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Abstract

Recently, there has been a dramatic increase in the
use of XML data to deliver information over the Web.
Personal weblogs, news Web sites, and discussion fo-
rums are now publishing RSS feeds for their subscribers
to retrieve new postings. While the subscribers rely on
news feeders to regularly pull articles from the Web sites,
the aggregated effect by all news feeders puts an enor-
mous load on many sites. In this paper, we propose a
blog aggregator approach where a central aggregator
monitors and retrieves new postings from different data
sources and subsequently disseminates them to the sub-
scribers to alleviate such a problem.

We study how the blog aggregator should monitor the
data sources to quickly retrieve new postings using min-
imal resources and to provide its subscribers with fast
news alert. Our studies on a collection of 10K RSS feeds
show that, with proper resource allocation and schedul-
ing, the blog aggregator provides news 50% faster than
the best existing approach and also reduces the load on
the monitored data sources by a significant amount.

1. Introduction
Recently, there has been a dramatic increase in the

use of XML data to deliver information over the Web.
In particular, personal weblogs, news Web sites, and
discussion forums are now delivering up-to-date post-
ings to their subscribers using the RSS protocol [20].
In essence, RSS is apull-based protocol, where individ-
ual subscribers have to regularly contact Web sites to re-
trieve new postings, using programs such asnews feed-
ers.

As the popularity of the RSS feeds and news feed-
ers grows, however, they have started to put an enor-
mous load on many sites, endangering the future of RSS-
based services [23, 24]. That is, since each news feeder
contacts every subscribed Web site constantly – often
more than once every hour – many sites have experi-
enced enormously high loads. In several instances, some
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Figure 1. Framework of an information ag-
gregator.

sites had to shut down their RSS feeds completely due to
the increased traffic that they could not handle [21, 22].

This surge in the traffic may be handled simply by in-
creasing the bandwidth for a small number of sites op-
erated by big organizations. However, for the majority
of sites that are operated by individuals or small organi-
zations, this solution is unrealistic because they do not
have technical expertise or financial resources to man-
age a large-scale Web site. In fact, the growing popular-
ity of personal weblogs (often called blogs) is due to the
fact thatindividualscould have posted many interesting
articles even before traditional media caught on to the
news. These personal sites, by their nature, are not de-
signed to handle a large volume of traffic and often fail
when the traffic exceeds a certain level.

1.1. Blog aggregator

As a potential solution to this problem, we propose
and study anaggregator approachshown in Figure 1,
where a central aggregator collects new postings from
the original RSS feeds and users retrieve new postings
indirectly from the central aggregator. This approach has
a number of advantages over the existing architecture:

1. Offloading traffic from the sites: The underlying
sites are shielded from the direct user traffic and
do not suffer from increased popularity or “Slash-



dot effects” [27]. Only the aggregator has to scale
as more users subscribe. Upgrading a single aggre-
gator will clearly be easier and more manageable
than upgrading hundreds of thousands of sites man-
aged by independent individuals. Having delegated
scalability issues to the aggregator, the individual
sites can focus on generating high-quality content.

2. Collecting important user statistics: It is possible
to collect statistics on how users access and use
the RSS feeds, which can be used to improve the
overall experience of RSS feed users. For example,
the aggregator may monitor the popularity of indi-
vidual blogs and the set of users who subscribe to
them, and use this information to recommend users
with a few “suggestions” for the “hot” RSS feeds
that may be interesting to users.

1.2. Challenges and contributions

While clearly beneficial, one important challenge for
an aggregator is being able to quickly retrieve new post-
ings from the sites to minimize the delay from the publi-
cation of a posting at the site to its appearance at the ag-
gregator; otherwise, users would rather go directly to the
original sites to obtain the most recent postings. In this
paper, we study how we can minimize this delay with-
out incurring excessive overload to the sites.

