
Synchronizing a database to Improve Freshness

Junghoo Cho, Hector Garcia-Molina
Department of Computer Science

Stanford, CA 94305
{cho, hector}@cs.stanford.edu

October 25, 1999

Abstract

In this paper we study how to refresh a local copy of an autonomous data source to maintain
the copy up-to-date. As the size of the data grows, it becomes more difficult to maintain the
copy “fresh,” making it crucial to synchronize the copy effectively. We define two freshness
metrics, change models of the underlying data, and synchronization policies. We analytically
study how effective the various policies are. We also experimentally verify our analysis, based
on data collected from 270 web sites for more than 4 months, and we show that our new policy
improves the “freshness” very significantly compared to current policies in use.

1 Introduction

Local copies of remote data sources are frequently made to improve performance or availability. For
instance, a data warehouse may copy remote sales and customer tables for local analysis. Similarly,
a web search engine copies portions of the web, and then indexes them to help users navigate the
web. In many cases, the remote source is updated independently without pushing updates to the
client that has a copy, so the client must periodically poll the source to detect changes and refresh
its copy. This scenario is illustrated in Figure 1.

Clearly, a portion of the local copy may get temporarily out-of-date, due to the delay between
source updates and the refresh of the local copy. In many applications it may be important to
control how out-of-date information becomes, and to perform the refresh process so that data
“freshness” is improved. In this paper we address some important questions regarding this refresh
or synchronization process. For instance, how often should we synchronize the copy to maintain,
say, 80% of the copy up-to-date? How much fresher does the copy get if we synchronize it twice
as often? In what order should data items be synchronized? For instance, would it be better to
synchronize a data item more often when we believe that it changes more often than the other
items? (Surprisingly, the answer to this last question is no in some cases!)

QueryPollingUpdate

Data source Local copy

Figure 1: Conceptual diagram of the problem

1

Although the synchronization and freshness problem arises in various contexts, our work is driv-
en by the need to manage web data. At Stanford, we maintain a local repository called WebBase,
containing a significant portion of the web (currently 25 million pages), that supports researchers
experimenting with web searching and mining [9, 4]. (The Google search engine used this reposi-
tory before it became a commercial product [1].) Web search engines and services, such as Alexa,
AltaVista and Infoseek, also maintain similar copies of the web, or indexes based on the web data
collected. To maintain the repository and/or index up-to-date, the web pages must be periodically
revisited. This work is done by a program called a web crawler.

As the size of the web grows rapidly, it becomes crucial to synchronize the data more effectively.
A recent study shows that it takes up to 6 months for a new page to be indexed by popular web
search engines [8]. Also, a lot of users express frustration, when a search engine returns obsolete
links, and the users follow the links in vain. According to the same study, up to 14% of the links
in the search engines are broken. By tuning the synchronization policy, we believe we can reduce
the wasted resources and time significantly.

The effective synchronization of a local copy introduces many interesting challenges. First of all,
measuring the freshness of the copy is not trivial. Intuitively, the copy is considered fresh when it is
not different from the “real-world” remote data. Therefore, we can measure its freshness only when
we know the current status of the real-world data. But how can we know the current status of the
real-world data, when it is spread across thousands of web sites? Second, we do not know exactly
when a particular data item will change, even if it changes at a certain average rate. For instance,
the pages in the CNN web site are updated about once a day, but the update of a particular page
depends on how the news related to that page develops over time. Therefore, visiting the page once
a day does not guarantee its freshness.

In this paper, we will formally study how to synchronize the data to maximize its freshness.
The main contributions we make are:

• We present a formal framework to study the synchronization problem, and we define the
notions of freshness and age of a copy. While our study focuses on the web environment,
we believe our analysis can be applied to other contexts, such as a data warehouse. In a
warehouse, materialized views are maintained on top of autonomous databases, and again, we
need to poll the underlying database periodically to guarantee some level of freshness.

• We present several synchronization policies that are currently employed, and we compare how
effective they are. Our study will show that some policies that may be intuitively appealing
might actually perform worse than a naive policy.

• We also propose a new synchronization policy which may improve the freshness by orders of
magnitude in certain cases.

• We validate our analysis using experimental data collected from 270 web sites over 4 month
period. The data will show that our new policy is indeed better than any of the current
policies.

The rest of this paper is organized as follows. In Section 2, we present a framework for the
synchronization problem. Then in Section 3, we explain what options exist for synchronizing the
local copy, and we compare these options in Section 4 and 5. In Section 6, we verify our analysis
using data collected from the world wide web.

2

2 Framework

To study the synchronization problem, we first need to understand the meaning of “freshness,”
and we need to know how the data change over time. In this section we present our framework to
address these issues. In our discussion, we refer to the data source that we monitor as the real-world
database and its local copy as the local database, when we need to distinguish them. Similarly, we
refer to their data items as the real-world elements and as the local elements.

In Section 2.1, we start our discussion with the definition of two freshness metrics, freshness and
age. Then in Section 2.2, we discuss how we model the evolution of individual real-world elements.
Finally in Section 2.3 we discuss how we model the real-world database as a whole.

2.1 Freshness and age

Intuitively, we consider a database “fresher” when the database has more up-to-date elements. For
instance, when database A has 10 up-to-date elements out of 20 elements, and when database B has
15 up-to-date elements, we consider B to be fresher than A. Also, we have a notion of “age:” Even
if all elements are obsolete, we consider database A “more current” than B, if A was synchronized
1 day ago, and B was synchronized 1 year ago. Based on this intuitive notion, we define freshness
and age as follows:

1. Freshness: Let S = {e1, . . . , eN} be the local database with N elements. Ideally, all N
elements will be maintained up-to-date, but in practice, only M(< N) elements will be up-
to-date at a specific time. (By up-to-date we mean that their values equal those of their
real-world counterparts.) We define the freshness of S at time t as F (S; t) = M/N . Clearly,
the freshness is the fraction of the local database that is up-to-date. For instance, F (S; t) will
be one if all local elements are up-to-date, and F (S; t) will be zero if all local elements are
out-of-date. For mathematical convenience, we reformulate the above definition as follows:

Definition 1 The freshness of a local element ei at time t is

F (ei; t) =
{

1 if ei is up-to-date at time t
0 otherwise.

Then, the freshness of the local database S at time t is

F (S; t) =
1
N

N∑
i=1

F (ei; t).
2

Note that freshness is hard to measure exactly in practice since we need to “instantaneously”
compare the real-world data to the local copy. But as we will see, it is possible to estimate
freshness (and age) given some information about how the real-world data changes.

2. Age: To capture “how old” the database is, we define the metric age as follows:

Definition 2 The age of the local element ei at time t is

A(ei; t) =
{

0 if ei is up-to-date at time t
t − modification time of ei otherwise.

Then the age of the local database S is

A(S; t) =
1
N

N∑
i=1

A(ei; t).
2

3

F(ei)

A(ei)

1

0

0 Time

Time

element is synchronized
element is modified

Figure 2: An example of the time evolution of F (ei; t) and A(ei; t)

The age of S tells us the average “age” of the local database. For instance, if all real-world
elements changed one day ago and we have not synchronized them since, A(S; t) is one day.

In Figure 2, we show the evolution of F (ei; t) and A(ei; t) of an element ei. In this graph, the
horizontal axis represents time, and the vertical axis shows the value of F (ei; t) and A(ei; t). We
assume that the real-world element changes at the dotted lines and the local element is synchronized
at the dashed lines. The freshness drops to zero when the real-world element changes, and the age
increases linearly from that point on. When the local element is synchronized to the real-world
element, its freshness recovers to one, and its age drops to zero.

Obviously, the freshness (and age) of the local database may change over time. For instance,
the freshness might be 0.3 at one point of time, and it might be 0.6 at another point of time. To
compare different synchronization methods, it is important to have a metric that fairly considers
freshness over a period of time, not just at one instant. In this paper, we use the freshness averaged
over time as this metric.

Definition 3 We define the time average of freshness of element ei, F̄ (ei), and the time average
of freshness of database S, F̄ (S), as

F̄ (ei) = lim
t→∞

1
t

∫ t

0
F (ei; t)dt F̄ (S) = lim

t→∞
1
t

∫ t

0
F (S; t)dt.

The time average of age can be defined similarly. 2

From the definition, we can prove that F̄ (S) is the sum of F̄ (ei): F̄ (S) = 1
N

∑N
i=1 F̄ (ei). For

detailed proof, please refer to Appendix A.

2.2 Poisson process and probabilistic evolution of an element

To study how effective different synchronization methods are, we need to know how the real-world
element changes. In this paper, we assume that the elements are modified by a Poisson process. The
Poisson process is often used to model a sequence of events that happen randomly and independently
with a fixed rate over time. For instance, the occurrences of fatal auto accidents, or the arrivals
of customers at a service center, are usually modeled by Poisson processes. Under the Poisson
process, it is well-known that the time to the next event is exponentially distributed [10].

