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ABSTRACT
One hundred users, one hundred needs. As more and more
topics are being discussed on the web and our vocabulary
remains relatively stable, it is increasingly difficult to let the
search engine know what we want. Coping with ambiguous
queries has long been an important part in the research of
Information Retrieval, but still remains to be a challenging
task. Personalized search has recently got significant atten-
tion to address this challenge in the web search community,
based on the premise that a user’s general preference may
help the search engine disambiguate the true intention of a
query. However, studies have shown that users are reluctant
to provide any explicit input on their personal preference. In
this paper, we study how a search engine can learn a user’s
preference automatically based on her past click history and
how it can use the user preference to personalize search re-
sults. Our experiments show that users’ preferences can be
learned accurately even from small click-history data and
personalized search based on user preference yields signif-
icant improvements over the best existing ranking mecha-
nism in the literature.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—search process

General Terms
Measurement, Human Factors

Keywords
Web search, Personalized search, User profile, User search
behavior

1. INTRODUCTION
A number of studies have shown that a vast majority of

queries to search engines are short and under-specified [1]
and users may have completely different intentions for the
same query [2]. For example, a real-estate agent may issue
the query “office” to look for a vacant office space, while an
IT specialist may issue the same query to look for popular
Microsoft productivity software.

To address these differences among the users, there has
been a recent surge of interest in personalized search to cus-
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tomize search results based on a user’s interest. Given the
large and growing importance of search engines, personal-
ized search has the potential to significantly improve user
experience. For example, according to recent statistics [3] if
we can reduce the time users spend on searching for results
on Google by a mere 1% through effective personalization,
over 187,000 person-hours (21 years!) will be saved each
month.

Unfortunately, studies have also shown that the vast ma-
jority of users are reluctant to provide any explicit feedback
on search results and their interest [4]. Therefore, a per-
sonalized search engine intended for a large audience has to
learn the user’s preference automatically without any explicit
input by the users. In this paper, we study the problem of
how we can learn a user’s interest automatically based on
her past click history and how we can use the learned inter-
est to personalize search results for future queries.

To realize this goal, there exist a number of important
technical questions to be addressed. First, we need to de-
velop a reasonable user model that captures how a user’s
click history is related to her interest; a user’s interest can
be learned through her click history only if they are corre-
lated. Second, based on this model we need to design an
effective learning method that identifies the user’s interest
by analyzing the user’s click history. Finally, we need to
develop an effective ranking mechanism that considers the
learned interest of the user in generating the search result.

Our work, particularly our ranking mechanism, is largely
based on a recent work by Haveliwala on Topic-Sensitive

PageRank [5]. In this work, instead of computing a sin-

gle global PageRank value for every page, the search engine
computes multiple Topic-Sensitive PageRank values, one for
each topic listed in the Open Directory1. Then during the
query time, the search engine picks the most suitable Topic-
Sensitive PageRank value for the given query and user, hop-
ing that this customized version of PageRank will be more
relevant than the global PageRank. In fact, in a small-scale
user study, Haveliwala has shown that this approach leads
to notable improvements in the search result quality if the
appropriate Topic-Sensitive PageRank value can be selected
by the search engine, but he posed the problem of automatic
learning of user interest as an open research issue. In this
paper, we try to plug in this final missing piece for an au-
tomatic personalized search system and make the following
contributions:

• We provide a formal framework to investigate the prob-

1http://www.dmoz.org



lem of learning a user’s interest based on her past click
history. As part of this framework, we propose a sim-
ple yet reasonable model on how we can succinctly
represent a user’s interest and how the interest affects
her web click behavior.

• Based on the formal user model, we develop a method
to estimate her hidden interest automatically based on
her observable past click behavior. We provide theo-
retical and experimental justification of our estimation
method.

• Finally, we describe a ranking mechanism that con-
siders a user’s hidden interest in ranking pages for a
query based on the work in [5]. We conduct a user sur-
vey to evaluate how much the search quality improves
through this personalization. While preliminary, our
survey result indicates significant improvement in the
search quality — we observe about 25% improvement
over the best existing method — demonstrating the
potential of our approach in personalizing web search.

The rest of this paper is organized as follows. We first pro-
vide an overview of Topic-Sensitive PageRank in Section 2,
on which our work is mainly based. In Section 3 we de-
scribe our models and methods. Experimental results are
presented in Section 4. We finally review related work in
Section 5 and conclude the paper in Section 6.

2. BACKGROUND
In this section we briefly present some basic backgrounds

for our work. We will start from presenting the PageRank
algorithm in Section 2.1, then we will proceed to Topic-
Sensitive PageRank in Section 2.2.

2.1 PageRank
The key idea behind PageRank is that, when a page u

links to a page v, it is probably because the author of page
u thinks that page v is important. Thus, this link adds to
the importance score of page v. How much score should
be added for each link? Intuitively, if a page is itself very
important, then its author’s opinion on the importance of
other pages is more reliable; and if a page links to a lot
of pages, the importance score it confers to each of them
are decreased. This simple intuition leads to the following
formula of computing PageRank: for each page v, let Av

denote the set of pages linking to v, lu denote the number
of out-links on page u, and PR(v) denote the PageRank of
page v, then we have

PR(v) =
X

u∈Av

PR(u)/lu (1)

Another intuitive explanation of PageRank is based on
the random surfer model [6], which essentially models a user
doing a random walk on the web graph. In this model, a
user starts from a random page on the web, and at each
step she randomly chooses an out-link to follow. Then the
probability of the user visiting each page is equivalent to the
PageRank of that page computed using the above formula.

