
SQL Extension for Exploring Multiple Tables∗

Sung Jin Kim
Department of Computer Science, UCLA

Los Angeles, CA 90095, USA
sjkim@cs.ucla.edu

Junghoo Cho
Department of Computer Science, UCLA

Los Angeles, CA 90095, USA
cho@cs.ucla.edu

ABSTRACT
The standard SQL assumes that the users are aware of all
tables and their schemas to write queries. This assumption
may be valid when the users deal with a relatively small
number of tables, but writing a SQL query on a large num-
ber of tables is often challenging; (1) the users do not know
what tables are relevant to their query, (2) it is too cumber-
some to explicitly list tens of (or even hundreds of) relevant
tables in the FROM clause and (3) the schemas of those ta-
bles are not identical. In this paper, we propose an intuitive
yet powerful extension to SQL that helps users explore and
aggregate information spread over a large number of tables.
With our extension, users can declaratively specify the ta-
bles of interest using the concept of tablesets, as they can
declaratively specify the rows of interest by boolean condi-
tions with the standard SQL. Seven primitive operators on
tablesets are investigated for creating, manipulating, and
aggregating data for tablesets. Our user study shows that
the proposed SQL extension is very useful, allowing users to
write queries more quickly and succinctly with fewer errors.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]:
Information Search and Retrieval—sensor data search and
retrieval ; H.2.3 [DATABASE MANAGEMENT]: Lan-
guages—SQL extension; H.5 [INFORMATION INTER-

FACES AND PRESENTATION]: Miscellaneous—Sen-
sor data representation; K.6 [MANAGEMENT OF COM-

PUTING AND INFORMATION SYSTEMS]: Mis-
cellaneous

General Terms
Database, SQL

∗This research is supported by NSF NeTS- FIND program,
award number CNS-0626702.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Keywords
tableset, sql extension, sensor data retrieval

1. INTRODUCTION
Over the last decade, a lot of sensors have been deployed
ubiquitously in a range of application areas, from education
and science to military and industry. As sensornets become
more numerous and their data more valuable, it becomes in-
creasingly important to have common means to share data
and search information over the sensornets. We built the
sensorbase as a repository for sensor data [13], where scien-
tists and casual users publish and share sensor data (sensor
measurement readings and any information about sensors
such as sensor id, weight, color, owner, and so on). Users
easily obtain a variety of sensor data without any extra ex-
pense through the sensorbase.

The sensorbase is a relational database, where users create
tables and upload their own sensornet data to the tables.
Letting users create separate table for each of their sensor
data makes it easier for users to have control over their own
data, because privilege can be easily controlled at the table
level in SQL. Once the data are uploaded to tables, other
users can run queries on the tables (as long as the uploader
made it publicly accessible), and leverage on the work of
existing sensornet deployment to investigate the properties
of physical world.
Running Example: Figure 1 shows a small subset of sen-
sorbase tables that will be used throughout this paper. In

Figure 1: Sensor Database Example

this example, three users A, B, and C share their sensor
data. User A deployed one temperature sensor in Washing-
ton, another temperature sensor in Los Angeles, and one
humidity sensor in Washington. To share these sensor data,
he created three tables, SensorATW, SensorATL, and Sen-
sorAHW, where the first “A” stands for the user, the second
“T” or “H” stands for temperature or humidity, respectively,

and the third “W” or “L” stands for Washington or Los An-
geles, respectively. (In sensorbase, users are free to name
their tables as they like, but we assume this nomenclature
for ease of reference.) User B also deployed three sensors
like User A, but differently from A, he created one table per
sensor type. That is, he created SensorBT to share the data
from the two temperature sensors and SensorBH for the hu-
midity sensor. User C deployed temperature, humidity, and
rainfall sensors in Kansas, and decided to put all data in a
single table, SensorCHRT. 2

In this paper, we assume that all table columns have been
normalized, meaning that the columns with the same data
type have identical names (e.g., all temperature columns
have the name “temperature”) and their data units are the
same as well (e.g., temperature values are all in “Fahren-
heit”). We assume that this column normalization is done
when the user creates the table based on sensorbase “rec-
ommendations” on common sensor data types or through
existing schema matching tools [3][12] by the sensorbase ad-
ministrator.

Now consider another user D who wants to write a query
for “what is the average temperature of Washington?”. Even
if the user may know that all temperature readings are stored
in the columns named “temperature” and all city names are
stored in the “city” columns, very likely, the user D does not
know what tables are available in sensorbase and which of
them are relevant to the query because tables are indepen-
dently created and uploaded by other users. Furthermore,
when there are tens of (or hundreds of) tables relevant to
the query, even if the user knows what tables to look up,
it is just too cumbersome to explicitly list all tables in the
FROM clause.

This simple scenario shows that the current SQL is not
suitable for running queries on a large number of tables.
The main problem of current SQL may be summarized as
follows: there is no easy way to “declaratively specify” the set
of tables to be used for a query. The user D has to be aware
of all tables and their schemas to write queries and she has
to list all relevant tables explicitly in the FROM clause.

In this paper, we introduce the concept of tableset as an
elegant way to specify the tables of interest to run queries
on. To write a query on a large number of tables, users
first create a tableset composed of relevant tables, run SQL
queries on the tables in the tableset, and aggregate the re-
sults to obtain the final answer. As we will show in more
detail later, our user study on 16 volunteers shows that this
simple extension significantly reduces the time to write the
final query, the length of the query, and the number of mis-
takes made by the users.

