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ABSTRACT 
This paper presents our developed general open source for 
ontology-based information retrieval to answer queries that 
involve named entities with their ontological features, namely, 
aliases, classes, and identifiers. We propose a novel approach for 
semantic search engines that exploit the ontology features of 
named entities in proximity search and develop an algorithm for 
computing dynamic distances between named entities and 
keywords in queries and documents. In particular, it deals with 
phrase and proximity queries for which the token-based lengths 
and positions of the queried named entities in a document may 
vary. The result provides a platform and library for implementing 
semantic search engines. 

Categories and Subject Descriptors 
H.3.3 [Information Storage And Retrieval]: Information Search 
and Retrieval – query formulation, retrieval models, search 
process. 

General Terms 
Algorithms, Theory. 

Keywords 
Semantic search, phrase query, term proximity, named entity. 

1. INTRODUCTION 
To answer queries in a document retrieval system, search engines 
are expected to return the most relevant documents at the top of 
the result list ([13]). Users tend to query terms that often appear in 
phrases or are close to each other in a document in which 
distances between terms, called term proximity, are implicitly 
used. In such cases, documents that have terms occurring close to 
each other are often ranked higher as a result. Understanding the 
interaction of terms being constituents of phrases within queries 
([11]) could be useful to improve the performance. Therefore, 
many research works have been looking into the term proximity to 
improve the retrieval precision of top returned documents ([1], 
[2], [9], [12], [14]). Although those researches used different 
approaches, they showed that retrieval effectiveness could be 
improved by integrating proximity scores into an existing retrieval 
model. 
Besides studies focusing on term proximity, there were works in 
semantic search considering ontological features of named entities 
to enhance document retrieval effectiveness ([3], [4], [5]). Named 
entities (NE) are those that are referred to by names such as 

people, organizations, and locations ([10]). The work [3], for 
instance, explored combinations of ontological features and 
keywords to represent a high level semantics of queries and 
documents. However, it appears that no work in semantic search 
considers proximity queries involving named entities and 
keywords. 
As a related work, [8] explored proximity measures between 
named entities and keywords in the field of expert search, i.e., the 
task of finding people who have skills and experience on a given 
topic. However, it was not for text retrieval. 
For keyword-based search engines, term proximity scoring 
models consider the distances among terms in queries and 
documents in terms of tokens. For instance, a document is 
analyzed into tokens when being indexed; each token is given a 
position and the distance between two tokens is computed based 
on their positions. For example, consider the following text: 
D: “Cultural exhibitions on Ho Chi Minh City development and 
integration opened in Lam Son park” 

The text is analyzed into 15 tokens: “Cultural”, “exhibitions”, 
“on”, “Ho”, “Chi”, “Minh”, “City”, “development”, “and”, 
“integration”, “opened”, “in”, “Lam”, “Son”, “park” whose 
positions are from 0 to 14, respectively. Distances between these 
tokens can then be computed easily based on these positions. For 
example, the distance between “on” and “development” is 4 
because there are 4 tokens “Ho”, “Chi”, “Minh”, “City” between 
them. 
However, when taking NEs into account, the distance in terms of 
token is no longer applicable. Every NE appearing in the 
document often covers more than one token. For example, in the 
text D above, there is the NE Ho Chi Minh City that contains 4 
tokens. We denote the number of tokens covered by a NE as the 
length of that NE. Moreover, a NE may have different aliases of 
different lengths. Therefore it can have different lengths in a 
document. In addition, a class may have different instances of 
NEs, causing the same problem due to variable lengths. Consider 
the following phrase queries to see how different lengths of a NE 
make token-based term proximity not applicable: 
Q1: “Cultural exhibitions on Saigon City development” 

Q2: “Cultural exhibitions on city development” 

