur
at the same position in Ti. The shorter of x, x′ must be a
prefix of the longer. This contradicts our assumption that X
is prefix free. �

From the observation, we know that we can construct
a space efficient gram index by indexing only the minimal
useful grams: The total size of the postings lists (and there-
fore, the size of the index) can never exceed the total size of
the dataset (in characters). In practice, we find that the ac-
tual index size that we build is much smaller than the corpus
size, as we report in Section 5.

Finding the minimal useful grams from a large text cor-
pus is somewhat akin (both in spirit and formally) to data
mining. In data mining, one wishes to compute only the
maximal frequent sets, and here we want to find the min-
imal useful grams. The algorithm in Figure 4 makes this
connection explicit, which finds the minimal useful grams
for a dataset. The algorithm is derived from the a priori
frequent set mining. Essentially, it attempts to find maxi-
mal useless grams by following the standard a priori recipe,
generating grams in increasing order of length in an iterative
loop. Within each iteration (say iteration k), the algorithm
extends all useless grams of length k to grams of length
k + 1. It then evaluates which of the new set of grams are
useful and which are useless. The useless ones are expanded
further. The useful ones are minimal useful grams because
their prefixes are all useless. These observations are formal-
ized in theorem 3.9 below.

5

Algorithm 3.1 Multigram index
Input: database
Output: index: multigram index
Procedure

[1] k = 1, expand = {·} // · is a zero-length string
[2] While (expand is not empty)
[3] k-grams := all k-grams in database

whose (k-1)-prefix ∈ expand
[4] expand := {}
[5] For each gram x in k-grams
[6] If sel(x) ≤ c Then // check selectivity
[7] insert(x, index) // the gram is useful
[8] Else
[9] expand := expand ∪ {x}
[10] k := k + 1

Figure 4. Construction of a multigram index
Theorem 3.9 Let X be the set of grams indexed by algo-
rithm 3.1.

1. If x ∈ X , then x is useful.
2. Conversely, if x is useful, then either x ∈ X or there

is a unique prefix x′ of x such that x′ ∈ X .
3. X is a prefix free set. ✷

Proof (1) follows trivially from the algorithm, all the grams
indexed in step [7] are useful as per step [6].

(2) (sketch) By induction on k. Let the statement hold
for all grams of length less than k. Now consider the k-
gram x. Let x′′ be the k−1-prefix of x. If x′′ is useful, then
the claim follows from the inductive hypothesis. Otherwise,
x′′ is in expand, and thus, x should be picked in step [6] in
next iteration.

(3) Assume that both x and x′ are in X and that x′ is a
prefix of x. Clearly, x′ must have been picked up in step [7].
Then x′ cannot be included in the set expand in step [9], so
any grams that has x′ as its prefix cannot be included in X .

�

The algorithm in Figure 4 is intended to describe the key
concepts, not the most efficient implementation of index
construction. Several optimizations are possible in imple-
mentation. For example, in the first iteration of the algo-
rithm, we may find useless grams for both k = 1 and 2, not
just for k = 1. That is, we keep counters for all grams of
length 1 and 2 in the first iteration and estimate their selec-
tivity in one pass. Similarly, we can apply other optimiza-
tions for frequent-set mining to our context.

3.2 Extension: shortest common suffix rule and
presuf shell

Consider any useful gram x ∈ M. Any gram which can
be derived by adding something to the front of x would also
be considered useful. Thus, the gram ax would be useful
for any a ∈ Σ. We illustrate this point using the following
example:

Example 3.10 A multigram index could contain all the
keys <a href="k, a href="k, href="k, . . . , ="k
if the gram ="k is useful. However, the grams <a
href="k, a href="k, . . . (except the last ="k) are not
very useful in practice, because the string <a href=" is
very common on the web and does not have any discrimi-
nating power. The discriminating power essentially comes
from the last character k. Therefore, instead of keeping all
of the above grams, if we keep only the last one ="k, we
may reduce the size of the index significantly while perfor-
mance remains about the same. ✷

We generalize this idea by introducing the notion of a
suffix-free set.