4

Lemma 1 Let T be the time when the next event occurs in a Poisson process with change rate λ.
Then the probability density function for T is

fT (t) =
{

λe−λt for t > 0
0 for t ≤ 0.

2

In this paper, we assume that each element ei is modified by the Poisson process with change
rate λi. That is, each element changes at its own rate λi, and this rate may differ from element
to element. For example, one element may change once a day, and another element element may
change once a year. Later in Section 6, we will experimentally verify that the Poisson process
describes well the changes of real web pages.

Under the Poisson process model, we can analyze the freshness and age of the element ei over
time. More precisely, let us compute the expected value of freshness and age of ei at time t. For
the analysis, we assume that we synchronize ei at t = 0 and at t = I.

By integrating the probability density function of Lemma 1, we can obtain the probability that
ei changes in the interval (0, t]:

Pr{T ≤ t} =
∫ t

0
fT (t)dt = 1 − e−λt

Since ei is not synchronized in the interval (0, I), the local element ei may get out-of-date with
probability Pr{T ≤ t} = 1 − e−λt at time t ∈ (0, I). Hence, the expected freshness is

E[F (ei; t)] = 0 · (1 − e−λt) + 1 · e−λt = e−λt for t ∈ (0, I).

Note that the expected freshness is 1 at time t = 0 and that the expected freshness approaches 0
as time passes.

We can obtain the expected value of age of ei similarly. If ei is modified at time s ∈ (0, I), the
age of ei at time t ∈ (s, I) is (t − s). From Lemma 1, ei changes at time s with probability λe−λs,
so the expected age at time t ∈ (0, I) is

E[A(ei; t)] =
∫ t

0
(t − s)(λe−λs)ds = t(1 − 1 − e−λt

λt
)

Note that E[A(ei; t)] → 0 as t → 0 and that E[A(ei; t)] ≈ t as t → ∞; the expected age is 0 at time
0 and the expected age is approximately the same as the elapsed time when t is large. In Figure 3,
we show the graphs of E[F (ei; t)] and E[A(ei; t)]. Note that when we resynchronize ei at t = I,
E[F (ei; t)] recovers to one and E[A(ei; t)] goes to zero.

2.3 Evolution model of database

In the previous subsection we modeled the evolution of an element. Now we discuss how we model
the database as a whole. Depending on how its elements change over time, we can model the
real-world database by one of the following:

• Uniform change-frequency model: In this model, we assume that all real-world elements
change at the same frequency λ. This is a simple model that could be useful when:

– we do not know how often the individual element changes over time. We only know
how often the entire database changes on average, so we may assume that all elements
change at the same average rate λ.

5

0 I
Time

1

(a) E[F (ei; t)] graph over
time

0 I
Time

(b) E[A(ei; t)] graph over
time

Figure 3: Time evolution of E[F (ei; t)] and E[A(ei; t)]

6 8 10 12 14
λ

0.02

0.04

0.06

0.08

0.1

0.12

0.14

% of elements

g()λ

Figure 4: Histogram of the change fre-
quencies

symbol meaning
(a) F̄ (S), F̄ (ei) Freshness of database S (and element ei) averaged over time
(b) Ā(S), Ā(ei) Age of database S (and element ei) averaged over time
(c) F̄ (λi, fi), Ā(λi, fi) Freshness (and age) of element ei averaged over time, when

the element changes at the rate λi and is synchronized at
the frequency fi

(i) λi Change frequency of element ei

(j) fi (= 1/Ii) Synchronization frequency of element ei

(k) λ Average change frequency of database elements
(l) f (= 1/I) Average synchronization frequency of database elements

Table 1: The symbols that are used throughout this paper and their meanings

– the elements change at slightly different frequencies. In this case, this model will work
as a good approximation.

• Non-uniform change-frequency model: In this model, we assume that the elements
change at different rates. We use λi to refer to the the change frequency of the element
ei. When the λi’s vary, we can plot the histogram of λi’s as we show in Figure 4. In the
figure, the horizontal axis shows the range of change frequencies (e.g., 9.5 < λi ≤ 10.5) and
the vertical axis shows the fraction of elements that change at the given frequency range.
We can approximate the discrete histogram by a continuous distribution function g(λ), when
the database consists of many elements. We will adopt the continuous distribution model
whenever convenient.

For the reader’s convenience, we summarize our notation in Table 1. As we continue our
discussion, we will explain some of the symbols that have not been introduced yet.

3 Synchronization policy

So far we discussed how the real-world database changes over time. In this section we study how
the local copy can be refreshed. There are several dimensions to this synchronization process:

1. Synchronization frequency: We first need to decide how frequently we synchronize the
local database. Obviously, as we synchronize the database more often, we can maintain the

6

local database fresher. In our analysis, we assume that we synchronize N elements per I
time-units. By varying the value of I, we can adjust how often we synchronize the database.

2. Resource allocation: Even after we decide how many elements we synchronize per unit
interval, we still need to decide how frequently we synchronize each individual element. We
illustrate this issue by an example.

Example 1 The database consists of three elements, e1, e2 and e3. It is known that the
elements change at the rates λ1 = 4, λ2 = 3, and λ3 = 2 (times/day). We have decided to
synchronize the database at the total rate of 9 elements/day. In deciding how frequently we
synchronize each element, we consider the following options:

• Synchronize all elements uniformly at the same rate. That is, synchronize e1, e2 and e3

at the same rate of 3 (times/day).

• Synchronize an element proportionally more often when it changes more often. In other
words, synchronize the elements at the rates of f1 = 4, f2 = 3, f3 = 2 (times/day). 2

Based on how the fixed synchronization-resource is allocated to the individual elements, we
can classify synchronization policies as follows. We study these policies later in Section 5.

(a) Uniform allocation policy: We synchronize all elements at the same rate, regardless
of how often they change. That is, each element ei is synchronized at the fixed frequency
f . In Example 1, the first option corresponds to this policy.

(b) Non-uniform allocation policy: We synchronize elements at different rates. In par-
ticular, with a proportional allocation policy we synchronize element ei with a fre-
quency fi that is proportional to its change frequency λi. Thus, the frequency ratio
λi/fi, is the same for any i under the proportional allocation policy. In Example 1, the
second option corresponds to this policy.

3. Synchronization order: Now we need to decide in what order we synchronize the elements
in the database.

Example 2 We maintain a local database of 10,000 web pages from site A. In order to
maintain the local copy up-to-date, we continuously update our local database by revisiting
the pages in the site. In performing the update, we may adopt one of the following options:

• We maintain an explicit list of all URLs in the site, and we visit the URLs repeatedly in
the same order. Notice that if we update our local database at a fixed rate, say 10,000
pages/day, then we synchronize a page, say p1, at the fixed interval of one-day.

• We only maintain the URL of the root page of the site, and whenever we crawl the site,
we start from the root page, following links. Since the link structure (and the order) at a
particular crawl determines the page visit order, the synchronization order may change
from one crawl to the next. Notice that under this policy, we synchronize a page, say
p1, at variable intervals. For instance, if we visit p1 at the end of one crawl and at the
beginning of the next crawl, the interval is close to zero, while in the opposite case it is
close to two days.

• Instead of actively synchronizing pages, we synchronize pages on demand, as they are
requested by a user. Since we do not know which page the user will request next,
the synchronization order may appear random. Under this policy, the synchronization
interval of p1 is not bound by any value. It may range from zero to infinity. 2

7

(b)

(c)

 : page synchronization point

1 day

(a)

Figure 5: Several options for the synchronization points

We can summarize the above options as follows. In Section 4 we will compare how effective
these synchronization order policies are.

(a) Fixed order: We synchronize all elements in the database in the same order repeatedly.
Therefore, a particular element is synchronized at a fixed interval under this policy. This
policy corresponds to the first option of the above example.

(b) Random order: We synchronize all elements repeatedly, but the synchronization order
may be different in each iteration. This policy corresponds to the second option in the
example.

(c) Purely random: At each synchronization point, we select an arbitrary element from
the database and synchronize it. Therefore, an element is synchronized at intervals of
arbitrary length. This policy corresponds to the last option in the example.

4. Synchronization points: In some cases, we may need to synchronize the database only
in a limited time-window. For instance, if a web site is heavily accessed during day-time, it
might be desirable to crawl the site only in the night, when it is less frequently visited. We
illustrate several options due to this constraint by an example.

Example 3 We maintain a local database of 10 pages from site A. The site is heavily accessed
during day-time. We consider several synchronization policies, including the following:

• Figure 5(a): We synchronize all 10 pages in the beginning of the day, say midnight.