The rest of this paper is organized as follows. Section
2 describes the concept of tableset and the basic tableset
operators. Section 3 describes the SQL extension for table-
set operations together with the concept of table properties.
Section 4 shows the results from our experimental user study
with our prototype implementation. Section 5 discusses re-
lated work. Section 6 concludes the paper.

2. TABLESET
A tableset is our mechanism to allow users to declaratively
specify the set of tables to run queries on. Simply put, a
tableset is a set of tables:

Definition 1 A tableset is a set of tables. 2

For example, we can construct a tableset TS composed
of two tables, SensorATW and SensorBT, like TS = {Sen-
sorATW, SensorBT}. Of course, constructing a tableset
by listing all tables explicitly is not very helpful. The true
power of a tableset comes when we can “select” the tables of
interest by specifying the set of conditions that they have to
satisfy and run queries on them. This way, users can issue
queries on the database even without knowing all tables in
the database.

To support this mechanism, we now introduce seven ba-
sic tableset operators: rename (ρ), project (π), select (σ),
merge (Σ), set union (∪), set difference (−), and Cartesian
product (×). The first four operators are unary operators
whose input is a single tableset. The last three operators are
binary operators that take two input tablesets. The output
of all the tableset operators, except the merge operator, is a
tableset. The output of the merge operator is a table, not a
tableset. We also use the special symbol υ to represent the
tableset with all tables in the database. For instance, for
our running example, υ contains all six tables in Figure 1.

We start our discussion of tableset operators with the re-
name operator.

2.1 Rename operator: ρTS′(TS)

The rename operator is used to change the name of an ex-
isting tableset:

Definition 2 ρTS′(TS) = TS′ = {T |T ∈ TS} 2

That is, ρTS′(TS) changes the name of the tableset from TS
to TS′.

2.2 Select operators: σC(TS) and σT
C(TS)

The select operator allows users to keep only those tuples
and/or tables in a tableset that satisfy a certain condition.
The condition can be specified either at the tuple level or
at the table level. We first look at the tuple-level select
operator.

Tuple-level select operator Let us suppose a user who
is interested in all sensor measurements made at ‘2007-11-
01 00:00:05 ’ to learn the exact state of the physical world
at the time. A “tuple-level” select operator, denoted as
σC(TS), can be used for this task. Roughly, σC(TS) selects
all tuples from each table in TS that satisfy the condition
C. More precisely,

Definition 3 σC(TS) = {σC(T) | T ∈ TS, σC(T) 6= ∅},
where C is a condition and σC(T) = {t | t ∈ T, t satisfies
C} 2

Here, the condition C can be a combination of sub-conditions
concatenated with logical operators (i.e., ¬, ∧, and ∨).

Figure 2: Tuple-level select operator, σC(TS)

For example, in Figure 2, we show the output of
σtime=′2007−11−01 00:00:05′(υ) on our example database from

Figure 1 (again, υ is the tableset with all tables in the
database). Note the output contains only two tables because
only two tuples, one in SensorATW and the other in Sen-
sorBT, satisfy the condition time=’2007-11-01 00:00:05’.

Table-level select operator In certain cases, users may
want to select the whole table as opposed to a few tuples from
a table. For example, suppose a user who wants to select
the tables that has at least one tuple with time=‘2007-11-01
00:00:05’. The table-level select operator, σT

C(TS), can be
used for this purpose, whose definition is given below:

Definition 4 σT
C(TS) = {T |T ∈ TS, T satisfies C} 2

Here C is a condition that is evaluated against each table T
in TS. For example, the result of σT

any(time)=′2007−11−01 00:00:05′(υ)
is shown in Figure 3, which selects all tables that has at least
one tuple with time=‘2007-11-01 00:00:05’.

Figure 3: Table-level select operator, σT
C(TS)

Since a table-level condition is performed over the entire
table, a column specified in C is often bound to a set of val-
ues, not a single value. Therefore, a table-level select con-
dition typically comes with set operators (e.g., in, any, all,
exists) or aggregate functions (e.g., min, max, avg, stddev,
var). σT

time=′2007−11−01 00:00:05′(υ) is not allowed, because
this operator has a tuple-level condition on the time col-
umn. Other possible table-level conditions include the has-
column(X) function, which is evaluated to TRUE if the table
has the column X. For example, σT

hascolumn(temperature)(υ)
will select only those tables that have the temperature col-
umn.

Dealing with missing columns The traditional rela-
tional operators postulate that users already know all table
schemas and will not specify conditions on columns that do
not exist. However, when users use tableset operators, they
are unlikely to know the exact schemas of all tables in the
database. Therefore, tableset operators should deal with
conditions on missing columns “gracefully”.

For example, consider the tuple-level select operator
σtemperature<73(υ) on our running example. Very likely, the
user is looking for all temperature sensor tuples whose value
is below 73. When this select condition is evaluated for all
tables in υ, note that two tables in our database, Senso-
rAHW and SensorBH, do not have the temperature col-
umn. We deal with conditions on “missing” columns by as-
suming that they are evaluated to FALSE. For example,
σtemperature<73(υ) returns FALSE for every tuple in Senso-
rAHW and SensorBH because they do not have the tem-
perature column. We show the result of σtemperature<73(υ)
based on this interpretation in Figure 4.

Figure 4 also shows the result of σsid=p310h∨temperature<73(υ)
that has multiple sub-conditions, one of which encounters a

Figure 4: Handling missing-column tables in a select

operator

similar problem. In particular, note the second output table
in the tableset. Even though this table does not have the
temperature column and thus temperature<73 is evaluated
to FALSE, the condition sid=p310h is evaluated to TRUE
for the tuple, so the tuple is returned in the output.