The problem of delay minimization is similar to
the traditional Web-crawling problem in the literature,
where Web crawlers have to maintain an up-to-date lo-
cal copy of remote Web pages. However, there are
two main differences that distinguish the current prob-
lem from the crawling problem: (1) Our goal is to re-
trieve new postings early while the goal of a Web
crawler is to maintainexisting copies of Web pages
“fresh”. This difference makes the overall optimiza-
tion goal distinct, leading to a significantly different
retrieval policy. (2) The expected retrieval inter-
vals are significantly different between the two systems;
For traditional Web crawlers, it is acceptable to in-
dex a new Web page within, say, a month of its creation,
but for many applications based on the RSS proto-
col (such as personal weblogs or newsfeeds), it is im-
perative to retrieve new postings within hours, if not
minutes, of its publication. As we will see later, this dif-
ference fundamentally changes how we should model
the generation of new postings and provides new oppor-
tunities for improvement.

In this paper, we investigate the potential of our pro-
posed aggregator approach for RSS feeds. In particular,
we make the following contributions in this paper:

• In Section 2, we describe a formal framework to
this problem. In particular, we propose a periodic

inhomogeneous Poisson process to model the gen-
eration of postings at the RSS feeds.

• In Section 3, we investigate the optimal ways to re-
trieve new postings from individual RSS feeds.

• In Section 4, we examine the general characteristics
of the RSS feeds available on the Web using data
collected over three months from 10K RSS feeds.
We also evaluate the effectiveness of our retrieval
policies using the experimental data. Our experi-
ments show that our policy significantly reduces the
retrieval delay compared to the best existing poli-
cies.

2. Framework

The primary goal of this paper is to develop mech-
anisms that allow users to access new postings quickly
from RSS feeds without overloading the Web sites. Po-
tentially, there exist two ways to approach this problem:

1. Extend the RSS protocol: The current RSS protocol
does not provide an efficient mechanism for a sub-
scriber to retrieve only new postings since her last
retrieval. By extending the protocol to make this
possible (e.g.,“Return everything since 2:00PM
May 10th, 2005”), we may significantly reduce re-
dundant downloads.1 Even further, we may adopt
a newpush-basedprotocol, where the sources ac-
tively notify the subscribers of new postings, so that
we can entirely avoid the periodic checking of the
Web sites by subscribers.

2. Build a new layer of service: Using the existing pro-
tocol, we may build a new layer of service that can
alleviate the problem. As we described in the intro-
duction, for example, we may build an RSS-feed
aggregator that collects new postings from Web
sites and lets users access them centrally.

As it is for any changes to a widely adopted standard,
changing the existing RSS protocol is practically very
difficult, especially because under the push-based pro-
tocol, the Web sites have to take the additional respon-
sibility of keeping track of the last visit time of their
subscribers and the items the users are subscribed to. In
the rest of this paper, therefore, we primarily focus on
the aggregator approach. Later in the experiment sec-
tion, however, we will also measure the potential sav-
ings from the described changes of the RSS protocol to
see whether the changes are worth the effort.

1 For the general HTTP protocol, a similar extension has been pro-
posed to help Web caches, but it is not being widely used due to
limited browser supports.



2.1. Architecture and terminology

As shown in Figure 1, we consider a distributed in-
formation system that consists ofn data sources, a sin-
gle aggregatorand a number ofsubscribers. The data
sources constantly generate new pieces of information
referred to as newpostings. The aggregator periodically
collects the most recentk postings from each source.2 A
subscriber, in turn, retrieves the new postings from the
aggregator.

Resource constraintsWe assume that both the aggrega-
tor and the sources have limited computational and net-
work resources for the retrieval of new postings. For ex-
ample, the aggregator may have a dedicated T1 line that
allows the aggregator to contact the sources up to one
million times per day. In this paper, we model the re-
source constraint by assuming that the aggregator can
contact the sources a total ofM times in each period.
(The notion of “period” will become clear when we dis-
cuss the posting generation model.) Note that under this
model, each retrieval is assumed to use the same amount
of resources. It is straightforward to extend our model to
the variable cost case.

Retrieval delayThe primary goal of the aggregator is to
minimize the delay between the appearance of a post-
ing at the source and its retrieval by the aggregator. The
notion of retrieval delay can be formalized as follows.

DEFINITION 1 Consider a data sourceO that generates
postings at timest1, . . . , tk. We also useti to represent
the posting itself generated at timeti unless it causes
confusion. The aggregator retrieves new postings from
O at timesτ1, . . . , τm. The delay associated with the
postingti is defined as

D(ti) = τj − ti

whereτj is the minimum value withti ≤ τj . The total
delay of the postings from sourceO is defined as

D(O) =

k
∑

i=1

D(ti) =

k
∑

i=1

(τj − ti) with ti ∈ [τj−1, τj ].