However, in real life, a user does not follow links all the
time in web browsing; she sometimes types URL’s directly
and visits a new page. To reflect this fact, the random surfer
model is modified such that at each step, the user follows one

of the out-links with probability d, while with the remaining
probability 1 − d she gets bored and jumps to a new page.
Under the standard PageRank, the probability of this jump
to a page is uniform across all pages; when a user jumps,
she is likely to jump to any page with equal probability.
Mathematically, this is described as E(i) = 1/n for all i,
where E(i) is the probability to jump to page i when she gets
bored and n is the total number of web pages. We call such a
jump a random jump, and the vector E = [E(1), . . . , E(n)] a
random jump probability vector. Thus we have the following
modified formula2:

PR(v) = d ∗
X

u∈Av

PR(u)/lu + (1 − d) ∗ E(i) (2)

The computed PageRank values are used by search en-
gines during query processing, such that the pages with high
PageRank values are generally placed at the top of search
results.

Note that under the standard PageRank, every page is
assigned a single global score independently of any query.
Therefore, PageRank can be deployed very efficiently for
online query processing because they can be precomputed

offline before any query. However, because all pages are
given a single global rank, this standard PageRank cannot
incorporate the fact that the relative importance of pages
may change depending on a query.

2.2 Topic-Sensitive PageRank
The Topic-Sensitive PageRank scheme (TSPR) proposed

in [5] is an interesting extension of PageRank that can poten-
tially provide different rankings for different queries, while
essentially retaining the efficiency advantage of the standard
PageRank. In the TSPR scheme, multiple scores, instead of
just one, are computed for each page, one for every topic that
we consider. More precisely, to compute TSPR with respect
to topic t, we first define a biased random jump probability

vector with respect to topic t, Et = [Et(1), . . . , Et(n)], as

Et(i) =



1/nt if page i is related to topic t
0 otherwise,

(3)

where nt is the total number of pages related to topic t. The
set of pages that are considered related to topic t (i.e., the
pages whose Et(i) value is non-zero) are referred to as the
bias set of topic t. Then the TSPR score of page v with
respect to t is defined as

TSPRt(v) = d ∗
X

u∈Av

TSPRt(u)/lu + (1 − d) ∗ Et(i). (4)

Note the similarity of Equations 2 and 4. Under the ran-
dom surfer model interpretation, the biased vector Et means
that when a user jumps, she jumps only to the pages related
to topic t. Then TSPRt(v) is equivalent to the probability
of the user’s arriving at v when her random jumps are biased
this way.

Assuming that we consider m topics, m TSPR scores are
computed for each page, which can be done offline. Then
during online query processing, given a query, the search
engine figures out the most appropriate TSPR score and
uses it to rank pages.

In [5], Haveliwala computed TSPR values considering the
first-level topics listed on the Open Directory and showed

2Here we skip the discussion on how we deal with dangling
pages for brevity. See [6] for more details



that TSPR provides notable performance improvement over
the standard PageRank if the search engine can effectively
estimate the topic to which the user-issued query belongs. In
the paper, the author also posed the problem of automatic
identification of user preference as an open research issue,
which can help the search engine pick the best TSPR for a
given query and user.

3. PERSONALIZED SEARCH BASED ON
USER PREFERENCE

We now discuss how we build upon the result of TSPR
to personalize search results. In particular, we describe our
framework on how we can learn a user’s personal preference
automatically based on her past click history and how we can
use the preference during query time to rank search results
for the particular user.

In Section 3.1 we first describe our representation of user
preferences. Then in Section 3.2 we propose our user model
that captures the relationship between users’ preferences
and their click history. In Section 3.3 we proceed to how
we learn user preferences. Finally in Section 3.4 we describe
how to use this preference information in ranking search re-
sults.

3.1 User Preference Representation
Given the billions of pages available on the web and their

diverse subject areas, it is reasonable to assume that an aver-
age web user is interested in a limited subset of web pages.
In addition, we often observe that a user typically has a
small number of topics that she is primarily interested in
and her preference to a page is often affected by her general
interest in the topic of the page. For example, a physicist
who is mainly interested in topics such as science may find
a page on video games not very interesting, even if the page
is considered to be of high quality by a video-game enthu-
siast. Given these observations, we may represent a user’s
preference at the granularity of either topics or individual
web pages as follows:

Definition 1 (Topic Preference Vector) A user’s topic
preference vector is defined as an m-tuple T = [T (1), . . . , T (m)],
in which m is the number of topics in consideration and
T (i) represents the user’s degree of interest in the ith topic
(say, “Computers”). The vector T is normalized such that
Pm

i=1
T (i) = 1. 2

Example 1 Suppose there are only two topics: “Comput-
ers” and “News,” and a user is interested in “Computers”
three times as much as she is interested in “News,” then the
topic preference vector of the user is [0.75, 0.25]. 2

Instead of the above, we may represent a user’s interest
at the level of web pages.