• Figure 5(b): We synchronize most pages in the beginning of the day, but we still
synchronize some pages during the rest of the day.

• Figure 5(c): We synchronize 10 pages uniformly over a day. 2

In this paper, we assume that we synchronize the database uniformly over time. We believe
this assumption is valid especially for the web environment. Because the web sites are located
in many different time zones, it is not easy to identify which time zone a particular web site
resides in. Also, the access pattern to a web site varies widely. For example, some web sites
are heavily accessed during day time, while others are accessed mostly in the evening, when
users are at home. Since crawlers cannot guess the best time to visit each site, they typically
visit sites at a uniform rate that is convenient to the crawler.

4 Comparison of synchronization-order policies

Clearly, we can increase the database freshness by synchronizing more often. But exactly how
often should we synchronize, for the freshness to be, say, 0.8? Conversely, how much freshness

8

policy Freshness F̄ (S) Age Ā(S)

Fixed-order 1−e−r

r I(1
2 − 1

r + 1−e−r

r2)

Random-order 1
r (1 − (1−e−r

r)2) I(1
3 + (1

2 − 1
r)2 − (1−e−r

r2)2)

Purely-random 1
1+r I(r

1+r)

Table 2: Freshness and age formula for various synchronization-order policies

1 2 3 4 5
r

0.2

0.4

0.6

0.8

1

Freshness

purely-random
random-order
fixed-order

(a) Freshness graph over r = λ/f

1 2 3 4 5
r

0.2

0.4

0.6

0.8

1

Age/I

purely-random
random-order
fixed-order

(b) Age graph over r = λ/f

Figure 6: Comparison of freshness and age of various synchronization policies

do we get if we synchronize 100 elements per second? In this section, we will address these ques-
tions by analyzing synchronization order policies. Through the analysis, we will also learn which
synchronization-order policy is the best in terms of freshness and age.

In this section we assume that all real-world elements are modified at the same average rate λ.
That is, we adopt the uniform change-frequency model (Section 2.3). When the elements change
at the same rate, it does not make sense to synchronize the elements at different rates, so we also
assume uniform allocation policy (Item 2a in Section 3). These assumptions significantly simplify
our analysis, while giving us solid understanding on the issues that we address.

Based on these assumptions, we analyze different synchronization-order policies in detail in
Appendix B, and we we summarize the result in Table 2. In the table, we use r to represent the
frequency ratio λ/f , where λ is the frequency at which a real-world element changes and f(= 1/I)
is the frequency at which a local element is synchronized. When r < 1, we synchronize the elements
more often than they change, and when r > 1, the elements change more often than we synchronize
them.

To help readers interpret the formulas, we show the freshness and the age graphs in Figure 6.
In the figure, the horizontal axis is the frequency ratio r, and the vertical axis shows the freshness
and the age of the local database. Notice that as we synchronize the elements more often than
they change (λ � f , thus r = λ/f → 0), the freshness approaches 1 and the age approaches 0.
Also, when the elements change more frequently than we synchronize them (r = λ/f → ∞), the
freshness becomes 0, and the age increases. Finally, notice that the freshness is not equal to 1,
even if we synchronize the elements as often as they change (r = 1). This result comes for two
reasons. First, an element changes at random points of time, even if it changes at fixed average
rate. Therefore, the element may not change between some synchronizations, and it may change

9

more than once between other synchronizations. For this reason, it cannot be always up-to-date.
Second, some delay may exist between the change of an element and its synchronization, so some
elements may be “temporarily obsolete,” decreasing the freshness of the database.

The graphs of Figure 6 have many practical implications. For instance, we can answer all of
the following questions by looking at the graphs.

• How can we measure how fresh the local database is? By measuring how frequently
the real-world elements change,1 we can estimate how fresh the local database is. For instance,
when the real-world elements change once a day, and when we synchronize the local elements
also once a day (λ = f or r = 1), the freshness of local database is (e − 1)/e ≈ 0.63, under
the fixed-order policy.

Note that we derived the equations in Table 2 assuming that the real-world elements change
at the same rate λ. Therefore, the equations may not be true when the real-world elements
change at different rates. However, we can still interpret λ as the average rate at which the
whole database change, and we can use the formulas as approximations. Later in Section 5,
we derive exact formula when the elements change at different rates.

• How can we guarantee a certain freshness of the local database? From the graph,
we can find how frequently we should synchronize the local elements in order to achieve a
certain freshness. For instance, if we want at least 0.8 freshness, the frequency ratio r should
be less than 0.46 (fixed-order policy). That is, we should synchronize the local elements at
least 1/0.46 ≈ 2 times as frequently as the real-world elements change.

• Which synchronization-order policy is the best? The fixed-order policy performs best
by both metrics. For instance, when we synchronize the elements as often as they change
(r = 1), the freshness of the fixed-order policy is (e − 1)/e ≈ 0.63, which is 30% higher than
that of the purely-random policy. The difference is more dramatic for age. When r = 1, the
age of the fixed-order policy is only one fourth of the random-order policy. In general, as the
variability in the time between visits increases, the policy gets less effective.

5 Comparison of resource-allocation policies

In the previous section, we addressed various questions, assuming that all elements in the database
change at the same rate. But what can we do if the elements change at different rates and we
know how often each element changes? Is it better to synchronize the element more often when
it changes more often? In this section, we address this question by analyzing different resource-
allocation policies (Item 2 in Section 3). For the analysis, we model the real-world database
by the non-uniform change-frequency model (Section 2.3), and we assume the fixed-order policy
for the synchronization-order policy (Item 3 in Section 3), because the fixed-order policy is the
best synchronization-order policy. In other words, we assume that the element ei changes at the
frequency λi (λi’s may be different from element to element), and we synchronize ei at the fixed
interval Ii(= 1/fi, fi: synchronization frequency of ei). Remember that we synchronize N elements
in I(= 1/f) time units. Therefore, the average synchronization frequency (1

N

∑N
i=1 fi) should be

equal to f .
In Section 5.1, we start our discussion by comparing the uniform allocation policy with the

proportional allocation policy. Surprisingly, the uniform policy turns out to be always more effective
1In Section 6, we briefly discuss how we can measure the frequency of change. To learn more on this topic, please

refer to [3].

10

policy Freshness F̄ (S) Age Ā(S)

Uniform allocation 1−(1+rδ2)
1− 1

δ2

r(1−δ2)
I

(1−δ2)
[1−δ2

2 − 1
r + 1−(1+rδ2)

2− 1
δ2

r2(1−2δ2)
]

Proportional allocation 1−e−r

r
I

(1−δ2)
[12 − 1

r + 1−e−r

r2]

Table 3: Freshness and age formula for various resource-allocation policies

than the proportional policy. Then in Section 5.2 we try to understand why this happens by
studying a simple example. Finally in Section 5.3 we study how we should allocate resources to
the elements to achieve the optimal freshness or age.

5.1 Uniform and proportional allocation policy

In this subsection, we first assume that change frequencies of real-world elements follow the gamma
distribution, and compare how effective the proportional and the uniform policies are. Later in
Appendix D, we will prove that the conclusion of this section is valid for any distribution.

The gamma distribution is often used to model a random variable whose domain is non-negative
numbers. Also, the distribution is known to cover a wide array of distributions. For instance,
the exponential and the chi-square distributions are special instances of the gamma distribution,
and the gamma distribution is close to the normal distribution when the variance is small. This
mathematical property and versatility makes the gamma distribution a desirable one for describing
the distribution of the change frequency.

Under these assumptions, we analyzed the uniform and proportional allocation policies for a
database S (Appendix C), and we summarize the result in Table 3. In the table, r represents the
frequency ratio λ/f , where λ is the average rate at which elements change (the mean of the gamma
distribution), and f is the average rate at which we synchronize them (1/I). Also, δ represents the
standard deviation of change frequencies (more precisely, δ2 =(variance)/(mean)2 of the gamma
distribution).

To help the discussion, we use the subscript p to refer to the proportional allocation policy and
the subscript u to refer to the uniform allocation policy. Then, the uniform policy is better than the
proportional one, when F̄ (S)p < F̄ (S)u and Ā(S)u < Ā(S)p. To compare the two policies, we plot
F̄ (S)p/F̄ (S)u and Ā(S)u/Ā(S)p graphs in Figure 7. Note that when the uniform policy is better,
the ratios are below 1 (F̄ (S)p/F̄ (S)u < 1 and Ā(S)u/Ā(S)p < 1), and when the proportional policy
is better, the ratios are above 1 (F̄ (S)p/F̄ (S)u > 1 and Ā(S)u/Ā(S)p > 1).