2

For illustration, we show an example evolution of the
delay in Figure 2(a). (Ignore other subfigures in Fig-
ure 2 for now.) The data source generates five postings
at t1, . . . , t5 (marked by dashed lines). Two retrievals
are scheduled by the aggregator atτ1 and τ2 (marked
by solid lines). The figure shows the delay associated
with the data source over time. Note that after the gen-
eration oft2, the delay increases twice as rapidly as be-

2 k is typically in the range of 10–15

fore. This increase in delay is because two new post-
ings, t1 andt2, are pending at the source until they are
retrieved by the aggregator.
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Figure 2. Illustration of the delay, fresh-
ness, and age metrics

When multiple sources generate new postings, it may
be more important to minimize the delay from one
source than others. For example, if a source has more
subscribers than others, it may be more beneficial to
minimize the delay for this source. This difference in
importance is captured in the following weighted defini-
tion:

DEFINITION 2 We assume each sourceOi is associated
with weightwi. Then the total weighted delay observed
by the aggregator,D(A), is defined as

D(A) =

n
∑

i=1

wi D(Oi) 2

Delay minimization problemGiven the definitions, we
can formalize the problem of delay minimization as fol-
lows. The notationtij is used for thejth posting genera-
tion time atOi andτij for thejth retrieval time fromOi

by the aggregator.

PROBLEM 1 Given the posting generation timestij ’s,
find the retrieval timesτij ’s that minimize the total de-
lay D(A) =

∑n
i=1 wi D(Oi) under the constraint that

the aggregator can schedule a total ofM retrievals. 2

2.2. Posting generation model

Note that in practice, the aggregator does not know
the future posting generation timestij ’s. Therefore, to
solve the delay minimization problem, the aggregator
has tolearn the general posting pattern of each source
based on its past history andguessthe future posting
times from the pattern.

In the context of Web crawlers, researchers have pro-
posed that ahomogeneousPoisson process with a rate
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Figure 3. Posting rate at different resolu-
tion.

λ is a good model to be used in this context [4, 6].
Roughly, a homogeneous Poisson process is a stateless
and time-independent random process where events oc-
cur with the same probability (or rate)λ at every time
point [28]. In our context, we may apply this model by
assuming that a data sourceOi generates a new post-
ing at the same rateλi at every time instance. That is,
λ(t) = λi at anyt for Oi.

Researchers have shown that this model is appropri-
ate especially when the time granularity is longer than
one month [4, 6]. For example, Figure 3(a) shows the to-
tal number of postings appearing in roughly 10,000 RSS
feeds that we monitored (more details of this dataset
is described in our experiment section). The horizontal
axis is the time, and the vertical axis shows the number
of postings appearing in each week of the monitoring pe-
riod. While there are small fluctuations, the total number
of postings is reasonably stable at roughly 180,000 post-
ings per week, which matches with the homogeneous
Poisson assumption. Based on this homogeneous model,
researchers have derived the optimal re-download algo-
rithms for Web crawlers [6, 8].

Unfortunately, when the time granularity is much
shorter than one month, there exists strong evidence that
the homogeneous Poisson model is no longer valid [2,
14]. In Figure 3(b), for example, we show the total num-
ber of postings appearing in the same RSS feeds when
we count the number at a granularity of two hours. From
the figure, it is clear that at this time granularity, the
time-independence property of the homogeneous Pois-
son model does not hold. The posting rate goes through
wide fluctuation depending on the time of the day and
the day of the week. The graph also shows a certain
level of periodicity in the posting rates. During the day,
there are a significantly higher number of postings than
at night. Similarly, there are more activities during the
weekdays than on weekends. Based on this observation,
we propose to use aninhomogeneousPoisson model,

where the posting rateλ changes over time. Depending
on whether similar patterns ofλ(t) values are repeated
over time, this model can be further classified into one
of the following:

1. Periodic inhomogeneous Poisson model: We as-
sume that the sameλ(t) values are repeated over
time with a period ofT . That is,λ(t) = λ(t− nT )
for n = 1, 2, . . .. This model may be a good ap-
proximation when similar rate patterns are repeated
over time, such as the burst of activities during the
day followed by a period of inactivity at night.