Definition 3.11 A suffix-free set X ⊆ M contains no two
strings x and x′ such that x is a suffix of x′. ✷

Definition 3.12 A presuf-free set is both prefix free and
suffix free. We say that Y is a presuf shell of a prefix-free
set X if

1. for every x ∈ X , either x ∈ Y , or ∃y ∈ Y such that
y is a suffix of x.

2. Y is suffix free.
3. Y ⊆ X . ✷

Observation 3.13 The presuf shell of any prefix-free set
X is unique and can be computed in time O(|X | log |X |).
Here, |X | denotes

∑
x∈X |x|. ✷

Proof The idea is to reverse the strings in X and then sort
them in lexicographic order. The presuf shell can be read
off this sorted list. We leave the details to the reader. �

Observation 3.14 The presuf free shell of the prefix free set
X identified by the algorithm in Figure 4 contains at least
one substring of every useful gram. ✷

The above observation indicates that we may signifi-
cantly reduce the index size without hurting performance,
if we compute the presuf shell of the grams (identified by
the algorithm of Figure 4) and index only those grams. We
will study the impact of this technique in Section 5.5.

4 Runtime

This section describes the runtime system. We focus on
the plan generation engine of the runtime system (Figure 3)

6

Algorithm 4.1 Logical index access plan
Input: a regular expression r
Output: logical index access plan
Procedure

// Generate logical access plan
[1] Rewrite regular expression r so that it only

uses OR (|) and STAR (*) connectives
[2] Construct a parse tree based on rewritten r
[3] Replace * node with NULL
[4] Remove NULL nodes using Table 2

Figure 5. Algorithm for the generation of a
logical access plan

4.1 Plan Generation

Given a regex, we need to determine which index en-
tries to look up. A simple approach would 1) identify all
the grams used in the regex 2) look up grams from the in-
dex 3) combine the resulting postings lists appropriately and
4) read the identified candidate data units to find matching
strings. For instance, consider the following running exam-
ple for this section:

Example 4.1 Let r = (Bill|William).*Clinton.
The multigrams contained in the regex are Bill,
William, and Clinton. The regex r corresponds to the
Boolean formula

(Bill OR William) AND Clinton

However, not all grams (Bill, William and Clinton)
in the regex may be in the index. Thus, the access plan has
to be adjusted based on the availability of the grams. In the
following subsections, we describe how we can obtain the
above Boolean formula from a regex and how we can adjust
it based on index availability.

Note that the algorithm that we present in this section is
just one way of obtaining a physical execution plan. Clearly,
many optimizations can be done to obtain the most efficient
plan given an index. We defer the study of such optimiza-
tions to future work.

4.2 Generation of logical access plan

In Figure 5, we show the algorithm that can generate a
logical index access plan given a regular expression.

First, we note that any regular expression can be rewrit-
ten, so that it only uses string characters, OR connec-
tives (|) and star symbols (*) (and possibly parentheses for
precedence). For example, the regular expression [0-9]
can be rewritten as 0|1|...|9, and C+ is equivalent to

Right child
Regular NULL

Left Regular – Left
child NULL Right NULL

(a) AND node

Right child
Regular NULL

Left Regular – NULL
child NULL NULL NULL

(b) OR node

Table 2. Simplification of NULL nodes

CC*. In case of our running example, it may be rewritten as
(Bill|William)(a|b|c)*Clinton (To make our
discussion simple, we assume the dot corresponds only to
a, b, and c. In practice, the dot should be expanded to the
set of all characters.) In Step [1] of Figure 5, we perform
this rewriting step.

In Step [2], we then construct a parse tree, such as the
one shown in Figure 6(a), based on the rewritten regular ex-
pression. In the parse tree, the leaf nodes correspond to the
grams within a regular expression, and the internal nodes
correspond to Boolean connectives.