In Q1, Saigon City is a NE containing 2 tokens. Here the query 
requires that the term “on” is right before and the term 
“development” is right after Saigon City in the document. In the 
text D above, there is the phrase “Cultural exhibitions on Ho Chi 
Minh City development”. Since Ho Chi Minh City is another name 
of Saigon City, intuitively D should match with Q1. However, 
according to the token-based term proximity approach, D cannot 
be returned because it does not satisfy the proximity conditions of 
Q1. Specifically, Saigon City has length 2 in Q1, and thus the 
distance between the terms “development” and “on” in a 
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document is required to be 2. However, since Ho Chi Minh City 
has length 4 in D, so distance between the terms “development” 
and “on” is 4, not 2. Therefore, D cannot match with Q1. We can 
see that this error occurs because a NE may appear with different 
names and different lengths in queries and documents. Although 
NEs in a query and a document can match to each other (as 
Saigon City and Ho Chi Minh City in this example), their lengths 
may be different and this causes token-based term proximity 
inapplicable. 
In Q2, it does not mention a specific city but all NEs belonging to 
the class City. Since Ho Chi Minh City is a NE belonging to the 
class City, D intuitively matches with Q2. However, the distance 
between the terms “development” and “on” is 1 in Q2 and is 4 in 
D. Therefore, D cannot match with Q2. In general, there are many 
other cities besides Ho Chi Minh City and each of them may have 
a different length. Their different lengths make the distances 
between the terms before and after them different too. Therefore 
term matching is not straightforward as in the case of plain 
keyword matching. It must deal with variable and dynamic 
distances caused by NEs of different lengths. 
The two examples show that token-based proximity matching 
cannot be applied to queries and documents containing NEs. In 
this paper, we do not propose a different scoring model to term 
proximity. The work of this paper is to consider and analyze 
dynamic distances between keywords and named entities, and 
then develop an algorithm to compute such a distance on fly. 
After distances are computed, any scoring model mentioned 
above can be applied for ranking retrieved documents. Until now, 
to the best of our knowledge, there is no retrieval system that 
supports proximity queries on distances between keywords and 
named entities. 
We rely on S-Lucene ([3]), which is an extension of Lucene ([6]) 
for semantic search but does not address and support query term 
proximity involving NEs, to implement our algorithm. Section 2 
provides a brief introduction to Lucene, in particular about 
computing static distances between keywords in Lucene. Section 
3 presents the basis of indexing and searching in S-Lucene. 
Section 4 presents in detail the algorithm for computing dynamic 
distances between keywords and named entities and 
implementation of proximity search in S-Lucene. Section 5 draws 
some conclusions and future works. 

2. PROXIMITY SEARCH IN LUCENE 
Lucene ([6]) is an open source library for storing, indexing, and 
searching documents. Lucene scoring uses a combination of 
the Vector Space Model (VSM) and the Boolean model. In 
addition to single or multiple keyword search, Lucene also 
supports proximity search based on term proximity. Lucene 
supports exact phrase query search and proximity search with 
distances greater than 0, but does not require the order of 
keywords to be satisfied (using the term slop to mean distance).  
In Lucene, the distance between term A and term B in a document 
is the number of steps needed to move A (or B) to its correct 
position as they appear in the query. For example, given the query 
q = “A B”, i.e., B is right after A. Assuming that there are 
following documents where “_” represents an anonymous variable 
that can be bound to any term: 

d1: “A _  _  _  B _” 
d2: “B _ A _” 

In d1, to be as appearing in the query, B has to be moved as 
follows: 

d1:    “A    _    _    _   B _” 

That is, it takes three steps to move B to the left to be right after A. 
In d2, to be as appearing in the query, B has to be moved as 
follows: 

d2:   “B    _    A    _” 
That is, it takes three steps to move B to the right to be right after 
A. Above, in a document, A is fixed and B is moved. 
Alternatively, B can be fixed while A is moved as follows: 

d1:    “A    _    _    _   B  _”  (taking three steps) 

d2:    “    B    _    A    _”  (taking three steps) 
In general, given a query having n terms {t1,…,tn}, in a document 
any term t {t1,…,tn} can be fixed the other terms are moved to 
their right positions as appearing in the query. The movement 
distance of a term ti with respect to the fixed term t0 is calculated 
by the following formula: 

stepi = (pdi  pqi)  (pd0  pq0)             (1) 
where: 

pdi: position of term ti in the document, 
pqi: position of term ti in the query, 
pd0: position of term t0 in the document, 
pq0: position of term t0 in the query. 