2. Non-periodic inhomogeneous Poisson model: This
is the most generic model where no assumption is
made about the periodicity in the changes ofλ(t).
That is, there exists noT that satisfiesλ(t) = λ(t−
nT ).

Given the periodicity that we observe in the RSS
posting pattern, we mainly use the periodic inhomoge-
neous Poisson model in the rest of this paper.

2.3. Comparison with previous crawler re-
search

We briefly compare our delay metric to other met-
rics in the literature used for Web crawlers [4, 7, 6, 5,
8, 16, 19]. For Web-crawler optimization, some com-
monly used metrics arefreshnessandage[4, 7]. Fresh-
nessis a zero-one metric indicating whether a local copy
of a page is same as the one in the original Web sites.
Ageis a monotonic increasing metric indicating the time
elapsed since the first modification that is not reflected in
the local copy. The main difference between these met-
rics and our delay metric is that other metrics are mainly
concerned about changes toexistingWeb pages, while
our delay metric is about the retrieval ofnewpostings.
Assuming that the publication of a new posting corre-
sponds to a change to an existing Web page, Figure 2(a),
(b), and (c) show the time evolution of delay, freshness,
and age metrics, respectively. Note that our delay met-
ric increases more rapidly as new postings are published,
while the age metric increased just linearly as time goes
on. This difference, combined with the fundamental dif-
ference in our posting generation model, allows signifi-
cant improvement as we will see later.

More recent metrics, such as the quality met-
ric in [19], try to model the freshnessperceived by
the usersto improve the effectiveness of search re-
sults. These metrics, however, are not directly applica-
ble to our context because they are specifically opti-
mized for the Web-search context.

2.4. Expected retrieval delay

Since the aggregator does not know the exact times
at which new postings are generated, it can only esti-



mate theexpecteddelay based on the posting generation
model of a source. In general, the expected delay can be
computed as follows under the general inhomogeneous
Poisson model:

LEMMA 1 For a data sourceO with the rateλ(t), the
total expected delay for the postings generated within
[τj−1, τj ] are as follows:

∫ τj

τj−1

λ(t)(τj − t)dt. 2

PROOF During a small time intervaldt at timet, λ(t)dt
postings are generated. Since these postings are re-
trieved at timeτj , their associated delays areτj − t.
Therefore, the total delay of the postings generated be-
tweenτj−1 andτj is

∫ τj

τj−1
λ(t)(τj − t)dt. �

For the simpler homogeneous Poisson model, the
above formula is simplified to the following formula.

COROLLARY 1 When the posting rate remains constant
at λ within the time period[τj−1, τj ], the total expected
delay for postings generated within this period is

λ(τj − τj−1)
2

2
. 2

3. Retrieval policy

We now study how the aggregator should schedule
the M retrieval pointsτij ’s to minimize the total ex-
pected delay. We approach this scheduling problem in
two steps:

• Resource allocation: Given n data sources and a
total of M retrievals per periodT , the aggregator
first decideshow many timesit will contact individ-
ual sourceOi. This decision should be made based
on how quickly new postings appear in each source
and how important each source is.

• Retrieval scheduling: After the aggregator decides
how many times it will contactOi per T , it de-
cides exactlyat what timesit will contact Oi. For
example, if the aggregator has decided to contact
O1 twice a day, it may either schedule the two re-
trieval points at uniform intervals (say, once at mid-
night and once at noon) or it may schedule both re-
trievals during the day when there are likely to be
more new postings.

In Section 3.1, we first study the resource alloca-
tion problem. In Section 3.2, we then investigate the
retrieval-scheduling problem.

3.1. Resource-allocation policy

Our task in this section is to allocate theM retrievals
among the data sources to minimize the total expected
delay. For this task, we use the simple homogeneous
Poisson process model because the resource allocation
is done based on theaverage posting generation rateand
theweight of each source, both of which are adequately
captured by the homogeneous Poisson model. The more
complex inhomogeneous model will be used later when
we consider the retrieval-scheduling problem.