From the parse tree, we identify grams that can be looked
up from the index. In particular, we note that when a gram
is adorned with *, the string may or may not appear in the
matching string, so we cannot use the adorned gram for in-
dex lookup. We indicate this fact by replacing a branch with
* with a NULL node (Step [3]). Essentially, NULL means
that we cannot use any grams below the node to reduce can-
didate data units. Any data unit satisfies a NULL node. The
parse tree after this step is shown in Figure 6(b).

We now describe how we deal with NULL nodes. Logi-
cally, we may consider NULL as Boolean value “TRUE”: A
NULL node can be satisfied by every data unit. Therefore,
if the parent of a NULL node is an AND node, the AND
node can be replaced by the other child of the node (x AND
TRUE is x). Similarly, if a NULL node is connected by an
OR node, the OR node should be replaced by a NULL node
(x OR TRUE is TRUE). We summarize this transformation
rule in Table 2. The bar (-) in the table means that the AND
or — node should remain intact.

This NULL node minimization is performed in Step [4]
of Figure 5. We show the parse tree of our running example
after this step in Figure 6(c).

7

a

OR

OR

b c

Bill William

AND

OR

Clinton

AND

*

Bill William

OR

AND

AND

Clinton

NULL

Bill William

OR

Clinton

AND

(a) Original (b) * replaced with NULL (c) Final

Figure 6. Parse tree for (Bill|William).*Clinton

4.3 Generation of physical access plan

Given the logical index access plan shown in Figure 6(c),
we need to figure out exactly what index entries are avail-
able and how we should access them. Entries could be un-
available in the index for one of two reasons:

1. The corresponding gram is a useless gram.
2. The gram is useful, but not minimally useful, so it

was pruned away when we construct a presuf shell of
grams.

In the first case, no substring of the gram will be available
in the index. In the second case, at least one (perhaps more)
substring of the gram will be available in the index (see ob-
servation 3.14).

We replace nodes of the first type by NULLs. We replace
nodes of the second type by logical AND of all its substrings
available in the index. After this replacement, we process
NULL nodes, again, using Table 2.

To return to our running example, for the node
William in Figure 6(c), let us assume that the grams
Willi and liam are available in the index. (We can check
gram availability by looking up the directory of the index.
As we will see in Section 5, the directory of a multigram
index is often very small and can be loaded into main mem-
ory.) In this case, we replace the node William with log-
ical AND of Willi and liam as is shown in Figure 7(a).
Similarly, we replace the node Clinton with Clint and
nton assuming the two grams are available. Finally, we
replace the node Bill with NULL, assuming that Bill is
a useless gram. In Figure 7(b) we show the final plan after
we eliminate NULL nodes using Table 2.

5 Experiments

In this section, we report performance studies on the var-
ious ideas presented in this paper. We start by describing the
experimental setup.

Bill William

OR

Clinton

AND

AND

Clint nton

AND

Clint nton

OR

AND

AND

liamWilli

NULL

(b) Final physical(a) Generation of physical access plan
access plan

Figure 7. Final physical index access plan for
“(Bill|William).*Clinton”

5.1 Experimental setup

For our experiment, we used 700,000 random Web pages
downloaded in 1999. The total size of our dataset was
around 4.5GB. While our system can handle larger corpora,
we restricted ourselves to a small subset to make our ex-
periments manageable. We ran most of our experiments
on a standard Linux machine, with a Pentium III processor
(450MHz), 256 MB RAM and Ultra-Wide SCSI Bus (Red
Hat 6.2).

Benchmark queries For our experiments, it is important
to select a “fair” set of regular expressions, because the re-
sults will heavily depend the selection. With the lack of a
standard benchmark, it is clearly difficult to make an objec-
tive judgment on the performance improvement from our
techniques. Therefore, the results in this section should be
interpreted as the potential of our techniques not as an ab-
solute improvement.