One can see that: 
stepi > 0: ti will be moved to the left, 
stepi < 0: ti will be moved to the right, 
stepi = 0: ti will not be moved. 

With such distance movement calculation, Lucene’s conditions 
for matching a document d and a proximity query q are as 
follows: 

slop = 0: d matches with q if i: stepi = 0 
slop > 0: d matches with q if maxstep ≤ slop,  

where maxstep = max1 ≤ i ≤ n(stepi) 
Since there is more than one way of choosing a fixed term, the 
maxstep value may vary. Let ∆i = pdi  pqi be the difference 
between the positions of term ti in the document and in the query. 
Lucene can choose any term ti satisfying ∆i = ∆0 = min(∆i), where 
1 ≤ i ≤ n as a fixed term to calculate the maxstep. Then, stepi = ∆i 

 ∆0 is always greater than or equal to 0 for every term ti, meaning 
that if term ti is moved, it will be moved to the left. Generally, in 
Lucene, given a proximity query q having n terms {t1,…,tn} and 
slop = s, a document d matching with q must contain at least one 
set {t1,…,tn} and satisfies the condition that there exists a term ti 
to be fixed so that any term tk (k ≠ i) is moved to the left by stepk 
steps to arrive at its right position and max(stepk) ≤ s. 

3. INDEXING WITH NAMED ENTITIES 
Lucene efficiently supports indexing and searching based on 
keywords. However, semantic indexing and searching, in 
particular by named entities, require an extension of Lucene. This 
section presents how NEs are indexed along with keywords to 
perform searching with NEs. The extended Lucene is called S-
Lucene ([3]). 

3.1 Named entity recognition 
Cultural exhibitions on Ho Chi Minh City development and integration 
opened in Lam Son park 

Fig. 1. Text example 
For searching documents based on named entities, a document has 
to be annotated to identify named entities occurring in them ([7]). 
At this stage, an annotation system is used to identify all named 
entities appearing in the document along with their aliases, class 
and super-classes. Figure 2 shows the result of annotating the text 
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in Figure 1, where Ho Chi Minh City is recognized as of the class 
City, with the corresponding ID city_123. The results include 
extension of the text with aliases of Ho Chi Minh City, and its 
super-classes Location from the knowledge base and ontology of 
discourse. 
<named-entities url=http://vn-kim.hcmut.edu.vn/demo.html> 
    <named-entity startOffset=“24” endOffset=“39”> 

<name>Ho Chi Minh City</name> 
<class>City</class> 
<uri>City_123 </uri> 
<aliases> 
 <name>Ho Chi Minh City</name> 
 <name>Saigon</name> 
</aliases> 
<classes> 
 <class>City</class> 
 <class>Location</class> 
</classes> 