THEOREM 1 Consider data sourcesO1, . . . , On, where
Oi has the posting rateλi and the importance weight
wi. The aggregator performs a total ofM retrievals per
each periodT .

Under this scenario, the weighted total delay of post-
ings,D(A) =

∑n
i=1 wiD(Oi), becomes minimum when

the sourceOi is contacted at a frequency proportional to√
wiλi. That is,mi, the optimal number of retrievals per

each period forOi, is given by

mi = k
√

wiλi (1)

where k is the proportionality constant satisfying
∑n

i=1 k
√

wiλi = M . 2

PROOF We consider the data sourceOi that is retrieved
mi times per day. Under the homogeneous Poisson
model, we can show thatD(Oi), the total delay of post-
ings fromOi, is minimum when the retrievals are sched-
uled at the uniform interval.3 In this case,D(Oi) = λiT

2mi
,

and the total weighted delay,D(A), is

D(A) =

n
∑

i=1

λiwiT

2mi

.

D(A) can be minimized by using the Le’grange multi-
plier method.

∂D(A)

∂mi

= −λiwiT

2m2
i

= −µ.

If we rearrange the above equation, we get

mi =
√

λiwiT/2µ = k
√

λiwi. �

3.2. Retrieval scheduling

We have just discussed how to allocate resources to
data sources based on their weights and average post-
ing rates. Assuming that postings are retrievedm times
from the sourceO, we now discuss exactly at what times
we should schedule them retrievals. Clearly, this deci-
sion should be based on what time of the day the source

3 This proof follows from a special case of the Cauchy’s inequality
stating that sum of squares are always less then square of sums
and equality holds when all numbers are equal.



is expected to generate the largest number of postings, so
we now use the periodic inhomogeneous Poisson model
to capture the daily fluctuation in the posting generation
rate.

We start our discussion with the simple case when
only one retrieval is allocated per period in Section 3.2.1.
We then extend our analysis to more general cases in
Section 3.2.2.

3.2.1. Single retrieval per period Consider a data
sourceO at the periodic posting rateλ(t) = λ(t − nT ).
The postings fromO are retrieved only once in each pe-
riod T . The following theorem shows that the best re-
trieval time is when the instantaneous posting rate
λ(t) equals the average posting rate over the pe-
riod T .

THEOREM 2 A single retrieval is scheduled at timeτ
for a data source with the posting rateλ(t) of period
T . Then, when the total delay from the source is mini-
mized,τ satisfies the following condition:

λ(τ) =
1

T

∫ T

0

λ(t)dt

(

and
dλ(τ)

dτ
< 0

)

. 2

PROOF Without loss of generality, we consider only the
postings generated within a single interval[0, T ]. We use
the notationD(τ) to represent the delay when the re-
trieval is scheduled atτ . The postings generated between
[0, τ ] are retrieved atτ , so their delay is

∫ τ

0
λ(t)(τ −

t)dt. The postings generated between[τ, T ] are retrieved
in the next interval at timeT + τ , so their delay is
∫ T

τ
λ(t)(T + τ − t)dt. Therefore,

D(τ) =

∫ τ

0

λ(t)(τ − t)dt +

∫ T

τ

λ(t)(T + τ − t)dt

= T

∫ T

τ

λ(t)dt +

∫ T

0

λ(t)(τ − t)dt.

D(τ) is minimum when

dD(τ)

dτ
= −T λ(τ) +

∫ T

0

λ(t)dt = 0

and d2D(τ)
dτ2 = −T dλ(τ)

dτ
> 0.

After rearranging the equations, we get

λ(τ) =
1

T

∫ T

0

λ(t)dt

(

and
dλ(τ)

dτ
< 0

)

. �

We illustrate the implication of the theorem using a
simple example.