We compiled our benchmark regular expressions from
the researchers at IBM Almaden: We asked them to pro-
vide a list of regular expressions that they wish to run on
a large Web dataset. We note that the researchers were not
aware of any of the techniques we have proposed in this pa-
per. Since we asked the researchers independently, many
of the regular expressions they submitted were very similar
or almost identical. Therefore, we manually selected only

8

1. MP3 URLs (mp3):
<a\s+href\s*=\s*("|’)?[ˆ>]*\.mp3
("|’)?>

2. US city name, state and ZIP code (zip):
(\a+\s+)*\a+\s*,\s*\a\a\s+\d\d\d\d\d
(-\d\d\d\d)?

3. Invalid HTMLs (html): All html pages with starting
tag “〈”, but with another “〉” before the end tab “〈”
<[ˆ>]*<

4. Middle name of President Clinton (clinton):
william\s+[a-z]+\s+clinton

5. Motorola PowerPC chip numbers (powerpc): Mo-
torola PowerPC chip part numbers starts with XPC or
MPC followed by digits.
motorola.*(xpc|mpc)[0-9]+[0-9a-z]*

6. HTML scripts on web pages (script):
<script>.*</script>

7. US phone numbers (phone):
((\d\d\d)|\d\d\d-)\d\d\d-\d\d\d\d

8. SIGMOD papers and their locations (sigmod): The
URLs ending with .ps or .pdf and with the word SIG-
MOD within 200 characters from the URL.
<a\s+href\s*=\s*("|’)?[ˆ>]*(\.ps|
\.pdf)("|’)?>.{0,200}sigmod

9. Stanford email addresses (stanford):
(\a|\d| |-|\.)+((\a|\d)+\.)*stanford
.edu

10. Pages pointing to deep links of eBay (ebay):
<a\s+href\s*=\s*("|’)?http://(www\.)
?ebay\.com/[ˆ/]+/[ˆ>]*("|’)?>

Figure 8. Ten regular expressions used for
our experiments

10 regular expressions from the compiled list, which are 1)
popular and 2) semantically interesting. We show the com-
plete list of our selection in Figure 8.

Measurements In this section, we report the following set
of results.

1. Index size and construction time: We describe the ben-
efits of a multigram index and a presuf-shell-based in-
dex on size and construction time. We report signif-
icant reductions in both index size and construction
time. For example, the size of presuf-shell-based in-
dex is only 5% of a full n-gram index, and it took less
than 10% of time to construct.

2. Overall matching time: We report on runtime perfor-
mance on our benchmark queries. We report signifi-
cant performance improvements. In some cases, where
the regex is fairly rare, we got performance improve-
ment of more than a factor of 100.

Complete Multigram Suffix

Construction time 63 h 8 h 23 min 6 h 10 min
Number of gram-keys 103,151,302 988,627 64,656
Number of postings 18,193,048,399 1,744,677,072 820,396,717

Table 3. The size of various gram indexes

3. Response time for first 10 answers: We look at how
long it takes to output the first 10 matches. This mea-
surement shows the potential of our techniques in an
interactive environment and it also measures the over-
head involved in the plan-generation phase. The results
in this case largely mirror the earlier case.

4. Effect of the shortest suffix rule: Does restricting the
index to a presuf shell result in reduced performance?
We report experiments showing very little impact in
most cases.

5.2 Index construction

To measure the space and the performance implications
of our proposed techniques, we constructed the following
three indexes:

1. Complete: Nine n-gram indexes for n = 2, 3, . . . , 10
2. Multigram: a plain multigram index (without the

shortest suffix rule). We cut off useful grams at length
10. That is, we only indexed useful grams when their
lengths are 10 or shorter.

3. Suffix: a multigram index based on a presuf shell. We
also cut off useful grams at length 10.

In case of Multigram and Suffix indexes, we need to pick
the value for usefulness threshold c, which was 0.1 in our
experiments. In this paper, we do not attempt to optimize
this threshold value. We defer the study of this issue to
future work.

Note that the result from the first index (complete) can
be considered as an “optimal” case, because we can look up
any substring in a regex using the index. Also, as a worst
case scenario we report run time results when we scanned
the entire dataset for regex matching. By comparing our
techniques to these two cases, we can see how well our tech-
niques perform for the benchmark queries.