Definition 2 (Page Preference Vector) A user’s page
preference vector is defined as an n-tuple P = [P (1), . . . , P (n)],
in which n is the total number of web pages and P (i) repre-
sents the user’s degree of interest in the ith page. The vector
P is normalized such that

Pn
i=1

P (i) = 1. 2

In principle, the page preference vector may capture a
user’s interest better than the topic preference vector, be-
cause her interest is represented in more detail. However, we
note that our goal is to learn the user’s interest through the

analysis of her past click history. Given the billions of pages
available on the web, a user can click on only a very small
fraction of them (at most hundreds of thousands), making
the task of learning the page preference vector very diffi-
cult; we have to learn the values of a billion-dimension vec-
tor from hundreds of thousands data points, which is bound
to be inaccurate. Due to this practical reason, we use the
topic preference vector as our representation of user interest
in the rest of this paper.

We note that the this choice of preference representation
is valid only if a user’s interest in a page is mainly driven by
the topic of the page. We will try to check the validity of this
assumption later in the experiment section — even though
it is indirect — by measuring the effectiveness of our search
personalization method based on topic preference vectors.

In Table 1, we summarize the symbols that we use through-
out this paper. The meaning of some of the symbols will be
clear as we introduce our user model.

Symbol Meaning

n The total number of web pages
m The number of topics in consideration

T (i) A user’s topic preference on the ith topic

P (i) A user’s page preference on the ith page
V (p) A user’s probability of visiting page p
Et Biased random jump probability vector

with respect to topic t
PR(p) PageRank of page p
TSPRt(p) Topic-Sensitive PageRank of page p on

topic t
PPRT(p) Personalized PageRank of page p for the

user whose topic preference vector is T

Table 1: Symbols used throughout this paper and
their meanings

3.2 User Model
To learn the topic preference vector of a user from her

past click history, we need to understand how the user’s
clicks are related to her preference. In this section, we de-
scribe our user model that captures this relationship. As
a starting point, we first describe the topic-driven random

surfer model.

Definition 3 (Topic-Driven Random Surfer Model)
Consider a user with topic preference vector T. Under the
topic-driven random surfer model, the user browses the web
in a two-step process. First, the user chooses a topic of inter-
est t for the ensuing sequence of random walks with proba-
bility T (t) (i.e., her degree of interest in topic t). Then with
equal probability, she jumps to one of the pages on topic t
(i.e, pages whose Et(p) values are non-zero). Starting from
this page, the user then performs a random walk, such that
at each step, with probability d, she randomly follows an
out-link on the current page; with the remaining probabil-
ity 1− d she gets bored and picks a new topic of interest for
the next sequence of random walks based on T and jumps to
a page on the chosen topic. This process is repeated forever.

2

Example 2 Suppose there are only two topics: “Comput-
ers” and “News,” and a user’s topic preference vector is



[0.7, 0.3]. Under the topic-driven random surfer model, this
means that 70% of the the user’s “random-walk sessions”
(the set of pages that the user visits by following links)
start from computer-related pages and 30% start from news-
related pages. Note the difference of this model from the
standard random surfer model, where the user’s random
walk may start from any page with equal probability. 2

Given this model and the discussion in Section 2.2, we can
see that , TSPRt(p), the Topic-Sensitive PageRank of page
p with regard to topic t, is equivalent to the probability of
a user’s visiting page p when the user is only interested in
topic t (i.e., T (i) is 1 for i = t and 0 otherwise).

In general, we can derive the relationship between a user’s
visit to a page and her topic preference vector T. To help
the derivation, we first define a user’s visit probability vector

Definition 4 (Visit Probability Vector) A user’s visit
probability vector is defined as an n-tuple V = [V (1), . . . , V (n)],
in which n is the total number of pages and V (i) represents
the user’s probability to visit the page i. We assume the
vector V is normalized such that

Pn
i=1

V (i) = 1. 2

Given this definition, it is straightforward to derive the
following relationship between a user’s visit probability vec-
tor V and the user’s topic preference vector T based on the
linearity property of TSPR [5]:

Lemma 1 Consider a user with the topic preference vector

T = [T (1), . . . , T (m)] and the visit probability vector V =
[V (1), . . . , V (n)]. Under the topic-driven random surfer model,

V (p), the probability to visit page p, is given by

V (p) =
m
X

i=1

T (i) ∗ TSPRi(p) (5)

2

Due to space constraints, we provide all detailed proofs in
the extended version of this paper [7].

Note that Equation 5 shows the relationship between a
user’s visits and her topic preference vector if the user fol-
lows the topic-driven random surfer model. In practice, how-
ever, the search engine can only observe the user’s clicks on

its search result, not the general web surfing behavior of
the user. That is, the user clicks that the search engine ob-
serves is not based on the topic-driven random surfer model;
instead the user’s clicks are heavily affected by the rankings
of search results. To address this discrepancy, we now ex-
tend the topic-driven random-surfer model as follows:

Definition 5 (Topic-Driven Searcher Model) Consider
a user with topic preference vector T. Under the topic-
driven searcher model, the user always visits web pages
through a search engine in a two-step process. First, the
user chooses a topic of interest t with probability T (t). Then
the user goes to the search engine and issues a query on the
chosen topic t. The search engine then returns pages ranked
by TSPRt(p), on which the user clicks. 2

To derive the relationship between a user’s visit probabil-
ity vector V and her topic preference vector T under this
new model, we draw upon the result from a recent study by
Cho et al.[8]. In [8], the authors have shown that when a
user’s clicks are affected by search results ranked by PR(p),
the user’s visit probability to page p, V (p), is proportional to

PR(p)9/4, as opposed to PR(p) as predicted by the random-
surfer model. Given this new relationship, it is relatively
straightforward to prove the following:

Theorem 1 Consider a user with the topic preference vec-

tor T and the visit probability vector (V ). Then under the

topic-driven searcher model, V (p) is given by3

V (p) =

m
X

i=1

T (i) ∗ [TSPRi(p)]9/4 (6)

2

Note that Equation 6 is equivalent to Equation 5 except
that the term TSPRi(p) is replaced with [TSPRi(p)]9/4, a
replacement coming from the result in [8].