EXAMPLE 1 Figure 4 shows a data source that goes
through a period of high activity,λ(t) = 1, during
t ∈ [0, 1] and a period of low activity,λ(t) = 0, dur-
ing t ∈ [1, 2]. The same pattern is repeated aftert = 2.
Its postings are retrieved once in each period.
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Figure 4. A data source going through pe-
riods of high activity and low activity

According to our theorem, the retrieval should be
scheduled att = 1 when theλ(t) changes from1 to
0 and takes the average valueλ(t) = 0.5. This result
matches our intuition that the retrieval should be sched-
uled right after a period of high activity. The expected
total delay in this case is12 . Compared to the worst case
when the retrieval is scheduled right before a period of
high activity (i.e.,τ = 0, which makes the delay32 ), we
get a factor of 3 improvement. 2

3.2.2. Multiple retrievals per period Now, we gener-
alize the scenario and consider the case when multiple
retrievals are scheduled within one period.

THEOREM 3 We schedule m retrievals at time
τ1, . . . , τm for a data source with the posting rate
λ(t) and periodicityT . When the total delay is mini-
mized, theτj ’s satisfy the following equation:

λ(τj)(τj+1 − τj) =

∫ τj

τj−1

λ(t)dt, (2)

whereτm+1 = T +τ1 (the first retrieval point in the next
interval) andτ0 = τm −T (the last retrieval point in the
previous interval). 2

PROOF Without loss of generality, we consider the ex-
pected total delay in postings generated betweenτ1 and
T + τ1:

D(O) =

m
∑

i=1

∫ τi+1

τi

λ(t)(τi+1 − t)dt

=

m
∑

i=1

(

τi+1

∫ τi+1

τi

λ(t)dt

)

−
∫ T+τ1

τ1

λ(t)tdt

=

m
∑

i=1

(

τi+1

∫ τi+1

τi

λ(t)dt

)

−
∫ T

0

λ(t)tdt.

ThenD(O) is minimum when∂D
∂τj

for everyτj :

∂D

∂τj

=

∫ τj

τj−1

λ(t)dt + τjλ(τj) − τj+1λ(τj) = 0.



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

time − t

λ(
t)

τ
j−1 

τ
j
 τ

j+1
 

∫τ
j−1

τ
j λ(t)dt 

λ(τ
j
)(τ

j+1
−τ

j
) 

2

Figure 5. The optimal schedule for 6 re-
trievals per period for data source with
posting rate λ(t) = 2 + 2 sin(2πt).

By rearranging the equation, we get

λ(τj)(τj+1 − τj) =

∫ τj

τj−1

λ(t)dt. �

We illustrate the graphical meaning of the theorem
using an example.

EXAMPLE 2 Figure 5 shows a data source with the
posting rateλ(t) = 2+2 sin(2πt). Postings are retrieved
from the sourcem times in one period. We assume that
we have decided up to thejth retrieval point, and need
to determine the(j + 1)th point. Note that the right-
hand side of Equation 2 corresponds to the dark-shaded
area in Figure 5. The left-hand side of the equation cor-
responds to the light-shaded area of Figure 5. The theo-
rem states that the total delay is minimized whenτj+1 is
selected such that the two areas are the same.

The above example suggests two methods for com-
puting the optimal retrieval points.

1. Exhaustive search with pruning: Once the first two
retrieval points are determined, the remaining re-
trieval points are derived automatically from Equa-
tion 2. Therefore, all possible plans are evaluated
by exhaustively trying all choices for the first two
retrieval points (assuming a certain level of dis-
cretization in the time). We can then choose the
plan with the minimum delay.

2. Iterative refinement: Initially, we place the retrieval
points at uniform intervals. We then iteratively ad-
just the retrieval points by comparing the areas be-
low the graph. For example, if the dark area in
Figure 5 is larger than the light area, we moveτ4

slightly to the left to compensate for it. (More pre-
cise formulations on how much we need to shift the

retrieval points are given in the extended version of
this paper [26].)

In our experiments, we find that both methods lead to
reasonable performance in finding the optimal retrieval
points when a time granularity of 30 minutes is used.

4. Experiments
In this section, we evaluate the performance of our

retrieval policies based on real data collected from RSS
feeds.