In Table 3, we report the construction time and the size
of the indexes. To build the multigram (or suffix) index,
the entire data was scanned 5 times. During the first four
scans, the system identified the gram-keys that should be
indexed in the multigram (or suffix) index. This gram-key
identification could be done in less than 10 scans, because
we identified useful grams of multiple lengths in one scan,
as we described in Section 3.1. After this identification, the
system generated postings lists in the final scan, using the
identified keys. Roughly, the first four scans took around
4 hours and the remaining time was spent to 1) generate

9

postings lists 2) sort the gram keys and postings list, and 3)
actually construct the index.

Note that the total construction time of the suffix index
was smaller than that of the multigram index. This is be-
cause the suffix index had smaller postings lists, so it took
much less time for sorting and actual index construction.
Also note that it takes much longer to build the complete
index than the multigram (or suffix) index. While we scan
the entire data only once to build the complete index, the
sorting and the actual construction took much longer due to
its large size.

In the third row, we show the number of unique gram
keys that each index has entry for, and in the fourth row
we show the total number of postings that are associated
with the keys. For example, the plain multigram index
(Multigram, 3rd column) has 988,627 unique keys and
1,744,677,072 postings associated with them. Note that the
number of postings are significantly larger than the number
of gram keys. For any index, the number of postings is more
than 100 times larger than that of gram keys: The index size
is primarily determined by the number of postings not by
the number of gram keys.

From the table, we can clearly see that the multigram
index reduces index size very significantly. For example,
the posting size of the plain multigram index (Multigram,
3rd column) is 10 times smaller than that of the complete
n-gram indexes. This result is mainly because we built 9
n-gram indexes (n = 2, 3, . . . , 10) for the complete case.
Depending on how many n-gram indexes we build, the sav-
ings in the index size can be much larger. Also note that
a presuf-shell-based index reduces size even further. The
number of postings decreases by a factor of 2 compared to
the plain multigram index.

The reduction in the number of gram keys is even more
dramatic. Compared to the complete gram index, the multi-
gram index has less than 1% gram keys and the presuf-
shell-based index has less than 0.06% gram keys. While
this smaller gram key size does not reduce the index size
much (because the index size is dominated by the number
of postings), it may have a significant impact on the run time
performance: Since the multigram index has a small num-
ber of gram keys, the entire gram keys can be loaded into
the main memory, and we need to perform disk IOs only
when we read postings lists.

5.3 Total execution time

In Figure 9 we report the total execution time for regex
matching. In the graph, “Scan” means that we scanned
the entire dataset to match regexes, and “Multigram” and
“Complete” means that we used the multigram and the com-
plete gram indexes, respectively. For the multigram index,
we used a plain multigram index without the shortest suffix

540.00

560.00

580.00

600.00

620.00

640.00 Scan
Multigram
Complete

0.00

20.00

40.00

60.00

80.00

100.00

120.00

mp3 zip html clinton powerpc script phone sigmod stanford ebay

E
xe

cu
tio

n
tim

e
(s

ec
)

Figure 9. Total execution time

rule. (We study the performance implication of the shortest
suffix rule in Section 5.5.)

From the graph, we can clearly see that indexing tech-
niques reduce execution time very significantly. For most
regular expressions, the execution time of “Multigram” and
“Complete” is shorter than “Scan” by orders of magnitude.
Only for 3 regular expressions (zip, phone, html), “Scan”
shows comparable performance to others: For these three
regular expressions, there is no gram key entry to look up
from the index. However, even for these regular expres-
sions, we emphasize that indexing techniques do not de-
grade performance. The results of “Multigram” and “Com-
plete” are almost identical to those of “Scan,” because index
lookup takes negligible time compared to the entire scan-
ning. On average, the multigram index reduces the total
matching time by a factor of 16 compared to raw scanning.