    </named-entity> 
</named-entities> 

Fig. 2. Recognized named entities 

3.2 Indexing based on named entities and 
keywords 
Ontological features of a named entity include its name appearing 
in a text, its most specific class, and its identifier if existing in the 
knowledge base of discourse. Users may search for documents by 
one or combination of these features. To search by these features, 
NE terms are introduced besides normal keyword terms. The 
structure of each NE term is the triple (name/class/identifier). 
Unspecified name, class, or identifier of a NE term is denoted by 
“*”. 
For indexing based on named entities and keywords, for each 
entity named n possibly with class c and identifier id in a 
document, the triples (n/*/*), (*/c/*), (n/c/*), (alias(n)/*/*), 
(*/super(c)/*), (n/super(c)/*), (alias(n)/c/*), (alias(n)/ super(c)/*), 
and (*/*/id) are added for the document ([3]). Here alias(n) and 
super(c) respectively denote any alias of n and any super-class of 
c in the ontology and knowledge base of discourse. Thus, indexed 
information of documents contain not only the keyword terms 
analyzed from the original documents but also additional NE 
triples. A field called ne+kw is created to store the keyword terms 
and NE triples. Storing these terms into the field consists of two 
steps. First, all keyword terms are added to the field. Second, all 
NE triples are added. For example, with the text mentioned above 
(Figure 1), the field ne+kw is first added with the keyword terms 
“Cultural”, “exhibitions”, “on”, “Ho”, “Chi”, “Minh”, “City”, 
“development”, “and”,  “integration”, “opened”, “in”, “Lam”, 
“Son”, “park” whose positions are from 0 to 14, respectively. 
After that, it is added with additional NE triples of Ho Chi Minh 
City including “ho chi minh city/*/*”, “*/city/*”, “ho chi minh 
city/city/*”, “*/*/city_123”, “saigon/*/*”, “saigon/city/*”, 
“*/location/*”, “ho chi minh city/location/*”, “saigon/location/*”. 

4. PROXIMITY SEARCH WITH NAMED 
ENTITIES 
To search with named entities, all keywords and entities are 
unified and treated as generalized terms, where a term is counted 
either as a keyword or a named entity but not both. Each 
document is then represented by a single vector over that 
generalized term space. Document vector representation, filtering, 
and ranking are performed as in the traditional VSM. This section 
presents how proximity search are performed when combining 
named entities and keywords. 

For proximity search with NEs, as noted in Section 1, the problem 
is that token-based positions are inadequate when taking NEs into 
account. To solve this problem we use another type of positions 
that we call NE-based positions when executing proximity queries 
containing NEs. As in Figure 1, we have the terms “Cultural”, 
“exhibitions”, “on”, “Ho”, “Chi”, “Minh”, “City”, “development”, 
“and”,  “integration”, “opened”, “in”, “Lam”, “Son”, “park” 
whose token-based positions are from 0 to 14, respectively. NE-
based positions are computed based on token-based positions as 
follows. 
Given a term A in a document with a token-based position x and N 
NEs appearing on the left of A, the NE-based position of A is 
defined by: 

                  x  – )1)((
1

N

i
iNENELength                (2) 

NELength(E) is the number of tokens that a NE E covers in the 
document. Note that the term A may be a keyword term or a NE 
term but not both. The token-based position of a NE term is the 
token-based position of the left-most token covered by the NE. 
For example, the token-based position of the NE city_123 is 3, 
because its left most token is “Ho” whose token-based position is 
3. The terms covered by a NE do not have NE-based positions and 
are virtually omitted from a document when performing proximity 
queries containing NEs.  
In the text in Figure 1, the NE city_123 has NELength of 4 
because it covers the four tokens “Ho”, “Chi”, “Minh”, “City” in 
the document. One can see that, when NE-based positions are 
applied, the distance between “on” and “development” is only 1. 
Meanwhile, using token-based positions, the distance between 
them is 4. It means that all tokens covered by a NE are treated as a 
single term and this term has a single position in the document. 
That is why we call it NE-based position. Note that term positions 
in a query must be processed in the same way as for documents. 
For example, in Q1, the NE-based positions of the terms 
“Cultural”, “exhibitions”, “on”, “Saigon City” “development” are 
0, 1, 2, 3, 4, respectively, because “Saigon City” is a NE whose 
NELength is 2. As such, in Q1 the distance between “on” and 
“development” is also 1 and thus the text D can now match with 
Q1. 
Input: a query q={t1…tn} and a document d. 
Output: Frequency of {t1…tn} occurring in d satisfying slop = 0. 