4.1. Description of dataset

RSS feeds are essentially XML documents published
by Web sites, news agents, or bloggers to ease syndi-
cation of their Web site’s contents to subscribers. Fig-
ure 6 shows a typical RSS feed. It contains differ-
ent postings in the〈item〉 tag and summaries in the
〈description〉 tag. Each posting is associated with a
timestamp〈dc:date〉, stating when it was generated. The
postings are arranged in the reverse chronological or-
der where new postings are prepended in the front and
old postings are pushed downwards and removed. For
the majority of current implementations, an RSS feed
contains the most recent 10 or 15 postings. Consistent
with the architecture mentioned above, new postings are
added to the feed at any time without notifying the sub-
scribers; thus, the subscribers have to poll the RSS feeds
regularly and check for updates. We have started archiv-
ing a list of 12K RSS feeds collected from the Web
since September 2004 by downloading them 4 times a
day. Out of the 12K feeds, 9,634 (about 80%) have at
least one posting within the three-month period between
September 2004 and December 2004. We focus on this
subset of 9,634 RSS feeds in the following experiments.

- <rdf: R DF >

<channel rdf: about="http://slashdot.org/"/>
- <image rdf: about="http://images.slashdot.org/topics/topicslashdot.gif">

<title>Slashdot</title>

- <url>

http://images.slashdot.org/topics/topicslashdot.gif
</url>

<link>http://slashdot.org/</link>

</image>

- <item rdf: about="http://slashdot.org/article.pl?sid=05/06/21/2238256& from=rss">

<title>L egal Music Downloads At 35%, Soon T o Pass Piracy</title>
- <link>

http://slashdot.org/article.pl?sid=05/06/21/2238256& from=rss

</link>

- <description>
bonch writes "E ntertainment Media R esearch released a study stating that 35% of music listeners ar
strategic milestone with the population of legal downloaders close to exceeding that of pirates," said

</description>

<dc: creator>timothy</dc: creator>

<dc: date>2005-06-22T 02:00:00+00:00</dc: date>

<dc: subject>music</dc: subject>

<slash: department>cars-surpass-buggies</slash: department>

<slash: section>mainpage</slash: section>

<slash: hitparade>39,39,27,17,1,0,0</slash: hitparade>

<slash: comments>39</slash: comments>

</item>

Figure 6. A sample RSS feed

In Figure 7 we show the distribution of posting rates
among the 9,634 RSS feeds, with the x-axis being the



number of postings generated within three months and
the y-axis being the number of feeds at the given rate.
Both axes are shown in log scale. Within the 3 months,
3,116 feeds have generated one or more postings per day
on average. The distribution roughly follows a straight
line in the log-log scale plot, which suggests that it fol-
lows a power-law distribution.4
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Figure 7. Distribution of posting rate of
9,634 RSS feeds

4.2. Learning posting rates

In order to implement our resource allocation policy,
the aggregator has to estimate the average posting rate
λi of each source. Intuitively, the posting rate can be es-
timated by observing how many postings are generated
by a source within a particular period of time. We refer
to this period of estimation as theestimation window.

Clearly, there exists a tradeoff in choosing the size of
the estimation window; if the window is very small, the
estimated rate may be inaccurate due to the randomness
in the posting generation, but if the window is very large
and if the posting rate itself changes over time, the esti-
mated rate from the past history may be different from
the current posting rate.

To explore this tradeoff and learn the optimal estima-
tion window length, we run the following experiment:
At the beginning of each day, we use the pastk-day his-
tory data to estimate the posting rate of each source and
decide the optimal number of retrievals per day for each
source. We repeat this process over the entire 3-month
data and measure the average delay at the end of the 3-
month period.

Figure 8 shows the average delay of postings for dif-
ferentk values.5 The graph shows that as the estimation

4 A curve fit of the data indicates the best matching power-law curve
is y = axb, with a ≃ 376 andb ≃ −0.78.
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Figure 8. The effect of estimation window
width.

window gets longer, the average delay decreases. We be-
lieve this improvement is due to the increased accuracy
of the estimated posting rate. Beyond the window size
of 14 days, however, we do not observe any improve-
ment, which suggests that we achieve a reasonably accu-
rate estimation of the rate from the 14-day data. The fact
that delay does not increase after 14-day window sug-
gests that the posting rate of a source does not change
significantly over time.

To further investigate changes in the posting rate, we
plot the following two graphs:

• We calculate the posting rate of each source using
the first 14-day trace and use it as the x-coordinate.
We then calculate the posting rate again based on
the succeeding 14-day trace and use it as the y-
coordinate. Based on the two coordinates, we draw
a x-y scatter plot. If the posting rate remains the
same between the two 14-day intervals, all dots
should be aligned along the liney = x. Figure 9
(a) shows the graph.