Surprisingly, we can clearly see that the ratios are below 1 for any r and δ values: The uniform
policy is always better than the proportional policy! In fact, the uniform policy gets more effective as
the elements change at more different frequencies. That is, when the variance of change frequencies
is zero (δ = 0), all elements change at the same frequency, so two policies give the same result
(F̄ (S)p/F̄ (S)u = 1 and Ā(S)u/Ā(S)p = 1). But as δ increases (i.e., as the elements change at more
different frequencies), F̄ (S)u grows larger than F̄ (S)p (F̄ (S)p/F̄ (S)u → 0) and Ā(S)u gets smaller
than Ā(S)p (Ā(S)u/Ā(S)p → 0). Interestingly, we can observe that the age ratio does not change
much as r increases, while the freshness ratio heavily depends on the r value.

While we showed that the uniform policy is better than the proportional one only for the gamma
distribution model, it is in fact very general conclusion. In Appendix D, we prove that the uniform
policy is always better than the proportional policy under any distribution.

11

2
4

6
8

10

0.2

0.4

0.6

0.8

δ

0.4

0.6

0.8

1

Fp/Fu

2
4

6
8

r

(a) F̄ (S)p/F̄ (S)u graph over r and δ

2
4

6
8

10

0.2

0.4

0.6

0.8

δ
0

0.2
0.4
0.6
0.8
1

Au/Ap

2
4

6
8

r

(b) Ā(S)u/Ā(S)p graph over r and δ

Figure 7: F̄ (S)p/F̄ (S)u and Ā(S)u/Ā(S)p graphs over r and δ

e
1

v v v v v v vv v

1 day

e
2

v

 : element modification timev

Figure 8: A database with two elements with different change frequency

5.2 Two element database

Intuitively, we expected that the proportional policy would be better than the uniform policy,
because we allocate more resources to the elements that change more often, which may need more
of our attention. But why is it the other way around? In this subsection, we try to understand
why we get the unintuitive result, by studying a very simple example: a database consisting of two
elements. The analysis of this simple example will let us understand the result more concretely,
and it will reveal some intuitive trends. We will confirm the trends more precisely when we study
the optimal synchronization policy later in Section 5.3.

Now we analyze a database consisting of two elements: e1 and e2. For the analysis, we assume
that e1 changes at 9 times/day and e2 changes at once/day. We also assume that our goal is to
maximize the freshness of the database averaged over time. In Figure 8, we visually illustrate our
simple model. For element e1, one day is split into 9 intervals, and e1 changes once and only once
in each interval. However, we do not know exactly when the element changes in one interval. For
element e2, it changes once and only once per day, and we do not know when it changes. While
this model is not exactly a Poisson process model, we adopt this model due to its simplicity and
concreteness.

Now let us assume that we decided to synchronize only one element per day. Then what element
should we synchronize? Should we synchronize e1 or should we synchronize e2? To answer this
question, we need to compare how the freshness changes if we pick one element over the other. If
the element e2 changes in the middle of the day and if we synchronize e2 right after it changed, it
will remain up-to-date for the remaining half of the day. Therefore, by synchronizing element e2 we

12

row f1 + f2 f1 f2 benefit best
(a) 1 1 0 1

2 × 1
18 = 1

36 0 1
(b) 0 1 1

2 × 1
2 = 9

36

(c) 2 2 0 1
2 × 1

18 + 1
2 × 1

18 = 2
36 0 2

(d) 1 1 1
2 × 1

18 + 1
2 × 1

2 = 10
36

(e) 0 2 1
3 × 2

3 + 1
3 × 1

3 = 12
36

(f) 5 3 2 3
36 + 12

36 = 30
72 2 3

(g) 2 3 2
36 + 6

16 = 31
72

(h) 10 9 1 9
36 + 1

4 = 36
72 7 3

(i) 7 3 7
36 + 6

16 = 41
72

(j) 5 5 5
36 + 15

36 = 40
72

Table 4: Estimation of benefits for different choices

get 1/2 day “benefit”(or freshness increase). However, the probability that e2 changes before the
middle of the day is 1/2, so the “expected benefit” of synchronizing e2 is 1/2× 1/2 day = 1/4 day.
By the same reasoning, if we synchronize e1 in the middle of an interval, e1 will remain up-to-
date for the remaining half of the interval (1/18 of the day) with probability 1/2. Therefore, the
expected benefit is 1/2 × 1/18 day = 1/36 day. From this crude estimation, we can see that it is
more effective to select e2 for synchronization!

Table 4 shows the expected benefits for several other scenarios. The second column shows the
total synchronization frequencies (f1 + f2) and the third column shows how much of the synchro-
nization is allocated to f1 and f2. In the fourth column we estimate the expected benefit, and in
the last column we show the f1 and f2 values that give the highest expected benefit. To save space,
when f1 + f2 = 5 and 10, we show only some interesting (f1, f2) pairs. Note that since λ1 = 9 and
λ2 = 1, row (h) corresponds to the proportional policy (f1 = 9, f2 = 1), and row (j) corresponds to
the uniform policy (f1 = f2 = 5). From the table, we can observe following interesting trends:

1. Rows (a)-(e): When the synchronization frequency (f1+f2) is much smaller than the change
frequency (λ1 + λ2), it is better to give up synchronizing the elements that change too fast.
In other words, when it is not possible to keep up with everything, it is better to focus on
what we can track.

2. Rows (h)-(j): Even if the synchronization frequency is relatively large (f1 + f2 = 10), the
uniform allocation policy (row (j)) is more effective than the proportional allocation policy
(row (h)). The optimal point (row (i)) is located somewhere between the proportional policy
and the uniform policy.

We can verify this trend using our earlier analysis based on a Poisson process. We assume that
the changes of e1 and e2 are Poisson processes with change frequencies λ1 = 9 and λ2 = 1. To help
the discussion, we use F̄ (λi, fi) to refer to the time average of freshness of ei when it changes at λi

and is synchronized at fi. Then, the freshness of the database is

F̄ (S) =
1
2
(F̄ (e1) + F̄ (e2)) =

1
2
(F̄ (λ1, f1) + F̄ (λ2, f2)) =

1
2
(F̄ (9, f1) + F̄ (1, f2)).

When we fix the value of f1 + f2, the above equation has only one degree of freedom, and we can
plot F̄ (S) over, say, f2. In Figure 9, we show a series of graphs obtained this way. The horizontal

13

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.2

Freshness

(a) f1 + f2 = 1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.2

Freshness

(b) f1 + f2 = 2

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.2

Freshness

(c) f1 + f2 = 3

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.2

Freshness

(d) f1 + f2 = 5

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.2

Freshness

*

(e) f1 + f2 = 10

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.2

Freshness

(f) f1 + f2 = 100

Figure 9: Series of freshness graphs for different synchronization frequency constraints. In all of
the graphs, λ1 = 9 and λ2 = 1.

axis here represents the fraction of the synchronization allocated to e2. That is, when x = 0, we do
not synchronize element e2 at all (f2 = 0), and when x = 1 we synchronize only element e2 (f1 = 0
or f2 = f1 +f2). Therefore, the middle point (x = 0.5) corresponds to the uniform policy (f1 = f2),
and x = 0.1 point corresponds to the proportional policy (Remember that λ1 = 9 and λ2 = 1).
The vertical axis in the graph shows the normalized freshness of the database. We normalized the
freshness so that F̄ (S) = 1 at the uniform policy (x = 0.5). To compare the uniform and the
proportional policies more clearly, we indicate the freshness of the proportional policy by a dot,
and the x and the y axes cross at the uniform policy.

From these graphs, we can clearly see that the uniform policy is always better than the propor-
tional policy, since the dots are always below the origin. Also note that when the synchronization
frequency is small (graph (a) and (b)), it is better to give up on the element that changes too often
(We get the highest freshness when x = 1 or f1 = 0). When f1 + f2 is relatively large (graph (e)
and (f)), the optimal point is somewhere between the uniform policy and the proportional policy.
For example, the freshness is highest when x ≈ 0.3 in Figure 9(e) (the star in the graph).

5.3 The optimal resource-allocation policy

From the previous discussion, we learned that the uniform policy is indeed better than the pro-
portional policy. Also, we learned that the optimal policy is neither the uniform policy nor the
proportional policy. For instance, we get the highest freshness when x ≈ 0.3 for Figure 9(e). Then,
what is the best way to allocate the resource to elements for a general database S? In this section,
we will address this question. More formally, we will study how often we should synchronize indi-
vidual elements when we know how often they change, in order to maximize the freshness or age.