2.3 Project operator: πE(TS)

The project operator on a tableset TS, denoted as πE(TS),
is used to keep only certain columns:

Definition 5 πE(TS) = {πE(T) |T ∈ TS} 2

Here, E is the list of columns to keep in the output.
For example, consider a user who wants to obtain the list

of all sensor identifiers. For this task, she can use πsid(υ)
to remove all columns other than sid from six tables in the
database. The result is given in Figure 5.

Figure 5: Project operator, πE(TS)

Dealing with missing columns A column listed in E
of πE(TS) may not exist in some tables in TS. For exam-
ple, consider πsid,temperature(υ). Two tables SensorAHW
and SensorBH in our database does not have the column
temperature.

Potentially, there are three ways to deal with the tables
with missing columns:

1. All tables with missing columns are dropped in the out-
put. That is, if a table T is missing any column in E,
we do not include T in the result. Note that this inter-
pretation can be enforced using the hascolumn() con-
dition that we introduced before. For example, to in-
clude only the tables with the temperature column, we
can write πsid,temperature(σ

T
hascolumn(temperature)(υ)).

2. For missing-column tables, we project only on the columns
that exist in the tables. For example, the result from
πsid,temperature on SensorAHW will have just one col-
umn sid because the temperature column is missing in

SensorAHW. We choose to use this interpretation as
the default semantic of the tableset project operator
with missing columns. For instance, Figure 6 shows
the result of πsid,temperature(υ) on our running exam-
ple.

3. For all tables in the output tableset, we add all missing
columns and fill in the value NULL for those columns.
We use the symbol“+”to denote the column that must
be added to the output. For example, Figure 6 shows
the result of πsid,temperature+(υ), where the tempera-
ture column is added to the output from the Senso-
rAHW and SensorBH with NULL values. Note that
we can guarantee that all tables in the result tableset
have exactly the same schema using this option.

Figure 6: Handling missing-column tables in a

project operator

From our user survey, we also find that users often want
to project on the intersection of common columns and the
union of all columns. To support this, we introduce two
special column functions: commoncolumns and allcolumns.

For example, given TemperatureSensors = {SensorATW,
SensorBT, SensorCHRT}, all output tables from
πcommoncolumns(TemperatureSensors) have the columns that
are common among all three tables, sid, city, time, and tem-
perature, as we show in Figure 7.

Allcolumns unions the columns of all tables in a tableset.
For example, given WashingtonSensors = {SensorATW, Sen-
sorAHW, SensorBH }, the output of πallcolumns(Washing-
tonSensors) is shown in Figure 7. From the output, users
can see all types of sensors deployed in Washington.

2.4 Merge operators: Σ∪(TS), Σ∩(TS), Σ×(TS)

Merge operator on a tableset TS merges all tables in the
tableset into a single table. The merge operation is useful
to compute aggregated values from multiple tables. Since
the merge operator returns a single table, users can apply
the conventional relational operators to its output.

Figure 7: Schema function in Project

For example, let us suppose a tableset HumiditiesOfAB
= {SensorAHW, SensorBH } and the following union-merge
operator:

Definition 6 Σ∪(TS) = {t | t ∈ T, ∃T ∈ TS} 2

This operator unions all tuples in the tables in TS. For
example, Σ∪(HumiditiesOfAB) returns a single table that
has all tuples from SensorAHW and SensorBH, as shown
in Figure 8. After merging them, users can compute the

Figure 8: Union-merge operator

average of all humidity values in the tableset by using the
relational project operator and the avg() aggregate function
like πavg(humidity)(Σ

∪(HumiditiesOfAB).
In general, we define three types of merge operator: union-

merge (Definition 6), intersect-merge (Definition 7), and
product-merge (Definition 8).

Definition 7 Σ∩(TS) = {t | t ∈ T, ∀T ∈ TS} 2

Σ∩(TS) creates the output table by intersecting the tuples
from all tables in TS. Both Σ∪(TS) and Σ∩(TS) operators
require that all tables in TS have the same schemas. If
different, the schemas should be normalized first, with the
πE(TS) operator.

The third merge operator Σ×(TS) merges all the tables
in a Cartesian product manner.

Definition 8 Σ×(TS) = {t | t ∈ T, T = T1 × · · · × Tn},
where n is the number of tables in TS = {T1, . . . , Tn}. 2

For example, the result of Σ×(HumiditiesOfAB) is shown
in Figure 9. We find that (1) the product-merge operator

Figure 9: Product-merge operator

does not often generate semantically meaningful output, (2)
name-conflicts in the output table are hard to handle be-
cause the users usually do not know the schema, and (3)
the number of tables in the result is very large. For this
reason, we believe that the product-merge operator is less
likely to be useful in practice, but we introduce this operator
for completeness.

2.5 Binary operators: set union (∪), set differ-
ence (−), and Cartesian product (×)

Binary tableset operators receive two tablesets as the in-
put, and return a single tableset as the output. There are
three types of binary tableset operators: set union (∪), set
difference (−), and Cartesian product (×).

Definition 9 TS1 ∪ TS2 = {T | T ∈ TS1 ∨ T ∈ TS2} 2

Definition 10 TS1 − TS2 = {T | T ∈ TS1 ∧ T /∈ TS2} 2

Definition 11 TS1×TS2 = {T | T = Ti×Tj , Ti ∈ TS1, Tj ∈
TS2} 2

Given two tablesets TS1 and TS2, TS1∪TS2 returns a ta-
bleset including all tables in either TS1 or TS2. The set dif-
ference operator, TS1 − TS2, returns a tableset with tables
in TS1 but not in TS2. Cartesian product on two tablesets,
TS1 × TS2, returns a tableset composed of the Cartesian
product of all pairs of tables from TS1 and TS2.