In the rest of this paper, we will assume the above topic-
driven searcher model as our main user model and use Equa-
tion 6 as the relationship between a user’s visit probability
vector and her topic preference vector.

3.3 Learning Topic Preference Vector
We now turn our attention to how we can learn a user’s

topic preference vector from the user’s past click history on
search results. Roughly, this learning can be done based on
our user model, in particular Equation 6, which describes
the relationship between a user’s visits, her topic preference,
and the Topic-Sensitive PageRank values of the pages. Note
that among the variables in the equation we can measure
V (p) values experimentally by observing the user’s clicks on
search results as we illustrate in the following example:

Example 3 Suppose there exist 10 pages on the web and
through the past searches, the user has visited the first page
twice, the second page once and none of the other pages.
The user’s visit probability vector is then can be estimated
as V = [ 2

3
, 1

3
, 0, . . . , 0] given the click history. 2

Also, the TSPRi(p) values in Equation 6 can be computed
from Equation 4 based on the hyperlink structure of the
web and a reasonable choice of the bias set for each topic.
The only unknown variables in Equation 6 are T (i) values,
which can be derived from other variables in the equation.
Formally, this learning process can be formulated as the fol-
lowing problem:

Problem 1 Given the user visit probability vector V =
[V (1), . . . , V (n)], and m Topic-Sensitive PageRank vectors
TSPRi = [TSPRi(1), . . . , TSPRi(n)] for i = 1, . . . , m, find
the user’s topic preference vector T = [T (1), . . . , T (m)] that
satisfies

V =

m
X

i=1

T (i) · TSPR
9/4

i (7)

Here, we use the notation Ak to denote a vector whose ele-
ments are raised to the kth power from the elements in A.

2

There exist a number of ways to approach this problem. In
particular, regression-based and maximum-likelihood meth-
ods are two of the popular techniques used in this context:

1. Linear regression: Because the topic-driven searcher
model is an approximation of what users do and be-
cause a search engine can observe a relatively small

3Even if the TSPRi(j) values are normalized such that
Pn

j=1
TSPRi(j) = 1, it may be that TSPRi(j)

9/4 values

do not satisfy
Pn

j=1
TSPRi(j)

9/4 = 1. In Equation 5, we

assume that we have already renormalized TSPRi(j) values

such that
Pn

j=1
TSPRi(j)

9/4 = 1 for every i.



number of user clicks, the V vector measured from user
clicks cannot be identical to the one prescribed by the
model. Linear regression is a popular method used in
this scenario. It picks the unknown parameter values
such that the difference between what we observe and
what the model prescribes is minimized. In our con-
text, it determines the T (i) values that minimize the

square-root error
˛

˛

˛
V −

“

Pm
i=1

T (i) · TSPR
9/4

i

”˛

˛

˛

2

. As-

suming that TSPR is an n×m matrix whose (i, j) entry

is TSPRj(i)
9/4, the linear regression method asserts

that this error is minimum when the topic preference
vector is

T =
`

TSPR
t
TSPR

´−1

TSPR
tV. (8)

Here, TSPR
t is the transpose of TSPR.

2. Maximum-likelihood estimator: The core principle be-
hind a maximum-likelihood estimator is that the un-
known parameters of the model should be chosen such
that the observed set of events are the most likely out-
come from the model. To apply this method, we in-
troduce some new notation. We assume that the user
has visited k pages and use pi to denote the ith visited

page. We also define VT(p) as
Pm

i=1
T (i) · TSPR

9/4

i ,
the probability that the user visits page p under the
topic-driven searcher model when her topic preference
vector is T = [T (1), . . . , T (m)]. Assuming that all user
visits are independent, the probability that the user
visits the pages p1, . . . , pk is then

Qk
i=1

VT(pi). Then
the values of the vector T is chosen such that this prob-
ability is maximized. That is, under the maximum-
likelihood estimator,

T = arg max
T

 

k
Y

i=1

VT(pi)

!

(9)

In our experiments, we have applied both methods to the
learning task and find that the maximum-likelihood estima-
tor performs significantly better than the linear regression
method. This is in large part due to, again, the sparsity of
the observed click history. Since the user does not visit the
vast majority of pages, most of the entries in the visit prob-
ability vector are zero. Therefore, even though two users
may visit completely different sets of pages, the difference
between their visit probability vectors is small because the
two vectors have the same zero values for most entries. This
problem turns out to be not very significant for the maxi-
mum likelihood method because it only considers the pages
that the user visited during estimation as we can see from
Equation 9. In our experiment section, therefore, we report
only the results from the maximum-likelihood estimator.