14

e1 e2 e3 e4 e5

(a) change frequency 1 2 3 4 5
(b) synchronization frequency (freshness) 1.15 1.36 1.35 1.14 0.00
(c) synchronization frequency (age) 0.84 0.97 1.03 1.07 1.09

Table 5: The optimal synchronization frequencies of Example 4

Mathematically, we can formulate our goal as follows:

Problem 1 Given λi’s (i = 1, 2, . . . ,N), find the values of fi’s (i = 1, 2, . . . ,N) which maximize

F̄ (S) =
1
N

N∑
i=1

F̄ (ei) =
1
N

N∑
i=1

F̄ (λi, fi)

when fi’s satisfy the constraints

1
N

N∑
i=1

fi = f and fi ≥ 0 (i = 1, 2, . . . ,N)
2

Because we can derive the closed form of F̄ (λi, fi),2 we can solve the above problem by the
method of Lagrange multipliers [11]. To illustrate the property of its solution, we use the following
example.

Example 4 The real-world database consists of five elements, which change at the frequencies of
1, 2, . . . , 5 (times/day). We list the change frequencies in row (a) of Table 5 (We explain the
meaning of rows (b) and (c) later, as we continue our discussion.). We decided to synchronize the
local database at the rate of 5 elements/day total, but we still need to find out how often we should
synchronize each element.

For this example, we can solve the above problem numerically, and we show the graph of its
solution in Figure 10(a). The horizontal axis of the graph corresponds to the change frequency
of an element, and the vertical axis shows the optimal synchronization frequency of the element
with that given change frequency. For instance, the optimal synchronization frequency of e1 is 1.15
(f = 1.15), because the change frequency of element e1 is 1 (λ = 1). Similarly from the graph, we
can find the optimal synchronization frequencies of other elements, and we list them in row (b) of
Table 5.

Notice that while e4 changes twice as often as e2, we need to synchronize e4 less frequently than
e2. Furthermore, the synchronization frequency of e5 is zero, while it changes at the highest rate.
This result comes from the shape of Figure 10(a). In the graph, when λ > 2.5, f decreases as λ
increases. Therefore, the synchronization frequencies of the elements e3, e4 and e5 gets smaller and
smaller. 2

While we obtained Figure 10(a) by solving Example 4, we can prove that the shape of the graph
is the same for any distributions of λi’s (Appendix E). That is, the optimal graph for any database
S is exactly the same as Figure 10(a), except that the graph of S is scaled by a constant factor
from Figure 10(a). Since the shape of the graph is always the same, the following statement is true
in any scenario: To improve freshness, we should penalize the elements that change too often.

2For instance, F̄ (λi, fi) = (1 − e−λi/fi)/(λi/fi) for the fixed-order policy.

15

1 2 3 4 5
λ

0.2

0.4

0.6

0.8

1.0

1.2

1.4
f

(a) change frequency vs. synchronization fre-
quency for freshness optimization

1 2 3 4 5
λ

0.2

0.4

0.6

0.8

1.0

f

(b) change frequency vs. synchronization fre-
quency for age optimization

Figure 10: Solution of the freshness and age optimization problem of Example 4

Similarly, we can compute the optimal age solution for Example 4, and we show the result in
Figure 10(b). The axes in this graph are the same as before. Also, we list the optimal synchroniza-
tion frequencies in row (c) of Table 5. Contrary to the freshness, we can observe that we should
synchronize the element more often when it changes more often (f1 < · · · < f5). However, notice
that the difference between the synchronization frequencies is marginal: All fi’s are approximately
close to one. In other words, the optimal solution is rather close to the uniform policy than to
the proportional policy. Similarly for age, we can prove that the shape of the optimal age graph is
always the same as Figure 10(b). Therefore, the trend we observed here is very general and holds
for any database.

6 Experiments

Throughout this paper we modeled database changes as a Poisson process. In this section, we first
verify the Poisson process model using experimental data collected from 270 sites for more than 4
months. Then, using the observed change frequencies on the web, we compare the effectiveness of
our various synchronization policies. The experimental results will show that our optimal policy
performs significantly better than the current policies used by crawlers.

6.1 Experimental setup

To collect the data on how often web pages change, we crawled around 720,000 pages from 270
“popular” sites every day, from February 17th through June 24th, 1999. This was done with the
Stanford WebBase crawler, a system designed to create and maintain large web repositories. The
system is capable of high indexing speeds (about 60 pages per second), and can handle relatively
large data repositories (currently 210GB of HTML is stored). In this section we briefly discuss how
the particular sites were selected for our experiments.

To select the sites for our experiment, we used the snapshot of the web in our WebBase reposito-
ry. Currently, WebBase maintains the snapshot of 25 million web pages, and based on this snapshot
we identified the top 400 “popular” sites as the candidate sites. To measure the popularity of sites,
we essentially counted how many pages in our repository have a link to each site, and we used the
count as the popularity measure of a site.3

3More precisely, we used PageRank as the popularity measure, which is similar to the link count. To learn more
about PageRank, please refer to [9, 4].

16

0 20 40 60 80
0.00001

0.0001

0.001

0.01

0.1

1

 days

fraction

Figure 11: Change intervals for pages with the
average change interval of 10 days

≤ 1day ≤1week ≤ 1month ≤ 4months > 4months

0.05

0.1

0.15

0.2

0.25

0.3

Figure 12: Percentage of pages with given aver-
age interval of change

Then, we contacted the webmasters of all candidate sites asking their permission for our ex-
periment. After this step, 270 sites remained, including sites such as Yahoo (http://yahoo.com),
Microsoft (http://microsoft.com), and Stanford (http://www.stanford.edu). Obviously, fo-
cusing on the “popular” sites biases our results to a certain degree, but we believe this bias is
toward what most people are interested in.

From each site chosen this way, we selected around 3,000 pages and crawled them every day.
From this daily update information, we can measure how often a page changes. For instance,
when we detected 4 changes during our 4 month experiment, we can reasonably infer that the page
changes every month on average. However, note that this estimation is not very accurate for the
pages that change very often or seldom change. That is, even if a page changes more than once a
day, we detect only one change per day, because we accessed pages on daily basis. Also, if a page
changes less than once per 4 months, we cannot detect any changes in our experiment.4

6.2 Verification of Poisson process

In this subsection, we verify whether the Poisson process adequately models web page changes. In
Lemma 1, we computed how long it takes for a page to change under the Poisson process. According
to the lemma, the time between changes follow the exponential distribution λe−λt. We can use this
result to verify our assumption. That is, if we plot the time between changes of a page pi, the time
should be distributed as λie

−λit, if changes of pi follow a Poisson process.
In Figure 11, we show that the changes of a web page can indeed be modeled by the Poisson

process. To plot this graph, we first selected only those pages whose average change intervals were
10 days5 and measured the time between changes in those pages. From this data we could get the
distribution of the change intervals, which is shown in Figure 11. The horizontal axis represents
the interval between changes, and the vertical axis shows the fraction of changes with that interval.
The vertical axis in the graph is logarithmic to emphasize that the distribution is exponential. The
line in the graph is what a Poisson process would predict. While there exist small variations, we
can clearly see that Poisson process predicts very well the observed data.

4For more detailed discussion on this issue and to learn how we may fix this problem, please refer to [3].
5We plotted similar graphs for the pages with other average change interval, and got similar result when we had

sufficient data.

17

policy Freshness Age

Proportional 0.12 400 days

Uniform 0.57 5.6 days

Optimal 0.62 4.3 days

Table 6: Freshness and age prediction based on the real web data

6.3 Frequency of change and its implication

Based on the data that we collected, we report how many pages change how often, in Figure 12.
In the figure, the horizontal axis represents the average change interval of pages, and the vertical
axis shows the fraction of pages changed at the given average interval. For instance, we can see
that about 23% of pages changed more than once a day from the first bar of Figure 12.

From this data, we can estimate how much improvement we can get, if we adopt the optimal-
allocation policy. For the estimation, we assume that we maintain 100 million pages locally and
that we synchronize all pages every month.6 Also based on Figure 12, we assume that 23% of pages
change every day, 15% of pages change every week, etc. For the pages that did not change in 4
months, we assume that they change every year. While it is a crude approximation, we believe we
can get some idea on how effective different policies are.

In Table 6, we show the predicted freshness and age for various resource-allocation policies. To
compute the numbers, we assumed the fixed-order policy (Item 3a in Section 3) as the synchronization-
order policy. We can clearly see that the optimal policy is significantly better than any other poli-
cies. For instance, the freshness increases from 0.12 to 0.62 (500% increase!), if we use the optimal
policy instead of the proportional policy. Also, the age decreases by 23% from the uniform policy
to the optimal policy. From these numbers, we can also learn that we need to be very careful when
we optimize the policy based on the frequency of change. For instance, the proportional policy,
which people may intuitively prefer, is significantly worse than any other policies: The age of the
proportional policy is 100 times worse than that of the optimal policy!