A binary operation between a table T and a tableset TS is
not directly permitted. For example, SensorCHRT ∪ Wash-
HumiditySensors is not allowed, because SensorCHRT is a
table and WashHumiditySensors is a tableset. Instead, users
can merge all tables in TS into a single table, and then can
apply the conventional binary relational operators to the
merged table and T. For example, users can create a table
WashHumidity by Σ∪(WashHumiditySensors), and union
SensorCHRT and WashHumidity by a relational union op-
erator: SensorCHRT ∪ WashHumidity. Or, users can create
a tableset that has the table T, and then can apply the ta-
bleset binary operators to the newly created tableset and
TS.

In Table 1 we summarize the definition of all tableset op-
erators that we introduced in this section.

Table 1: Summary of tableset operators
Operators Notation Output
Rename ρT S′ (TS) TS ’ = {T |T ∈ TS}
Project πE(TS) {πE(T) |T ∈ TS}
Select σC(TS) {σC(T) |T ∈ TS, σC(T) 6= ∅},

σC(T) = {t |t ∈ T, t satisfies C}
σT

C(TS) {T |T ∈ TS, T satisfies C}
Merge Σ∪(TS) {t |t ∈ T, ∃T ∈ TS}

Σ∩(TS) {t |t ∈ T, ∀T ∈ TS}
Union TS1 ∪ TS2 {T |T ∈ TS1 ∨ T ∈ TS2}

Difference TS1 − TS2 {T |T ∈ TS1 ∧ T /∈ TS2}
Product TS1 × TS2 {T |T = Ti × Tj , Ti ∈ TS1, Tj ∈ TS2}

3. SQL EXTENSION
We now describe our SQL extension to support the tableset
operators described in the previous section. The extension
is very similar to the conventional SQL, and easy to un-
derstand and use. In the description of query syntax, we
use bracket symbols (i.e., “[” and “]”) to indicate optional
query blocks and use curly brace symbols (i.e., “{“ and “}”)
and vertical bars (i.e., “|”) to indicate selective query blocks.
Reserved keywords are represented in upper-case letters.

3.1 CREATE TABLESET statement
ALLTABLES is a predefined tableset that includes all ta-
bles in a database. Users can create their own tablesets by
CREATE TABLESET statement whose syntax is shown in
Figure 10.

CREATE TABLESET tableset name AS
{table name, . . . };

CREATE TABLESET tableset name AS
tableset {UNION |INTERSECT |DIFFERENCE} tableset;

CREATE TABLESET tableset name AS
select statement;

Figure 10: CREATE TABLESET statement

There are three ways to create a tableset. First, users can
directly specify the tables that should belong to a tableset,
which is useful when users know the exact tables of inter-
est and the number of the tables is reasonably small. For
example, let us say that a user is interested in Washington
humidity sensors and he knows SensorAHW and SensorBH
are tables to query. Then, he can make a tableset by is-
suing a query of “create tableset WashHumiditySensors AS
{SensorAHW, SensorBH};”. Second, users can also create
a tableset from two existing tablesets by set intersection,
set union, and set difference operations. Third, users can
create a tableset from the result tableset from a SELECT
statement. We now discuss how we interpret select state-
ments when a tableset is used as part of the statement.

3.2 SELECT statement
Figure 11 shows the syntax of SELECT statement to repre-
sent σC(TS), σT

C(TS), and πE(TS) operators.

SELECT columns FROM tableset

[WITH TABLE condition]
[WHERE conditions];
[MERGED [BY {UNION | INTERSECT}]]

Figure 11: SELECT statement

In our extended syntax, a SELECT statement may have
a tableset in the FROM clause. In this case, the conditions
in the WHERE clause is interpreted as a tuple-level select
condition. For example,“select * from alltables where time =
‘2007-11-01 00:00:05’;” is interpreted as σtime=‘2007−11−01

00:00:05′(υ) whose result was given in Figure 2. Note that
when a tableset is used in the FROM clause the result of
the SELECT statement is also a tableset.

WITH TABLE clause The optional WITH TABLE clause
is used to specify a table-level select condition. For example,
“select * from alltables with table any(time) = ‘2007-11-01
00:00:05’;” is equivalent to σT

any(time)=‘2007−11−01 00:00:05′(υ).
The WITH TABLE clause can appear only when a tableset

appears in the FROM clause. Both WHERE and WITH
TABLE clauses can be specified simultaneously.

SELECT clause A project operation can be performed
using the SELECT clause. For example, “select time, tem-
perature+ from alltables;” is equivalent to πsid,temperature+(υ).
Users can also specify COMMONCOLS or ALLCOLS in the
SELECT clause (See Section 2.2). For example, “select com-
moncols from alltables;” returns the tables having the three
common columns, sid, city, and time, among all tables in
our example database as we show in Figure 7.

MERGED option When the MERGED option is speci-
fied, all tuples in the output is merged into a single table ei-
ther using union or intersection (the default is UNION). For
example, “select * from HumiditiesOfAB merged by union;”
is equivalent to Σ∪(HumiditiesOfAB) and generates a sin-
gle table with all tuples from the tables in HumiditiesOfAB.
Once all tuples are merged into a single table, the user can
use the standard relational operators.