3.4 Rank Search Results Using Topic Prefer-
ence Vectors

In this section we describe how we rank search results
based on the user’s topic preference vector we have learned.
Our approach is based on the framework proposed in [5]:
Given a query q, we identify the most likely topic of the
query q and use the TSPR values corresponding to the iden-
tified topic. More precisely, given q, we estimate PR(T (i)|q),
the probability that q is related to topic i, and compute the

ranking of page p as follows:

m
X

t=1

Pr(T (i)|q) · TSPRi(p) (10)

That is, we compute the sum of TSPR values weighted by
the likelihood that the query is related to each topic. Note
that this ranking degenerates into TSPRt(p) when the topic
of the query q is clearly t (i.e., Pr(T (t)|q) = 1 only for i = t).

In deciding the likely topic of q, we may rely on two po-
tential sources of information: the user’s preference and the
query itself.

Example 4 For simplicity, suppose we consider only two
topics, “Business” and “Computers.” For the query C++

programming, it is clear from the query that this is on “Com-
puters” not “Business.” For another query office, however,
its topic is difficult to judge from the query itself. It is only
when we consider the preference of the user, — say, the user
is an IT specialist who is mostly interested in “Computers”
— that the likely topic of the query becomes clear. 2

We can design a mechanism that considers both sources of
information in identifying the likely topic of a query based
upon the Bayesian framework [9]. According to the Bayes’
theorem, P (T (i)|q) can be rewritten as

Pr(T (i)|q) =
Pr(q, T (i))

Pr(q)

=
Pr(T (i)) ∗ Pr(q|T (i))

Pr(q)

∝ Pr(T (i)) ∗ Pr(q|T (i)) (11)

Here, note that Pr(T (i)) is the probability that the user is
interested in topic i, which is captured in the ith term of the
user’s topic preference vector T = [T (1), . . . , T (m)]. That
is, Pr(T (i)) = T (i). Pr(q|T (i)) is the probability that the
user issues the query q when she is interested in topic i. As
in [5], this probability may be computed by counting the
total number of occurrences of terms in query q in the web
pages listed under the topic i in Open Directory.

Given Equations 10 and 11, we can then compute PPRT(p),
the personalized ranking of page p for query q issued by the
user of topic preference vector T, as follows:

PPRT(p) =
m
X

t=1

T (i) · Pr(q|T (i)) · TSPRi(p) (12)

Note that in the above equation, the term T (i) is the person-
alization factor based on the user’s preference. Pr(q|T (i)) is
the term that identifies the topic based on the query itself.
Later in our experiment section, we will evaluate the effec-
tiveness of these two individual terms by using only one of
them during ranking.

3.5 Evaluation Metrics
How can we evaluate the effectiveness of our proposed

methods? Given that our primary goal is to learn the user’s
topic preference vector from her past click history and use
this vector to personalize search ranking, we may consider
one of the following evaluation metrics:

1. Accuracy of topic preference vector: One natural way
to evaluate our learning method is to directly measure



the difference between the user’s actual topic prefer-
ence vector and the learned vector. For this purpose,
we may use the relative error between the two:

E(Te) =
|Te − T|

|T|
(13)

Here T denotes the user’s actual topic preference vec-
tor and Te denotes our estimation based on the user’s
click history.

2. Accuracy of personalized ranking: Our final goal is to
personalize search results based on the user’s prefer-
ence. Therefore, we may use the accuracy of the final
personalized ranking (as opposed to the accuracy of
the user’s topic preference vector) as our evaluation
metric. We illustrate why this metric may be more
useful using the following example.

Example 5 We consider only two topics and 5 pages.
Suppose that the two topics are closely related, and
their TSPR values are identical. That is, for example,

TSPR1 = TSPR2 = [0.8, 0.1, 0, 0, 0.1].

Now consider two users whose topic preference vec-
tors are T1 = [1, 0] and T2 = [0, 1], respectively. In
this scenario, note that even though the users’ topic
preference vectors are completely different, their visit
probability vectors are identical:

VT1
= 1 · TSPR1 + 0 · TSPR2

= 0 · TSPR1 + 1 · TSPR2 = VT2

Therefore, it is not possible to learn the users’ exact
topic preference vectors from their visit history.

Fortunately in this case, the difference in the weights
of the topic preference vectors do not matter; the per-
sonalized ranking for the two users are always the same

Pr(T (1)|q) · TSPR1 + Pr(T (2)|q) · TSPR2 = TSPR1.

2

The above example illustrates that even though our es-
timated topic preference vector may not be the same
as the user’s actual vector, the final personalized rank-
ing can still be accurate, making our learning method
useful. To evaluate how well we can compute the
user’s personalized ranking, we use the Kendall’s τ
distance [10] between our estimated ranking and the
ideal ranking. That is, let σk be the sorted list of
top-k pages based on the estimated personalized rank-
ing scores. Let σ′

k be the sorted top-k list based on
the the personalized ranking computed from the user’s
true preference vector. Let S be the union of σk and
σ′

k. Then the Kendall τ distance between σk and σ′
k

is computed as

τ(σk, σ′
k) =

|(i, j) : i, j ∈ S, σk(i) < σk(j), σ′
k(i) > σ′

k(j)|

|S| ∗ |S − 1|
(14)

The value of Kendall’s τ distance ranges between 0 and
1, taking 0 when the two ranks are identical. Given
that most users never look beyond the top 20 entries
in search results [1], using a k value between 10 and
100 may be a good choice to compare the difference in
the ranks perceived by the users.