7 Related work

References [4] and [2] also study how to improve a web crawler. However, these references focus on
how to select the pages to initially crawl, in order to improve the “quality” of the local collection.
Contrary to these works, we studied how to maintain the collection up-to-date. Reference [5] studies
how to schedule the web crawler to improve the freshness. The model used for web pages is similar
to ours; however, the model for the crawler and freshness is very different. In data warehousing
context, a lot of work has been done to efficiently maintain the local copy, or the materialized view
[6, 7, 12]. However, most of the work focused on different issues, such as minimizing the size of the
view while reducing the query response time [7].

8 Conclusion

In this paper we studied how to synchronize a local database to improve its freshness and age.
We presented a formal framework, which provides a theoretical foundation for this problem, and

6Many popular search engines report numbers similar to these.

18

we studied the effectiveness of various policies. In our study we identified a potential pitfall (pro-
portional synchronization), and proposed an optimal policy that can improve freshness and age
very significantly. Finally, we investigated the changes of real web pages and validated our analysis
based on this experimental data.

As more and more digital information becomes available, it will be increasingly important to
collect it effectively. A crawler or a data warehouse simply cannot refresh all its data constantly,
so it must be very careful in deciding what data to poll and check for freshness. The policies we
have studied in this paper can make a significant difference in the “temporal quality” of the data
that is collected.

References

[1] Google Inc. http://www.google.com.

[2] S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: A new approach to topic-
specific web resource discovery. In The 8th International World Wide Web Conference, 1999.

[3] J. Cho and H. Garcia-Molina. Measuring frequency of change. Work in progress.

[4] J. Cho, H. Garcia-Molina, and L. Page. Efficient crawling through URL ordering. Computers
networks and ISDN systems, 30:161–172, 1998.

[5] E. Coffman, Jr., Z. Liu, and R. R. Weber. Optimal robot scheduling for web search engines.
Technical report, INRIA, 1997.

[6] J. Hammer, H. Garcia-Molina, J. Widom, W. J. Labio, and Y. Zhuge. The Stanford data
warehousing project. IEEE Data Engineering Bulletin, June 1995.

[7] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. In
ACM SIGMOD Conference, 1996.

[8] S. Lawrence and C. L. Giles. Accessibility of information on the web. Nature, 400:107–109,
1999.

[9] L. Page and S. Brin. The anatomy of a large-scale hypertextual web search engine. Computers
networks and ISDN systems, 30:107–117, 1998.

[10] H. M. Taylor and S. Karlin. An Introduction To Stochastic Modeling. Academic Press, 3rd
edition, 1998.

[11] G. B. Thomas, Jr. Calculus and analytic geometry. Addison-Wesley, 4th edition, 1969.

[12] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a warehousing
environment. In ACM SIGMOD Conference, 1995.

19

A Time average of freshness

Intuitively, given that the freshness of database S is the sum of the freshness of its elements, the
freshness of S averaged over time should be the sum of the freshness of its elements averaged over
time. Following theorem formally proves it.

Theorem 1

F̄ (S) =
1
N

N∑
i=1

F̄ (ei) Ā(S) =
1
N

N∑
i=1

Ā(ei)
2

Proof

F̄ (S) = lim
t→∞

1
t

∫ t

0
F (S; t)dt (definition of F̄ (S))

= lim
t→∞

1
t

∫ t

0

(
1
N

N∑
i=1

F (ei; t)

)
dt (definition of F (S; t))

=
1
N

N∑
i=1

lim
t→∞

1
t

∫ t

0
F (ei; t)dt

=
1
N

N∑
i=1

F̄ (ei) (definition of F̄ (ei))

The proof for age is similar. �

B Analysis of synchronization order policies

In this section, we compute the freshness of database S averaged over time, for various synchronization-
order policies (Item 3 of Section 3). To compute the freshness, we assume the uniform-allocation
policy (Item 2a of Section 3) as the resource-allocation policy, and we assume all real-world ele-
ments change at the same rate λ. Where convenient, we will refer to the time-average of freshness
simply as freshness, if it does not cause any confusion. Also, we will use “second” as our time unit
to make our discussion more concrete.

B.1 Fixed-order policy

Under the fixed-order policy, we synchronize the local elements in the same order repeatedly. We
describe the fixed-order policy more formally in Figure 13. Here, ElemList records ordered list
of all local elements, and SyncQueue records the elements to be synchronized in each iteration. In
step [3] through [5], we synchronize all elements once, and we repeat this loop forever. Note that
we synchronize the elements in the same order in every iteration, because the order in SyncQueue
is always the same,

Now we compute the freshness of the database S. Since we can compute the freshness of S from
freshness of its elements (Theorem 1), we first study how a random element ei evolves over time.

Assuming that it takes I seconds to synchronize all elements in S, the expected freshness of ei

will evolve as in Figure 14. In the graph, we assumed that we synchronize ei initially at t = 0,
without losing generality. Note that E[F (ei; t)] recovers to 1 every I seconds, when we synchronize
it. Intuitively, ei goes through exactly the same process every I seconds, so we can expect that

20

Algorithm B.1 Fixed-order synchronization
Input: ElemList = {e1, e2, . . . , eN}
Procedure

[1] While (TRUE)
[2] SyncQueue := ElemList
[3] While (not Empty(SyncQueue))
[4] e := Dequeue(SyncQueue)
[5] Synchronize(e)

Figure 13: Algorithm of fixed-order synchronization policy

1

0

E[F(ei;t)]

Time
I 2I0

Figure 14: Time evolution of E[F (ei; t)] for fixed-order policy

we can learn anything about ei by studying how ei evolves in the interval (0, I). In particular,
we suspect that the freshness of ei averaged over time (limt→∞ 1

t

∫ t
0 F (ei; t)dt) should be equal to

the expected freshness of ei averaged over the interval (0, I) (i.e., 1
I

∫ I
0 E[F (ei; t)]dt). The following

theorem shows that our intuition is correct.

Theorem 2 When the element ei is synchronized at the fixed interval of I seconds, the time average
of the freshness of ei is the same as the time average of E[F (ei; t)] over the interval (0, I).

F̄ (ei) =
1
I

∫ I

0
E[F (ei; t)]dt

2

Proof

F̄ (ei) = lim
t→∞

∫ t
0 F (ei; t)dt

t

= lim
n→∞

∑n−1
j=0

∫ (j+1)I
jI F (ei; t)dt∑n−1

j=0 I

= lim
n→∞

∑n−1
j=0

∫ I
0 F (ei; t + jI)dt

nI

=
1
I

∫ I

0

 lim

n→∞
1
n

n−1∑
j=0

F (ei; t + jI)

 dt (1)

Because we synchronize ei every I seconds from t = 0, F (ei; t+jI) is the freshness of ei at t seconds
after each synchronization. Therefore, 1

n

∑n−1
j=0 F (ei; t + jI), the average of freshness at t seconds

21

Algorithm B.2 Random-order synchronization
Input: ElemList = {e1, e2, . . . , eN}
Procedure

[1] While (TRUE)
[2] SyncQueue := RandomPermutation(ElemList)
[3] While (not Empty(SyncQueue))
[4] e := Dequeue(SyncQueue)
[5] Synchronize(e)

Figure 15: Algorithm of random-order synchronization policy

after synchronization, will converge to its expected value, E[F (ei; t)], as n → ∞. That is,

lim
n→∞

1
n

n−1∑
j=0

F (ei; t + jI) = E[F (ei; t)].

Then,

1
I

∫ I

0

 lim

n→∞
1
n

n−1∑
j=0

F (ei; t + jI)

 dt =

1
I

∫ I

0
E[F (ei; t)]dt. (2)

From Equation 1 and 2, F (ei) =
1
I

∫ I

0
E[F (ei; t)]dt. �

Based on Theorem 2, we can compute the freshness of ei.

F̄ (ei) =
1
I

∫ I

0
E[F (ei; t)]dt =

1
I

∫ I

0
e−λtdt =

1 − e−λI

λI
=

1 − e−λ/f

λ/f

We assumed that all elements change at the same frequency λ and that they are synchronized at
the same interval I, so the above equation holds for any element ei. Therefore, the freshness of
database S is

F̄ (S) =
1
N

N∑
i=1

F̄ (ei) =
1 − e−λ/f

λ/f
.

We can analyze the age of S similarly, and we get

Ā(S) = I(
1
2
− 1

λ/f
+

1 − e−λ/f

(λ/f)2
).

B.2 Random-order policy

Under the random-order policy, the synchronization order of elements might be different from one
crawl to the next. Figure 15 describes the random-order policy more precisely. Note that we
randomize the order of elements before every iteration by applying random permutation (step [2]).