Example: Assume that a user wants to compute the aver-
age temperature in Washington from all tables in sensorbase.
To compute the average, the user first issues the CREATE
TABLESET statement, “create tableset WashTemperature
as select temperature from alltables where city=‘Washington’;”
and then issue the select statement on this tableset, “select
avg(temperature) from WashTemperature merged by union;”.
Note that in the first create statement, we keep only those
tuples with the temperature column from the city ‘Washing-
ton’ and in the second select statement, we merge all tuples
into a single table and compute the average of the temper-
ature. 2

It is also possible that the user lists more than one table-
sets in the FROM clause. In this case, Cartesian product
operator on the tablesets are applied. For example, “select
* from WashTemperature, HumiditySensors;” is equivalent
to WashTemperature × HumiditySensors.

3.3 DROP TABLESET statement
DROP TABLESET drops an existing tableset (e.g., drop ta-
bleset TS1;). Dropping a tableset does not mean dropping
tables in the tableset. For example, given WashHumidity-
Sensors = {SensorAHW, SensorBH }, “drop tableset Wash-
HumiditySensors” does not drop SensorAHW or SensorBH.

Figure 12: Tableset dependencies

When a tableset is dropped, there may exist a chain of
dependency that may force other tablesets to be dropped
as well. For example, suppose that there are four tablesets
TS1 to TS4,where TS2 is created from TS1, and TS3 is
created from TS2 and TS4 as we show in Figure 12. In this
case, if the user wants to drop TS1, the system may have to
drop T2 and T3 as well, because their definition is depen-
dent on TS1. To allow controlling what happens in this sce-
nario, we allow RESTRICTED and CASCADE options for
the DROP TABLE statement. The RESTRICTED option
prevents dropping a tableset if there is another tablset cre-

ated from the dropped tableset. For example, “drop tableset
TS1 restricted;” prevents TS1 from being dropped, because
there is a tableset TS2 created from TS1. The CASCADE
option drop all tablesets that are dependent on the dropped
tableset. For example,“drop tableset TS1 cascade;”will drop
TS2 and TS3 as well. The default is CASCADE.

Note that similar issues exist when users create multiple
views on base tables and the same set of options are used in
SQL92 to control the view dropping behavior.

3.4 Table property
In sensorbase, when all tuples in a table share the same value
(e.g., one table may contain temperature measurements in
Washington, so the ’city’ column of all tuples may have the
same value ’Washington’), we observe that most sensorbase
users do not create a separate column for such data. Instead,
they typically associate the value as the “metadata” of the
table, that is assumed to be shared by all tuples in the table.

Figure 13: Sensor tables with table properties

To accomodate this general tendancy of the users, we in-
troduce the concept of table property, which can be consid-
ered as a “virtual column” whose value is shared by every
tuple. Examples of table properties are shown in Figure 13,
where all table properties are enclosed in curly braces. Ta-
ble properties make it possible to efficiently store redundant
data. When new metadata come up, users can simply add
one more table properties without changing the actual ta-
ble structure. When the table is referenced in SELECT
statements, its table properties work exactly like a regular
column with identical values, so whether a particular data
is represented as a table property or as a regular column
is transparent to other users who are simply interested in
looking up the tuples in the table.

SYNTAX:

CREATE TABLE tablename (column definitions)
[WITH PROPERTIES (property definitions)]
[AS select statement];

EXAMPLE:

(a) CREATE TABLE SensorATH
(time datetime, temperature float)

WITH PROPERTIES
(sid varchar(10) default “p310h”,
city varchar(10) default “Wash”);

(b) CREATE TABLE SensorATC
WITH PROPERTIES sid, city AS
SELECT * FROM SensorATW;

Figure 14: CREATE TABLE statement

Figure 14 shows how table properties can be defined with
a CREATE TABLE statement. First, users can create an

empty table with property definitions. WITH PROPER-
TIES keyword is used to specify table properties (see Fig-
ure 14(a)). Table properties are defined like column defini-
tions. Second, a user can also create a table based on the
result of querying to other tables (see Figure 14(b)).

4. EXPERIMENTS
The main premise of this paper is that our proposed SQL
extension allows users to issue queries much more easily on
a large number of tables. To evaluate the validity of this
premise, we recruited 16 volunteers and observed their be-
havior in two conditions: one in which the they used our SQL
extension and the other in which they used only the stan-
dard SQL. In particular, we compared (1) how much time a
user spent formulating a query given its English description,
(2) how many iterations the user went through to arrive at
the final query, (3) how succinct the final formulated query
was, and (4) how many errors the user encountered during
this iteration.

4.1 Experimental Setup
In order to compare these numbers, we first had to educate

each volunteer about our SQL extension and to provide a
short exercise to remind them of the standard SQL. For
this training storage, we used the practice database that was
completely separate from the main test database that was
used for the actual evaluation.

The main test database has 10 tables picked from the sen-
sorbase as follows:

- SensorAT (sid, city, time, temperature)

- SensorAI (sid, city, time, image, description)

- SensorAH (sid, city, time, humidity)

- SensorBH (sid, city, time, voltage, humidity)

- SensorBT (sid, city, time, voltage, temperature)

- SensorCHRT (sid, city, time, humidity, rainfall, temperature)

- SensorDH (sid, city, time, humidity)

- SensorDT (sid, city, time, voltage, temperature)

- SensorEI (sid, city, time, image, description)

- SensorET (sid, city, time, temperature, description)

Each of the 16 volunteers was asked to follow the steps in
Figure 15 twice; once for the standard SQL and the other
time for our SQL extension. To minimize bias, we asked
half of the volunteers to go through the steps with our SQL
extension first and then with the standard SQL and asked
the other half of the volunteers to follow the steps with the
standard SQL first. We constructed a web interface for the
experiment. Users issued queries (the SQL extension or the
SQL queries) via the interface. Step transitions were done
by clicking a special button (e.g., confirm or next button).
All issued queries and button clicks were logged with the
time that the events happened.