1:   for each ti q do 
2:       pd  first position of Pd(ti); ∆i  pd pqi 
3:   end for 
4:   freq  0; maxterm  tk where ∆k = max(∆i) 
5:   do 
6:       loop until min(∆i) = max(∆i) 
7:           do 
8:               minterm  tm where ∆m = min(∆i) 
9:               if next position of Pd(minterm) exists then 
10:                     pd  next position of Pd(minterm) 
11:                     ∆k  pd pqk  /* update the value ∆ of minterm */ 
12:               else  return  freq  end if                 
13:          while ∆k < ∆m /* ∆m is the value ∆ of maxterm */ 
14:     end loop 
15:     freq freq + 1 
16: while 
17: return freq 

Fig. 3. Algorithm for matching d with q in the case slop = 0 
Although NE-based positions have to be applied to process 
proximity queries containing NEs, token-based positions are still 
needed for purely keyword-based proximity search. For example, 
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we may want to search for “ho chi minh city development” in the 
pure keyword form, treating all the tokens covered by a NE as 
separate keywords. 
Since the number of NEs in a document is known at the time of 
indexing, NE-based positions can be computed at the indexing 
phase. In the query answering phase, if a query is purely keyword-
based, then token-based positions are used; otherwise, NE-based 
positions are used. 
For executing a NE-based query, NE-based positions are used in 
equation (1) introduced in Section 2 to compute the distances 
between NEs and keywords. Specifically, for a document d of 
length l (i.e., with l tokens) and a term t, the positions of t in d is 
denoted by Pd(t) {1,…,l}. Given a query q={t1…tn}, the 
position of term ti q is denoted by pqi. The algorithms for 
matching d with q in the cases slop = 0 and slop > 0 are 
respectively presented in Figure 3 and Figure 4. As mentioned at 
the end of Section 2, a document d matching with q must contain 
at least one set {t1,…,tn} that satisfies the slop condition. Here the 
algorithms do not halt when finding one such set, but they find all 
and return the number of times (frequency) the set {t1,…,tn} 
occurring in d and satisfying the slop condition. When the 
returned frequency is greater than 0, it means d matches with q; 
otherwise, d does not match with q. We note that after such 
distances and frequencies are computed, the ranking function of 
Lucene taking into account term proximity is employed for 
ranking retrieved documents.  
Input: a query q={t1…tn}, a document d, and slop. 
Output: Frequency of {t1…tn} occurring in d satisfying slop condition. 

1:   freq  0; done  false 
2:   for each ti q do 
3:      pd  first position of Pd(ti); ∆i  pd pqi 
4:   end for 
5:   do 
6:      maxterm  tk where ∆k = max(∆i) 
7:      minterm  tm where ∆m = min(∆i) 
8:      start  ∆m;  end  ∆k;  pos  start 
9:      next  min({∆i\∆m}) /* next min value of ∆i */ 
10:    while pos ≤ next 
11:          start  pos 
12:          if next position of Pd(tm) exists then 
13:               pos  next position of Pd(tm) 
14:          else  done  true  end if 
15:     end while 
16:     matchLength  end start 
17:     if matchLength ≤ slop then 
18:         freq  sloppyFreq(matchLength) 
19:          /* sloppyFreq(matchLength) = 1.0f / (matchLength + 1) */ 
20:     end if 
21:     if  pos > end  then end  pos end if 
22: while !done 
23: return freq 

Fig. 4. Algorithm for matching d with q in the case slop > 0 

5. CONCLUSION AND FUTURE WORK 
We have presented our developed general open source for 
semantic indexing and searching documents annotated with 
named entities. For proximity search with named entities, we have 
considered and analyzed dynamic distances between keywords 
and named entities in queries and documents, and have developed 
algorithms to compute such a distance on fly.  

The novelty and contribution are that it can deal with phrase and 
proximity queries for which the token-based lengths and positions 
of the queried named entities in a document may vary. Therefore, 
it is useful for development of ontology-based search engines 
when distances between queried terms are significant. 
In this work, we are still using the vector-based document ranking 
function of Lucene. Other ranking models are worth being 
explored to be integrated with our developed ontology-based 
proximity searching method. Besides, we have not considered 
semantic relations between keywords for which synonymous 
concepts may have different token-based lengths, and thus 
dynamic computation of distances between concepts for proximity 
queries is also needed. These are among the topics that we are 
currently investigating. 
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