Obviously, the random-order policy is more complex to analyze than the fixed-order policy.
Since we may synchronize ei at any point during interval I, the synchronization interval of ei is not

22

fixed any more. In one extreme case, it may be almost 2I, when ei is synchronized at the beginning
of the first iteration and at the end of the second iteration. In the opposite case, it may be close to
0, when ei is synchronized at the end of the first iteration and at the beginning of second iteration.
Therefore, the synchronization interval of ei, W , is not a fixed number any more, but follows a
certain distribution fW (t). Therefore the equation of Theorem 2 should be modified accordingly:

F̄ (ei) = lim
t→∞

1
t

∫ t

0
F (ei; t)dt =

∫ 2I
0 fW (s)

(∫ s
0 E[F (ei; t)]dt

)
ds∫ 2I

0 fW (s) s ds
(3)

In Theorem 2, we simply divided
∫ I
0 E[F (ei; t)]dt by I, because the synchronization interval was

fixed to I. But now we take the average of
∫ s
0 E[F (ei; t)]dt and s weighted by the relative frequencies

of the interval s (fW (s)). To perform the above integration, we need to derive the closed form of
fW (t).

Lemma 2 Let T1(T2) be the time when element ei is synchronized in the first (second) iteration
under the random-order policy. Then the p.d.f. of W = T1 − T2, the synchronization interval of ei,
is

fW (t) =

t
I2 0 ≤ t ≤ I
2I−t
I2 I ≤ t ≤ 2I

0 otherwise.

2

Proof The p.d.f.’s of T1 and T2 are

fT1(t) =
{

1
I 0 ≤ t ≤ I
0 otherwise

and fT2(t) =
{

1
I I ≤ t ≤ 2I
0 otherwise.

Then

fW (t) = f(T2 − T1 = t)

=
∫ I

0
f(T1 = s)f(T2 − T1 = t|T1 = s) ds

=
∫ I

0
f(T1 = s)f(T2 = s + t) ds

=
1
I

∫ I

0
f(T2 = s + t) ds.

When t < 0 or t > 2I, f(T2 = s + t) = 0 for any s ∈ (0, I). Therefore,

fW (t) =
1
I

∫ I

0
f(T2 = s + t) ds = 0.

When 0 ≤ t ≤ I, f(T2 = s + t) = 1
I for s ∈ (I − t, I). Then,

fW (t) =
1
I

∫ I

I−t

1
I

ds =
t

I2
.

When I ≤ t ≤ 2I, f(T2 = s + t) = 1
I for s ∈ (0, 2I − t), and therefore

fW (t) =
1
I

∫ 2I−t

0

1
I

ds =
2I − t

I2
.

�

23

Algorithm B.3 Purely-random synchronization
Input: ElemList = {e1, e2, . . . , eN}
Procedure

[1] While (TRUE)
[2] SyncQueue := RandomPermutation(ElemList)
[3] e := Dequeue(SyncQueue)
[4] Synchronize(e)

Figure 16: Algorithm of purely-random synchronization policy

Based on the Lemma 2 and Equation 3, we can compute the freshness of the random-order
policy, and the result is

F̄ (ei) =
1

λ/f

1 −

(
1 − e−λ/f

λ/f

)2

 .

Since the above analysis is valid for any element ei, the freshness of S becomes

F̄ (S) =
1

λ/f

1 −

(
1 − e−λ/f

λ/f

)2

 .

We can compute Ā(S) similarly.

Ā(S) = I

1

3
+
(

1
2
− 1

λ/f

)2

−
(

1 − e−λ/f

(λ/f)2

)2

B.3 Purely-random policy

Whenever we synchronize an element, we pick an arbitrarily random element under the purely-
random policy. Figure 16 describes the policy more formally. Note that we pick a completely
random element at every synchronization point, since we rebuild SyncQueue before every synchro-
nization.

The analysis of purely-random policy is similar to that of random-order policy. Here again, the
time between synchronizations of ei, W , is a random variable with a probability density function
fW (t), and the freshness of ei becomes

F̄ (ei) = lim
t→∞

1
t

∫ t

0
F (ei; t)dt =

∫∞
0 fW (s)

(∫ s
0 E[F (ei; t)]dt

)
ds∫∞

0 fW (s) s ds
.

Note that the outer integral is over (0,∞), since the synchronization interval of ei may get arbitrarily
large. From the raw of rare events [10], we can prove that fW (t) is

fW (t) =
{

fe−ft t ≥ 0
0 otherwise

and we get

F̄ (S) =
1

1 + λ/f
Ā(S) = I

(
λ/f

1 + λ/f

)
.

24

C Gamma distribution model

When the real-world elements change at different frequencies, their change frequencies will follow
a certain distribution g(λ), and we can compute

∑N
i=1 H(λi)/N , the average of the function H(λi)

over all elements, by the integral
∫∞
0 g(λ)H(λ) dλ. In this section, we compute the freshness of

the database S for various resource-allocation policies, assuming the change frequencies follow the
gamma distribution.

To compute the freshness, we assume that we synchronize element ei at the fixed frequency fi

(Fixed-order policy, Item 3a of Section 3). In Appendix B.1, we showed that the freshness of ei in
this case is

F̄ (λi, fi) =
1 − e−λi/fi

λi/fi
(4)

and the age of ei is

Ā(λi, fi) =
1
fi

(
1
2
− 1

λi/fi
+

1 − e−λi/fi

(λi/fi)2
). (5)

The gamma distribution with parameters α > 0 and µ > 0 is

gX(x) =
µ

Γ(α)
(µx)α−1e−µx for x > 0 (6)

and the mean and the variance of the distribution are

E[X] =
α

µ
and Var[X] =

α

µ2
. (7)

Now let us compute the freshness of S for the uniform allocation policy. By the definition of
the uniform allocation policy, fi = f for any i. Then from Theorem 1,

F̄ (S)u =
1
N

N∑
i=1

F̄ (ei) =
1
N

N∑
i=1

F̄ (λi, f)

where subscript u stands for the uniform allocation policy. As we discussed, we can compute the
average by weighted integral,

F̄ (S)u =
1
N

N∑
i=1

F̄ (λi, f) =
∫ ∞

0
g(λ)F̄ (λ, f)dλ (8)

where g(λ) is the gamma distribution. By substituting g(λ) and F̄ (λ, f) using Equation 6 and 4,
we get

F̄ (S)u =
µf

1 − α

(
(1 +

1
µf

)1−α − 1
)

.

It is more intuitive to deal with the mean and the variance of the distribution rather than α and
µ, so we reformulate the above formula with

λ = (mean) =
α

µ
and δ2 =

(variance)
(mean)2

=
α/µ2

(α/µ)2
(From Equation 7).

25

Then F̄ (S)u becomes

F̄ (S)u =
1 − (1 + rδ2)1−

1
δ2

r(1 − δ2)
(r = λ/f).

We can compute the age of the database, Ā(S)u, similarly.

Ā(S)u =
1

f(1 − δ2)

[
1 − δ2

2
− 1

r
+

1 − (1 + rδ2)2−
1

δ2

r2(1 − 2δ2)

]

Now let us compute the freshness of the proportional allocation policy. By the definition of the
proportional policy, λi/fi = λ/f for any i. Then from Equation 4 and 5, we can derive

F̄ (λi, fi) =
1 − e−λ/f

λ/f
Ā(λi, fi) =

1
λi

[
λ

f

(
1
2
− 1

λ/f
+

1 − e−λ/f

(λ/f)2

)]
.

Therefore, F̄ (S)p and Ā(S)p becomes

F̄ (S)p =
1
N

N∑
i=1

F̄ (λi, fi) =
1 − e−λ/f

λ/f

Ā(S)p =
1
N

N∑
i=1

Ā(λi, fi)

=

[
λ

f

(
1
2
− 1

λ/f
+

1 − e−λ/f

(λ/f)2

)](
1
N

N∑
i=1

1
λi

)

=

[
λ

f

(
1
2
− 1

λ/f
+

1 − e−λ/f

(λ/f)2

)]∫ ∞

0
g(λ)

1
λ

dλ

=
1

f(1 − δ2)

[
1
2
− 1

λ/f
+

1 − e−λ/f

(λ/f)2

]
.

D Superiority of the uniform policy over the proportional policy

In Section 5.1, we showed that the uniform allocation policy is better than the proportional al-
location policy when the change frequencies follow the gamma distribution. Now we generalize
this conclusion and show that the uniform policy is better than the proportional policy for any
distribution of change frequencies. To help our proof, we first derive the following lemma.

Lemma 3 When f(x) is a convex function,

1
n

n∑
i=1

f(xi) ≥ f(
1
n

n∑
i=1

xi) for any xi
′s (i = 1, 2, . . . , n).

Similarly, when f(x) is concave,

1
n

n∑
i=1

f(xi) ≤ f(
1
n

n∑
i=1

xi) for any xi
′s (i = 1, 2, . . . , n).