Figure 15: Experiment Steps

At the first step, we arranged a tutorial page to help users
learn the SQL extension, and also arranged a web page to
help users exercise the SQL. According to those pages, the

volunteers could issue queries until they were familiar with
the SQL and the extension. At the third step, we gave a brief
explanation about the testing interface so that they would
not waste time learning our interface in the next step. At
the fourth step, the following three questions were asked one
by one.

(1) When was the last measurement of sensor ’p97’? (show the
time of the last measurement of sensor ’p97’)

(2) What was the average temperature of ’Washington’ on ”Nov
5, 2007”? (show the average temperature value of all tem-
perature sensors in ’Washington’)

(3) In what city the temperature was stable on ’Nov 9, 2007’?
(show the standard deviation of temperature values for each
city)

After getting a question, the volunteers issued a sequence
of queries until they arrived at the final query answering
the question. Query processing time for each query was less
than one second. Most of the time during the fourth and
fifth steps was spent on thinking of how to write queries and
composing the queries. Table 2 shows queries that were used
for most users to find the answers.

4.2 Time to Write Queries
Figure 16 shows the times spent to arrive at the final query

to answer the questions. The bars on Question 0 represent
the times spent on learning the SQL extension and in ex-
ercising the standard SQL (i.e., the time staying at steps 1
and 2) Figure 16 shows that the volunteers spent less time
to find answers for the three questions when using the ex-
tended SQL, even though the volunteers spent more time on
learning the extended SQL. When they used the extended
SQL, they spent slightly more time on the second and the
third questions than on the first question. That was because
the last two questions were more difficult to come up with
appropriate queries. When they used the standard SQL,
they spent less time on the third question than on the first
or the second. That was because a solution for the third
question is similar to the second, and some of the volunteers
reused the temporary tables that they created for the second
question. Overall, the result clearly shows that our SQL ex-
tension significantly reduces the time to formulate the final
query even though the users had to spend some time in the
beginning to learn it.

4.3 Query Iterations
Figure 17 shows the number of iterations that the users

went through rewriting queries to arrive at the final query.
The bars show the number of iterations and the lines show
the fraction of the rewritten queries that did not have any
error.1 This result shows the SQL extension helps users
issue fewer queries and the queries are less likely to contain
errors. The standard SQL caused more SQL errors than the
extended SQL did, because the volunteers often had to write
longer queries on a number of different tables that they do
not know well.

4.4 Length of the Queries
In Figure 18, we report how succinct the final queries were

when measured in length. The wider bars represent the total

1By an error, we mean any SQL statement that returns an
error message.

Table 2: Common queries to find the answers
No. Queries

SQL extension:

SELECT max(time)
FROM alltables
WHERE sid = ‘p97’;

SQL:

SELECT max(time) FROM SensorAT WHERE sid = ‘p97’;
SELECT max(time) FROM SensorAH WHERE sid = ‘p97’;
SELECT max(time) FROM SensorAI WHERE sid = ‘p97’;

1 SELECT max(time) FROM SensorBT WHERE sid = ‘p97’;
SELECT max(time) FROM SensorBH WHERE sid = ‘p97’;
SELECT max(time) FROM SensorCHRT WHERE sid =
‘p97’;
SELECT max(time) FROM SensorDT WHERE sid = ‘p97’;
SELECT max(time) FROM SensorDH WHERE sid = ‘p97’;
SELECT max(time) FROM SensorET WHERE sid = ‘p97’;
SELECT max(time) FROM SensorEI WHERE sid = ‘p97’;

SQL extension:

CREATE TABLESET WashNov5 AS
SELECT temperature
FROM alltables
WHERE city = “Wash” and date(time) = “2007-11-05”;

SELECT avg(temperature)
FROM WashNov5 MERGED;

SQL:

2 CREATE VIEW WashNov5 AS
SELECT city, temperature FROM SensorAT UNION
SELECT city, temperature FROM SensorBT UNION
SELECT city, temperature FROM SensorCHRT UNION
SELECT city, temperature FROM SensorDT UNION
SELECT city, temperature FROM SensorET;

SELECT avg(temperature)
FROM WashNov5
WHERE city = “Wash” and date(time) = “2007-11-05”;

SQL extension:

CREATE TABLESET TempNov9 AS
SELECT city, temperature
FROM alltables
WHERE date(time) = “2007-11-09”;

SELECT city, stddev(temperature)
FROM TempNov9 MERGED
GROUP BY city;

SQL:

3 CREATE VIEW TempNov9 AS
SELECT city, temperature FROM SensorAT UNION
SELECT city, temperature FROM SensorBT UNION
SELECT city, temperature FROM SensorCHRT UNION
SELECT city, temperature FROM SensorDT UNION
SELECT city, temperature FROM SensorET;

SELECT city, stddev(temperature)
FROM TempNov9
WHERE date(time) = “2007-11-09”
GROUP BY city;

number of characters typed, and the narrower bars represent
the average number of characters per each statement in the
final query. Average query lengths of the extended SQL
queries were clearly shorter than those of the standard ones
for all questions, indicating that the extended SQL helps
users issue short queries to find the answers.