3. Improvement in search quality: The ultimate success of
a personalized ranking scheme can be measure by the
quality of the search result determined by the users.
Given that an effective ranking scheme should place
relevant pages close to the top of the search results,
we may use the average rank of relevant pages in the
search result as a measure of its quality if we know
what pages users deem relevant to each query.

In the next section, we evaluate the effectiveness of our
personalized search framework using all three metrics de-
scribed above.

4. EXPERIMENTS
In this section we discuss various experiments we have

done to evaluate our proposed methods and show the results.
We first describe our experimental setup in Section 4.1.
Then in Section 4.2 we describe a simulation-based experi-
ment to measure the accuracy of our learning method. Fi-
nally in Section 4.3 we present the results from our user
survey that measures the perceived quality of our personal-
ized ranking method.

4.1 Experimental Setup
In order to apply the three evaluation metrics described in

Section 3.5, we need the following three datasets: (1) users’
click history, (2) the set of pages that are deemed relevant
to the queries that they issue, and (3) the Topic-Sensitive
PageRank values for each page.

To collect these data, we have contacted 10 subjects in
the UCLA Computer Science Department and collected 6
months of their search history by recording all the queries
they issued to Google and the search results that they clicked
on. Table 2 shows some high-level statistics on this query
trace.

Statistics Value

# of subjects 10
Collection period 04/2004 – 10/2004
Avg # of queries per subject 255.6
Ave # of clicks per query 0.91

Table 2: Statistics on our dataset

To identify the set of pages that are relevant to queries,
we carried out a human survey. In this survey, we first
picked the most frequent 10 queries in our query trace, and
for each query, each of the 10 subjects were shown 10 ran-
domly selected pages in our repository that match the query.
Then the subjects were asked to select the pages they found
relevant to their own information need for that query. On
average 3.1 (out of 10) search results are considered relevant
to each query by each user in our survey.

Finally, we computed TSPR values from 500 million web
pages collected in a large scale crawl in 2005. That is, based
on the link structure captured in the snapshot, we computed
the original PageRank and the Topic-Sensitive PageRank
values for each of the 16 first-level topic listed in the Open
Directory. The computation of these values was performed
on a workstation equipped with a 2.4GHz Pentium 4 CPU
and 1GB of RAM. The computation of 500 million TSPR
values for each topic roughly took 10 hours to finish on the
workstation.



4.2 Accuracy of Learning Method
In this section we first try to measure the accuracy of

our learning method. Here, we are concerned with both
the accuracy of our method and the size of the click history
necessary for accurate estimation. Even if a user’s preference
can be learned accurately in principle, it may not be possible
in practice if it requires a sample size significantly larger
than what we can actually collect.

The best way of measuring the accuracy of our method
is to estimate the users’ topic preferences from the real-life
data we have collected, and ask the users how accurate our
results are. The problem with this method is that, although
users could tell which are the topics they are most interested
in, it tends to be very difficult for them to assign an accu-
rate weight to each of these topics. For example, if a user
is interested in “Computers” and “News,” is her topic pref-
erence vector [0.5, 0.5] or [0.4, 0.6]? This innate inaccuracy
in users’ topic preference estimations makes it difficult to
investigate the accuracy of our method using real-life data.

Thus, we will use a synthetic dataset generated by simu-
lation based on our topic-driven searcher model:

1. Generation of topic preference vector. In our
implementation, the number of topics the user is in-
terested in is fixed to K as an experimental parameter.
Then we randomly choose K topics and assign random
weights to each selected topic. The weights for other
topics are set to 0. The vector is normalized to sum
up to one.

2. Generation of click history. Once we generate a
user’s topic preference vector, we generate a sequence
of L clicks done by the user using the visit probabil-
ity distribution dictated by our model (Equation 6 in
Section 3.2).

4.2.1 Accuracy of estimated topic preference vector

10
50

100
500

1000

0.0

0.5

1.0

0
2

4
6

8
10

12
14

16

R
el

at
iv

e 
Er

ro
r

Number o
f Topics

 (K
)

Sample Size (L)

Figure 1: Relative errors in estimated weights

In order to measure the accuracy of the estimated topic

preference vector we generate synthetic user click traces as

described above and measure the relative error of our esti-
mated vector compared to the true preference vector (Equa-
tion 13). Figure 1 shows the results from this experiment.
In the graph, the height of a bar corresponds to the average
relative error at the given K and L values.