2

26

Proof We prove it by mathematical induction.

1. Base case: When n = 1, it is obvious that f(x1) ≥ f(x1) for any x1.

2. Induction step: We assume 1
k

∑k
i=1 f(xi) ≥ f(1

k

∑k
i=1 xi) when k ≤ n − 1, and we prove it

when k = n.

1
n

n∑
i=1

f(xi) =
1
n

[
n − 1
n − 1

n−1∑
i=1

f(xi) + f(xn)

]

≥ 1
n

[
(n − 1)f(

1
n − 1

n−1∑
i=1

xi) + f(xn)

]
(induction hypothesis)

=
n − 1

n
f(

1
n − 1

n−1∑
i=1

xi) +
1
n

f(xn) (9)

We assumed f(x) is convex. From the definition of convexity,

pf(a) + (1 − p)f(b) ≥ f(pa + (1 − p)b) for any 0 ≤ p ≤ 1. (10)

When we set p = (n − 1)/n, a =
∑n−1

i=1 xi/(n − 1) and b = xn, Equation 10 becomes

n − 1
n

f(
1

n − 1

n−1∑
i=1

xi) +
1
n

f(xn) ≥ f(
n − 1

n

1
n − 1

n−1∑
i=1

xi +
1
n

xn) = f(
1
n

n∑
i=1

xi). (11)

From Equation 9 and 11, it is clear that

1
n

n∑
i=1

f(xi) ≥ f(
1
n

n∑
i=1

xi).

The proof for concavity is similar. �

Now we prove that the freshness of the uniform policy, F̄ (S)u, is better than the freshness of the
proportional policy, F̄ (S)p. The proof is based on the convexity of the function F̄ (λi, fi) over λi.
That is, the analytic forms of F̄ (λi, fi) that we derived for various synchronization-order policies
were all convex over λi,7 so we can apply the result of Lemma 3 to F̄ (λi, fi).

Theorem 3 It is always true that

F̄ (S)u ≥ F̄ (S)p. 2

Proof By definition, the uniform policy is fi = f for any i. Then

F̄ (S)u =
1
N

N∑
i=1

F̄ (λi, fi) =
1
N

N∑
i=1

F̄ (λi, f). (12)

For the proportional policy, λi/fi = λ/f for any i, so the freshness of ei is

F̄ (λi, fi) = F̄ (λ, f)
7We can verify that F̄ (λi, fi) is convex over λi by computing ∂2F̄ (λi, fi)/∂λ2

i for the analytic forms.

27

for any synchronization order policy. Therefore,

F̄ (S)p =
1
N

N∑
i=1

F̄ (λi, fi) =
1
N

N∑
i=1

F̄ (λ, f) = F̄ (λ, f). (13)

Then

F̄ (S)u =
1
N

N∑
i=1

F̄ (λi, f) (Equation 12)

≥ F̄ (
1
N

N∑
i=1

λi, f) (convexity of F̄)

= F̄ (λ, f) (definition of λ)
= F̄ (S)p. (Equation 13) �

Similarly, we can prove that the age of the uniform policy, Ā(S)u, is always less than the age
of the proportional policy, Ā(S)p, based on the concavity of Ā(λi, fi) over λi.

Theorem 4 It is always true that

Ā(S)u ≤ Ā(S)p. 2

Proof From the definition of the uniform and the proportional policies,

Ā(S)u =
1
N

N∑
i=1

Ā(λi, f) (14)

Ā(S)p =
1
N

N∑
i=1

Ā(λi, fi) =
1
N

N∑
i=1

λ

λi
Ā(λ, f). (15)

Then

Ā(S)u =
1
N

N∑
i=1

Ā(λi, f) (Equation 14)

≤ Ā(
1
N

N∑
i=1

λi, f) (concavity of Ā)

= Ā(λ, f) (definition of λ)

Ā(S)p = λĀ(λ, f)

(
1
N

N∑
i=1

1
λi

)
(Equation 15)

≥ λĀ(λ, f)
1

1
N

∑N
i=1 λi

(convexity of function
1
x

)

= λĀ(λ, f)
1
λ

(definition of λ)

= Ā(λ, f).

Therefore,

Ā(S)u ≤ Ā(λ, f) ≤ Ā(S)p.
�

28

0.2/µ 1/µ0.53/µ 0.8/µ
λ

0.1/µ

0.2/µ

0.3/µ f

Figure 17: ∂F̄ (λ, f)/∂f = µ graph

0.2 0.4 0.6 0.8 1
λ

0.05
0.1
0.15
0.2
0.25
0.3

f

µ=1

µ=2

Figure 18: ∂F̄ (λ, f)/∂f = µ graph when µ = 1
and µ = 2

E Solution of Problem 1

Since we can compute the closed form of F̄ (λi, fi) for various synchronization-order policies, we
can solve Problem 1 by the method of Lagrange multipliers, and the solution is as follows:

Solution The freshness of database S

F̄ (S) =
1
N

N∑
i=1

F̄ (λi, fi)

takes its maximum, when all fi’s satisfy the equations

∂F̄ (λi, fi)
∂fi

= µ8 and
1
N

N∑
i=1

fi = f.

�

Notice that we introduced another variable µ in the solution,9 and the solution consists of
(N + 1) equations (N equations of ∂F̄ (λi, fi)/∂fi = µ and one equation of 1

N

∑N
i=1 fi = f) with

(N + 1) unknown variables (f1, . . . , fN , µ). We can solve these (N + 1) equations for fi’s, since we
know the closed form of F̄ (λi, fi).

From the solution, we can see that all optimal fi’s satisfy ∂F̄ (λi, fi)/∂fi = µ. That is, all
optimal (λi, fi) pairs are on the graph of ∂F̄ (λ, f)/∂f = µ. Therefore, we can learn the property
of the optimal solution by studying the property of the graph ∂F̄ (λ, f)/∂f = µ. In Figure 17, we
show the graph of ∂F̄ (λ, f)/∂f = µ for the fixed-order policy. In the next subsection, we explain
how we plotted this graph.

E.1 The graph of the equation ∂F̄ (λ, f)/∂f = µ

To compute the optimal fi for each λi, we need to solve the equation

∂F̄ (λ, f)/∂f = µ (16)

for f . Unfortunately, Equation 16 is a non-linear equation which does not have a closed-form
solution.10 Moreover, the equation has a parameter µ, whose value depends on the distribution of
λi’s. Therefore, we may get totally different solution f for different distributions of λi’s. In this
section, we prove that this is not the case; the solutions of Equation 16 are essentially the same,
independently of µ.

8When ∂F̄ (λi, fi)/∂fi = µ does not have a solution with fi ≥ 0, fi should be equal to zero.
9This is a typical artifact of the method of Lagrange multipliers.

10For instance, Equation 16 is − 1
f
e−λ/f + 1

λ
(1 − e−λ/f) = µ for the fixed-order policy, and we cannot solve it for

f analytically.

29

To motivate our proof, we show the graphs of (λ, f) of Equation 16 for µ = 1 and 2 in Figure 18.
The graphs are plotted numerically. From the graph, it is clear that the graph µ = 2 is simply a
scaled version of the graph µ = 1; the µ = 1 graph converges to zero when λ → 1, while the µ = 2
graph converges to zero when λ → 1/2. Also, the µ = 1 graph takes its maximum at (0.53, 0.3),
while the µ = 2 takes its maximum at (0.53/2, 0.3/2). In fact, this “scaling property” of the graph
of Equation 16 is very general one.

Theorem 5 Let (λ, f) satisfy the equation

∂F̄ (λ, f)
∂f

= µ.

Then (µλ, µf), the point scaled by the factor µ from (λ, f), satisfies the equation

∂F̄ (µλ, µf)
∂f

= 1.
2

Proof For the fixed-order policy,11

∂F̄ (λ, f)
∂f

= −e−λ/f

f
+

1 − e−λ/f

λ
.

Then,

∂F̄ (µλ, µf)
∂f

= −e−µλ/µf

µf
+

1 − e−µλ/µf

µλ

=
1
µ

(
−e−λ/f

f
+

1 − e−λ/f

λ

)

=
1
µ

∂F̄ (λ, f)
∂f

=
1
µ

µ (assumption)

= 1. �

From Theorem 5, we can see that the graph of ∂F̄ (λ, f)/∂f = µ for any µ value is essentially a
scaled version of the graph ∂F̄ (λ, f)/∂f = 1. Therefore, its shape is always the same for any value
of µ, and the property of the solution of ∂F̄ (λ, f)/∂f = µ is always the same. Similarly for age, we
can prove that the graphs are always the same except a scaling factor.

11We can similarly prove the theorem for other synchronization-order policies.

30