Note that for the first question in Table 2, the average
length per statement of the typical standard SQL query is
close to that of the typical extended SQL query. The ob-
served difference for the first question in Figure 18 came from
the fact that the volunteers used one of the following four ap-
proaches. First, users issued a query to each table as shown
in Table 2. Second, users created a table, inserted tuples of
existing tables into the newly created table, and then issued
an aggregate query to the newly created table. Third, users
made a view using all the tables, and then issued an aggre-
gate query to the view. Fourth, they just issued one query
that included a sub-query of selecting and unioning all the

Figure 16: Elapsed time to find answers

Figure 17: Numbers and Validities of queries

Figure 18: Volume of queries

10 tables in the FROM clause. While the average length per
statement is roughly the same for the first two approaches
between the standard and the extended SQL, it was signifi-
cantly longer for the third and the fourth approaches when
the standard SQL was used. In all of the four approaches,
the users couldn’t avoid specifying all table names when the
standard SQL was used.

4.5 Implementation

We briefly discuss how we implemented the proposed SQL
extension, which we refer to as SQLE-TSTP. A basic strat-
egy of SQLE-TSTP implementation was to take advantage
of existing RDBMS as much as possible to simplify the im-
plementation of SQLE-TSTP processors. An input query
written in SQLE-TSTP is transformed to a series of stan-
dard SQL queries. Our prototype was developed in PHP 5.1
on a Linux PC machine with MySQL 5.1 as an underlying
DBMS.

Table properties of a table are materialized as a sepa-
rate table which is called a “property table”, but the prop-
erty tables are not shown to users. The property table has
one row, whose columns correspond to properties. We need
to keep track of relationships between relational tables and
their property tables. We manage a dictionary table, called
TPT (dictionary for table and property table). TPT con-
sists of two columns. The first is to store a regular table
names and the second is to store a property table names
corresponding to the regular tables. When a user creates a
table with table properties, a pair of table name and prop-
erty table name is added to TPT. When a table is dropped,
the tuple in TPT is automatically deleted.

When a user creates a new tableset from an existing ta-
bleset, the tables in the new tableset (i.e., an output table-
set) would be different from the tables in the input tableset.
Then, we do not materialize the tables, instead create view
for the tables. The views are automatically dropped when
there is no tableset referring to the views.

We also need a data dictionary to keep track of the re-
lationship between a tableset and its member tables. The
dictionary is called TST (tableset and table), which is com-
posed of three columns. The first column is to store tableset
names. The second column is to keep member tables (or
shadow views) of a tableset. When a query is executed on a
tableset, systems know all the tables belonging to the table-
set by referring to the first two columns. The third column
keeps the origin of each member table. When a table is
dropped with CASCADE option, the system looks up the
third column of TST and drops all shadow views originated
from the table. When a tableset is dropped with CASCADE,
the systems first find member tables of the tableset to drop,
and then looks up the third column to see which tableset (or
tables) comes from the member tables to drop.

In order to handle queries asking an aggregated value over
multiple tables, we create a view and query to the view,
which is called a query view. For example, let us suppose
that users issue“select avg(temperature) from WashTempSen-
sors MERGED BY UNION ;”. Then, the system creates a
query view by unioning all members of the tableset, and is-
sue“select avg(temperature) from QV;”, where QV is a query
view. Since performance is not our focus in this paper, we
simply assume that underlying DBMSs can efficiently han-
dle queries to query views. An underlying DBMS should be
able to parallelize processing of queries to the query views.
For example, multiple processes (or threads) compute the
sum and the number of tuples for each table, and then the
average is computed by the sums and the numbers.

5. RELATED WORK
A number of XML-based languages such as SensorML [14],
TinyML [10] and SDML [9] have been developed to model
and exchange sensor data, since XML (eXtensible Markup
Language) is effective in modeling heterogeneous data com-

ing from different sensornets. However, constructing the sen-
sorbase as an XML database makes it difficult to manage the
sensorbase and search information. There is no XML DBMS
as good as RDBMSs, and XML database maintenance tech-
niques (e.g., transaction, security, and so on) are still not
strong. Major XML query languages such as XQuery and
XPath are less effective to write queries that need the equiv-
alent of SQL’s GROUP BY, SELECT DISTINCT, OUTER
JOIN features [1][2], even though those features are very
important to analyze sensor data and find information.

[4][7][8][11] used a (object-)relational database to manage
their sensor data and SQL-like queries to search information
from their databases. In the COUGAR sensor database [11],
an ADT (Abstract Data Type) is defined for all sensors of a
same type (e.g., temperature sensors, seismic sensors). For
example, let us suppose a relation R (loc point, s sensorN-
ode), where loc is a point ADT that stores the coordinates
of the sensor and sensorNode is a sensor ADT that supports
the methods getTemp(). In order to return the temperature
measured by all sensors every minute, a user can issue the
query of “select R.s.getTemp() from R where $every(60);”,
where $every() takes the time as an argument between suc-
cessive outputs of the sensor ADT functions in the query.