From the figure, we see that at the same K value, as the
sample size L increases, the relative error of our method
generally decreases. For instance, when K = 4, the relative
error at L = 10 is 0.66, but the error goes down to 0.46
when L = 1000. For most K values, we also observe that
beyond the sample size L = 100, the decreasing trend of the
relative error becomes much less significant. For example,
when K = 4, the relative error at L = 100 is 0.4, but the
error actually gets slightly larger to 0.41 when L = 500. In
the graph, an interesting number to note is when K = 3 and
L = 100, because this is the setting that we expect to see
in practical scenarios.4 At this parameter setting (K = 3,
L = 100) the average relative error from our estimation is
0.3, indicating that we can learn the user’s topic preference
vector with 70% accuracy. The graph also shows that as the
user gets interested in more topics (i.e., as K increases), the
accuracy of our method generally gets worse. This trend is
expected because when K is large the user visits pages on
diverse topics. Therefore, we need to collect a larger number
of overall clicks, to obtain the similar number of clicks on
the pages on a particular topic.
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Figure 2: Comparison of relative errors in estimated
weights on sample size 100

In Figure 2, we try to see whether our estimation is mean-
ingful at all by comparing it against the baseline estima-
tion, which assumes an equal weight for every topic (i.e.,
T (i) = 1

16
for i = 1, . . . , 16). The graph for our method is

based on when L = 100. From the graph, we can see that
when the users are interested in a relatively few number of
topics (1 ≤ K ≤ 6), our estimate can be meaningful. The
relative error is significantly smaller than the baseline esti-
mation, indicating that we do get to learn the user’s general
preference. However, when the user interest is very diverse,

4This statement is based on the fact that we were able to
collect an average of 200 clicks per user in 7 months and
that the analysis of this trace indicates that a typical user
is interested in 3 to 4 topics out of 16.



the graph shows that we need to collect much larger user-
click-history data in order to obtain meaningful estimate for
the user preference.

4.2.2 Accuracy of Personalized PageRank
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Figure 3: Differences in rankings of top 20 pages

We now investigate the accuracy of our personalized rank-

ing. To measure this accuracy, we again generate synthetic
user click data based on our model and estimate the user’s
topic preference vector. We then compute the Kendall’s τ
distance between the ranking computed from the estimated

preference vector and the ranking computed from the true
preference vector. Figure 3 shows the results when the dis-
tance is computed for top 20 pages.5 We can see from the
figure that, in spite of the relatively large relative error re-
ported in the previous section, our method produces pretty
good rankings. For example, when K = 3 and L = 100, the
distance is 0.05, meaning that only 5% of the pairs in our
ranking is reversed compared to the true ranking.

We now compare our personalized ranking against two
other baseline rankings: (1) a ranking based on general
PageRank and (2) a ranking based on Equation 12, but as-
suming that all topic weights are equal (i.e., T (i) = 1

16
for

i = 1, . . . , 16). This comparsion will indicate how much im-

provement we get from our topic preference estimation. In
Figure 4 we compare the Kendall’s τ distance of the three
ranking methods for our synthetic data. From the graph, we
can see that our method consistently produces much smaller
distance than the two baseline rankings, indicating the ef-
fectiveness of our learning method.

4.3 Quality of Personalized Search
We now try to measure how much our personalization

method improves the overall quality of search results based
on our user survey. To measure this improvement we com-
pare the following four ranking mechanisms:

• PageRank: Given a query, we rank the pages that
match the query based on their global PageRank val-
ues.

5We also computed the distance for top-k pages for larger k
values and the results were similar.
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Figure 4: Comparison of differences in rankings of
top 20 pages on sample size 100

• Topic-Sensitive PageRank: We rank pages assuming
that the user is interested in all topics. That is, we
rank pages based on PPRT(p) of Equation 12, but
assuming that T (i) = 1

16
for i = 1, . . . , 16. This repre-

sents a ranking method that does not take the user’s
preference into account.

• Personalized PageRank: We rank pages based on Equa-
tion 12 using the estimated topic preference vector,
but excluding the second term Pr(q|T (i)). That is,
we rank pages by

Pm
i=1

T (i) · TSPRi(p). This repre-
sents a ranking method that uses the user preference,
but not the query in identifying the likely topic of the
query.

• Query-Biased Personalized PageRank: We rank pages
based on Equation 12 without omitting any terms.
This represents a ranking method that uses both the
user preference and the query to identify the likely
topic of the query.

In order to measure the quality of a ranking method, we
use the data collected from the user survey described in
Section 4.1. In the survey, for each of the 10 most com-
mon queries from our query trace, we asked our subjects
to select the pages that they consider relevant to their own
information need among 10 random pages in our repository
that match the query. Considering that the queries chosen
by us might not be the ones the users would issue in real
life (and thus users may not care about the performance of
our method on the queries), we also asked each subject to
give the probability of her issuing each query in real life.
Then for each of our subjects and queries, we compute the
weighted average rank of the selected pages using the fol-
lowing formula under each ranking mechanism:

AvgRank(u, q) =
X

p∈S

Pr(q|u) ∗ R(p) (15)

Here S denotes the set of pages the user u selected for query
q, Pr(q|u) denotes the probability that user u issues query
q, and R(p) denotes the rank of page p by the given ranking
mechanism. Smaller AvgRank values indicate better place-
ments of relevant results, or better result quality.