Clearly, the improvement from indexing techniques de-
pends on result size. When there are many matching strings,
we get relatively small improvement because we need to
read many pages to confirm final matching strings. In Fig-
ure 10, we show performance gains over result size. The
vertical axis shows the improvement of the multigram index
over raw scanning (Execution time of Multigram/Execution
time of Scan) and the horizontal axis shows result size
(number of matching strings). We can clearly see that we
get more improvement as result size gets smaller. In the best
case (powerpc), we get about 300 times increase in perfor-
mance.

Finally, note that the multigram index shows comparable
performance to that of the complete gram index. In most
of Figure 9, the multigram index shows similar execution
time to the complete index. On average, the complete index
takes only 32% less time for regex matching than the multi-
gram index. Given this result, we believe that a multigram
index provides good space-performance tradeoff for regex
matching: It reduces index size by a factor of 10, while per-
formance is degraded by only 32%.

10

htmlzipphone

script

mp3
stanfordebay

powerpc

sigmod

clinton

1

10

100

1000

1 10 100 1000 10000 100000 1000000

Result size

Im
pr

ov
em

en
t

Figure 10. Result size versus improvement

545.00

550.00

555.00

560.00

565.00

570.00

575.00

580.00

Scan

MultiIndex

Complete

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00

mp3 zip html clinton powerpc script phone sigmod stanford ebay

R
es

po
ns

e
tim

e
(s

ec
)

Figure 11. Response time for first 10 results

5.4 Response time

In an interactive environment, it is more important to
minimize the response time for the first k results, not for
the entire set of results. In Figure 11, we report the time
to match the first 10 results. We can see that multigram
and complete indexes significantly improve response time.
Raw scanning shows heavy fluctuations in response time:
Depending on result size, it sometimes takes more than
500 seconds to produce the first 10 answers. The worst
cases (sigmod, ebay) happen when the number of matching
strings is small. This is because raw scanning has to exam-
ine a lot of pages to find matches. In contrast, the complete
and multigram indexes consistently take less than 10 sec-
onds. On average, the multigram index shows 20 folds re-
duction in response time compared to raw scanning. Com-
pared to the complete index, it shows less than 22% perfor-
mance degradation.

5.5 Shortest suffix rule

So far we have compared the performance of a plain
multigram index with that of raw scanning and a complete
gram index. In this section, we study how the shortest suf-
fix rule affects run time performance. In Figure 12 we re-
port the total execution time of the plain multigram index
(Plain) and the presuf-shell index (Suffix). From the graph,

1.00

10.00

100.00

1000.00

mp3 zip html clinton powerpc script phone sigmod stanford ebay

Plain

Suffix

Figure 12. The effect of shortest suffix rule

we can see that the suffix rule shows comparable results in
most cases. Only for one regular expression, sigmod, the
suffix rule shows relatively large degradation. Given that
the shortest suffix rule reduces index size by half and shows
comparable performance, we believe that it is a good option
for index construction.

6 Conclusion

In this paper, we proposed to use pre-built indexes
to speed up regular-expression matching on a large text
database. We argued that the issues in this context are very
similar to the ones in classical RDB systems. We showed
that a careful and savvy use of indexes can result in speed-
ups of two orders of magnitude in some instances. In par-
ticular, our multigram index reduces index size by an order
of magnitude in certain cases without much degradation in
performance.

References

[1] Brad Adelberg. Nodose: A tool for semi-
automatically extracting structured and semistructured
data from text documents. In Proceedings of ACM
SIGMOD Conference on Management of Data, 1998.

[2] Rakesh Agrawal, Tomasz Imielinski, and Arun
Swami. Mining association rules between sets of
items in large databases. In Proceedings of the ACM
SIGMOD Conference on Management of Data, pages
207–216, May 1993.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Fast al-
gorithms for mining association rules. In Proceedings
of the 20th International Conference on Very Large
Data Bases, pages 487–499, 1994.