In the TinyDB [4][7][8], roughly speaking, a physical sen-
sor has a materialized table and keep its measurement data
in the table. TinyDB provides a logical table sensors which
has one row per node per instant in time, with one col-
umn per attribute (e.g., temperature, humidity, etc) that
the sensor can produce. The sensors table looks like Sen-
sorCHRT in Figure 1. Records in the sensors table are
materialized only as needed to satisfy a query, and deliv-
ered directly out of the network. They imposed the same
schema on all the materialized sensor tables and the sensors
table to easily integrate the sensor data in the network. A
SQL-like query language was also used over the TinyDB.
Their SQL extension was mainly for handling stream data.
For example, ”SELECT nodeid, temperature FROM sensors
SAMPLE PERIOD 1s FOR 10s;” specifies that each device
should report its own id temperature readings once per sec-
ond for 10 seconds.

The COURGAR and the TinyDB provide users with a sin-
gle table to query, so that the users avoid exploring and ag-
gregating information across a large number of tables. They
integrated distributed tables in their own network, but it is
very hard to integrate the tables coming from a lot of differ-
ent networks. There have been a number of research on data
integration [15][5][6][16]. The database integration system
need to keep mapping between logical tables and underly-
ing tables coming from different networks. They would use
either of the two mapping mechanisms: GAV (Global-As-
View) and LAV (Local-As-View). Using the LAV approach
makes it difficult to process user queries (i.e., difficult to
rewrite queries). Using the GAV approach makes it difficult
to add new source (i.e., new sensors).

Schema match is to find a mapping between elements of
two different schema, which correspond semantically to each
other. Schema match is very fundamental in many database
application domains (e.g., data warehouse, data integration,
etc) and there have been a lot of studies. [12] surveyed
existing match techniques extensively and presented a so-
phisticated classification of schema matching approaches in
criteria of a match level (i.e., instance vs schema), a tar-
geted match object (i.e., element vs structure), information

used to find match (i.e., language vs constraint), a match
cardinality, and auxiliary information (such as dictionaries,
previous matching decisions, etc.). [12] also gave guidelines
to combine different matchers. Users need to select schema
match tools appropriate for their application domain. Once
those tools predict matches, users typically must manually
verify and correct theses. Therefore, it is important for the
tools to give a good interface that makes users easily verify
the recommendations.

6. CONCLUSION
Our SQL extension makes users easily compose queries over
a large number of tables. Users can declaratively specify
the tables that they are interested in, and easily aggregate
instances stored in the multiple tables. Users do not need to
lookup individual tables or specify all the tables of interest
in their queries in order to get to their information needs.

Even though our SQL extension was motivated to query
over a large number of sensor tables, our approach and sug-
gestion are not necessarily limited to the sensor data search.
We believe that the SQL extension also makes it much sim-
pler to search and analyze information, in a variety of appli-
cation domains where data are stored over a large number
of tables.

7. REFERENCES
[1] K. S. Beyer, D. D. Chmberline, L. S. Colby, F. Ozcan,

H. Pirahesh, and Y. Xu. Extending XQuery for
Analytics. In Proceedings of the International
Conference on Management of Data (SIGMOD),
pages 503–513, 2005.

[2] V. Borkar and M. Carey. Extending XQuery for
Grouping, Duplicate Elimination, and Outer Joins. In
In proceedings of XML conference, pages 1–11, 2004.

[3] A. Doan and A. Y. Halevy. Semantic integration
research in the database community: a brief survey.
AI Magazine, 26(1):83–94, 2005.

[4] J. Gehrke and S. Madden. Query processing in sensor
networks. Pervasive Computing, 3(1):46–55, 2004.

[5] A. Y. Halevy. Answering queries using views: A
survey. VLDB Journal: Very Large Data Bases,
10(4):270–294, 2001.

[6] M. Lenzerini. Data integration: a theoretical
perspective. In PODS ’02: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
233–246, New York, NY, USA, 2002. ACM.

[7] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tag: a tiny aggregation service for ad-hoc
sensor networks. SIGOPS Oper. Syst. Rev.,
36(SI):131–146, 2002.

[8] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TinyDB: an Acquisitional Query Processing
System for Sensor Networks. In Proceedings of the
International Conference on Management of Data
(SIGMOD), pages 778–787, 2003.

[9] S. Nath, J. Liu, and F. Zhao. Challenges in building a
portal for sensors world-wide. Technical Report
MSR-TR-2006-133, Microsoft Research, September
2006.

[10] N. Ota and W. Kramer. TinyML: Meta-data for
Wireless Networks. Technical report, UCB, 2003.

[11] J. G. Philippe Bonnet and P. Seshadri. Towards
sensor database systems. Lecture Notes in Computer
Science, 1987:3–14, 2001.

[12] E. Rahm and P. Bernstein. A survery of approaches to
automatic schema matching. VLDB Journal,
10(4):334–350, 2001.

[13] S. Reddy, G. Chen, B. Fulkerson, S. J. Kim, U. Park,
N. Yau, J. Cho, M. Hansen, and J. Heidemann.
Sensor-Internet Share and Search: Enabling
Collaboration of Citizen Scientists. In IPSN (DSI),
pages 1–12, 2007.

[14] OpenGIS Sensor Model Lanauge (SensorML).
http://www.opengeospatial.org/standards/sensorml.

[15] J. D. Ullman. Information Integration Using Logical
Views. In Proceedings of the International Conference
on Database Theory (ICDT), pages 19–40, 1997.

[16] P. Ziegler and K. R. Dittrich. User-specific semantic
integration of heterogeneous data: The sirup
approach. In M. Bouzeghoub, C. Goble, V. Kashyap,
and S. Spaccapietra, editors, First International IFIP
Conference on Semantics of a Networked World
(ICSNW 2004), volume 3226 of Lecture Notes in
Computer Science, pages 44–64, Paris, France, June
17-19, 2004. Springer.