In Figure 5 we aggregate the results by queries to show
how well our methods perform for different queries. The
horizontal dotted lines in the graph show the average Av-

gRank over all queries. We can see that our personaliza-
tion scheme is very effective and achieves significant per-
formance improvement over traditional methods for most
queries. The average improvements of Personalized PageR-
ank and Query-Biased Personalized PageRank over Topic-
Sensitive PageRank, over all queries, are 32.8% and 24.9%,
respectively.6

We note that, from our experimental results, although
the Query-Biased Personalized PageRank takes more infor-
mation (both the user’s topic preference and the query she
issues) into consideration, it performs worse than Personal-
ized PageRank in most cases. This result is quite surprising,
but the difference is too small to draw a meaningful conclu-
sion, It will be an interesting future work to see whether
the Personalized PageRank indeed performs better than the
Query-Biased Personalized PageRank in general and if it
does, investigate the reason behind it.
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Figure 5: Comparison of weighted average rankings
of selected pages by queries (Lower is better)

In Figure 6 we aggregate the results by participants to
show the overall effectiveness of our methods for each user.
The horizontal dotted lines in the graph show the aver-
age results of all participants. We can see that the two
personalization-based methods outperform the traditional
methods in all cases. For example, the Personalized PageR-
ank method outperforms Topic-Sensitive PageRank by more
than 70% for the 2nd participant, while for the 6th partic-
ipant the improvement is only around 7%. This demon-
strates that the effectiveness of personalization depends on
the user’s search habits. For example, if the user is not likely
to issue ambiguous queries, then Topic-Sensitive PageRank
should be able to capture her search intentions pretty well,
thus decreasing the improvement our methods could achieve.
Nevertheless, our methods still greatly improve over the tra-
ditional ones overall. The average improvements of Person-

6These improvements are statistically significant under the
two-sample t-test at the 0.05 level.

alized PageRank and Query-Biased Personalized PageRank
over Topic-Sensitive PageRank, over all participants, are
24.2% and 15.2%, respectively.
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Figure 6: Comparison of weighted average rankings
of selected pages by participants (Lower is better)

5. RELATED WORK
After the original PageRank paper [11] was published,

there has been considerable research in Personalized PageR-
ank [5, 12, 13, 14, 15]. A large body of this work studies
the scalability and performance issues because computing
Personalized PageRank for every user may not scale to bil-
lions of users. For example, [5, 13, 14] provide a frame-
work to limit the bias vector space during the computa-
tion of PageRanks, so that acceptable performance can be
achieved. Other than the scalability studies, [12] tries to tai-
lor the PageRank vectors based on query terms (but not by
individual users). In [15] Personalized PageRanks are com-
puted based on the user profiles explicitly specified by the
users. Our work is different from this body of work in that
we focus on developing an automatic learning mechanism
for user preferences, so that they can be used to compute
Personalized PageRank.

Researchers have also proposed ways to personalize web
search based on ideas other than PageRank [16, 17, 18]. For
example, [16] extends the well-known HITS algorithm by ar-
tificially increasing the authority and hub scores of the pages
marked “relevant” by the user in previous searches. [17] ex-
plores ways to consider the topic category of a page during
ranking using user-specified topics of interest. [18] does a so-
phisticated analysis on the correlation between users, their
queries and search results clicked to model user preferences,
but due to the complexity of the analysis, we believe this
method is difficult to scale to general search engines.

There also exist much research on learning a user’s pref-
erence from pages she visited [19, 20, 21]. This body of
work, however, mainly relies on content analysis of the vis-
ited pages, differently from our work. In [19], for example,
multiple TF-IDF vectors are generated, each representing
the user’s interests in one area. In [20] pages visited by the
user is categorized by their similarities compared to a set of
pre-categorized pages, and user preferences are represented
by the topic categories of pages in her browsing history. In



[21] the user’s preferences are learned from both pages she
visited and those visited by users similar to her (collabora-
tive filtering). Our work differs from these studies in that
pages are characterized by their Topic-Sensitive PageRank’s,
which are based on the web link structure. It will be an in-
teresting future work to develop an effective mechanism to
combine both the content and the web link structure for
personalized search.

Finally, Google7 has started a beta-testing of a new per-
sonalized search service8, which seems to estimate a searcher’s
interests from her past queries. Unfortunately, the details
on the algorithm is not known at this point.

6. CONCLUSION
In this paper we have proposed a framework to investigate

the problem of personalizing web search based on users’ past
search histories without user efforts. In particular, we first
proposed a user model to formalize users’ interests on web-
pages and correlate them with users’ clicks on search results.
Then, based on this correlation, we described an intuitive
algorithm to actually learn users’ interests. Finally, we pro-
posed two different methods, based on different assumptions
on user behaviors, to rank search results based on the user’s
interests we have learned.

We have conducted both theoretical and real-life experi-
ments to evaluate our approach. In the theoretical experi-
ment, we found that for a reasonably small user search trace
(containing 100 past clicks on results), the user interests es-
timated by our learning algorithm can be used to pretty
accurately predict her view on the importance of webpages,
which is expressed by her Personalized PageRank, showing
that our method is effective and easily applicable to real-life
search engines. In the real-life experiment, we applied our
method to learn the interests of 10 subjects we contacted,
and compared the effectiveness of our method in ranking
future search results for them to traditional PageRank and
Topic-Sensitive PageRank. The results showed that, on av-
erage, our method performed between 25%–33% better than
Topic-Sensitive PageRank, which turned out to be much
better than PageRank.

In the future we plan to expand our framework to take
more user-specific information into consideration. For exam-
ple, users’ browsing behaviors, email information, etc. The
difficulties in doing this include integration of different infor-
mation sources, modeling of the correlation between various
information and the user’s search behaviors, and efficiency
concerns. We also plan to design more sophisticated learning
and ranking algorithms to further improve the performance
of our system.
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