[4] Alfred V. Aho, Brian W. Kernighan, and Peter J. Wein-
berger. The AWK Programming Language. Addison-
Wesley, Reading, MA, USA, 1988.

11

[5] R. Baeza-Yates and G. Gonnet. Fast text searching
for regular expressions or automaton simulation over
tries. Journal of the ACM, 43(6):915–936, 1996.

[6] Gerard Berry and Ravi Sethi. From regular expres-
sions to deterministic automata. Theoretical Computer
Science, 48:117–126, 1986.

[7] Robert S. Boyer and J. Strother Moore. A fast string
searching algorithm. Communications of the ACM,
20(10):762–772, October 1977.

[8] Sergey Brin. Extracting patterns and relations from
the world wide web. In WebDB Workshop at 6th In-
ternational Conference on Extending Database Tech-
nology, EDBT’98, 1998. Available at http://www-
db.stanford.edu/ sergey/extract.ps.

[9] Janusz A. Brzozowski. Derivatives of regular expres-
sions. Journal of the ACM, 11(4):481–494, October
1964.

[10] Junghoo Cho and Sridhar Rajagopalan. A fast regular
expression indexing engine. Technical report, UCLA
Computer Science Department, 2001.

[11] Brian F. Cooper, Neal Sample, Michael J. Franklin,
Gisli R. Hjaltason, and Moshe Shadmon. A fast index
for semistructured data. In Proceedings of the 27th
VLDB Conference, Roma, Italy, 2001.

[12] Inktomi Corp. The web exceeds 1 billion documents.
Jan 18., 2000.

[13] Doug Cutting and Jan Pedersen. Optimizations for dy-
namic inverted index maintenance. In Proceedings of
the International Conference on Information Retrieval
(SIGIR), pages 405–411, January 1990.

[14] Christos Faloutsos. Access methods for text. ACM
Computing Surveys, 17(1):50–74, March 1985.

[15] Joachim Hammer, Hector Garcia-Molina, Junghoo
Cho, Arturo Crespo, and Rohan Aranha. Extracting
semistructured information from the web. In Proceed-
ings of Workshop on Management of Semistructured
Data, Tucson, Arizona, May 1997.

[16] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent
patterns without candidate generation. In Proceedings
of the ACM SIGMOD International Conference on the
Management of Data, pages 1–12, 2000.

[17] John E. Hopcroft and Jeffrey D. Ullman. Introduc-
tion to automata theory, languages and computation.
Addison-Wesley, 1979.

[18] John R. Levine, Tony Mason, and Doug Brown. Lex
& Yacc. O’Reilly, Sebastopol, 2 edition, 1992.

[19] Udi Manber and Gene W. Myers. Suffix arrays: A new
method for on-line string searches. SIAM Journal on
Computing, 22(5):935–948, October 1993.

[20] Udi Manber and Sun Wu. Glimpse: a tool to search
through entire file systems. In Proceedings of the
USENIX Winter Conference, pages 23–32, January
1994.

[21] Edward M. McCreight. A space-economical suffix
tree construction algorithm. Journal of the ACM,
23(2):262–272, February 1976.

[22] R. McNaughton and H. Yamada. Regular expressions
and state graphs for automata. IEEE Transactions on
Electronic Computers, 9(1):39–47, March 1960.

[23] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An
effective hash-based algorithm for mining association
rules. In Proceedings of the ACM SIGMOD Interna-
tional Conference on the Management of Data, pages
175–186, May 1995.

[24] Gerard Salton. Automatic Text Processing. Addison-
Wesley, 1989.

[25] Ken Thompson. Regular expression search algorithm.
Communications of the ACM, 11(6):419–422, June
1968.

[26] Anthony Tomasic and Hector Garcia-Molina. Perfor-
mance of inverted indices in distributed text document
retrieval systems. In Proceedings of the International
Conference on Parallel and Distributed Information
Systems, pages 8–17, January 1993.

[27] Esko Ukkonen. On-line construction of suffix trees.
Algorithmica, 14(3):249–260, September 1995.

12