• We select the first and the last 14-day traces and
draw a similar x-y scatter plot (Figure 9 (b)). This
graph shows the stability of posting rates during the
3-month period of our experimental data.

In the figures, we use different colors for the dots de-
pending on their proximity to the diagonal line.

• Group A (dark red): the top 50% dots closest to the diag-
onal,

• Group B (light yellow): the top 50%–90% dots closest to
the diagonal, and

• Group C (green): the rest

The two graphs in Figure 9 show that most of the dots
are very close to the liney = x; more than 90% of
the dots are tightly clustered in a narrow band around

5 The graph is obtained when postings are retrieved 4 times perday
per source on average. The results were similar when we use dif-
ferent numbers of retrievals per day.
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Figure 9. Correlation between posting rate
measured at different time.

y = x. This result indicates that the posting rates of
most sources are stable, at least within the 3-month pe-
riod of our data.

4.3. Learning the posting patterns

In order to implement our resource scheduling pol-
icy, the aggregator has to learn the posting pattern of
each source (more precisely, the shape ofλ(t) of each
source). In Section 2.2, we showed that similar posting
patterns are repeated every day as a result of daily pe-
riodicity of people’s activity. Given this, we useT =
1 day as the period of the posting pattern.6

Again, the posting pattern of a source should be
learned based on its past history. To learn the pattern, we
overlap the hourly posting counts everyday fork-week
data of each source and obtain a cumulative hourly-
posting graph similar to the one shown in Figure 10. We
then use this cumulative count graph as theλ(t) of the
source.
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Figure 10. Aggregated posting pattern of
5,566 RSS feeds.

6 We also observe weekly fluctuation of posting rates, but we
mainly focus on the daily pattern in this section.

Similar to the estimation of average posting rate,
there may exist similar tradeoffs in deciding how much
data to overlap; a smallk value may lead to inaccuracy,
while a largek value may not reflect changes in post-
ing patterns. Again, to address this issue, we use differ-
entk values to obtain the cumulative graph, apply our re-
trieval scheduling policy, and measure the average delay
at the end of our experiments. The result of this exper-
iment is shown in Figure 11. The graph shows that the
size ofk does not impact the final delay too much; The
delay does not change significantly fork = 1, 2, . . . , 4.
Given this result and the result from the posting rate es-
timation, we conjecture that past 14-day history data is a
good choice in learning both the posting rate and the pat-
tern of each source.
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Figure 11. Effect of different learning pe-
riod of posting patterns.

4.3.1. Posting pattern clustersFrom our investiga-
tion, we also find that a large number of sources have
very similar posting patterns. To exploit this similarity,
we decide to group the sources into a small number of
clusters of similar posting patterns and find the optimal
retrieval scheduling based on the cluster that a source be-
longs to.

K-means method is used to cluster the posting pat-
terns. First, the first 2-week data are used to construct in-
dividual posting pattern of every feed as we did for Fig-
ure 10. Each feed is then represented by a 24-dimension
vector, where each dimension represents the percentage
of daily postings generated within that particular hour.
The K-means clustering algorithm is applied on this
dataset and cluster centroids are used as the represen-
tative pattern of the cluster. We test on differentK val-
ues and find thatK = 12 is a good choice because most
of the patterns found beyond 12 clusters tend to be sim-
ilar to others.

The most frequently occurring 6 out of 12 pattern are
shown in Figure 12. The horizontal axis shows the time
of the day (in hour) and the vertical axis shows the frac-
tion of postings generated in each hourly period. The re-



sult shows that quite diverse posting patterns exist in our
RSS collection. For example, the locations of the peaks
are quite different among the clusters, sometimes occur-
ring in the morning, sometimes in the afternoon. More-
over, it shows that some feeds show a bursty behavior in
the posting generation within a very limited time win-
dow, like 10AM–12PM and 11PM–1AM.

These 12 posting-pattern clusters are used in our ex-
periments in the next section to determine the optimal
retrieval schedule of each RSS feed.
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Figure 12. Six major posting patterns.

4.4. Effectiveness of retrieval policy

We now study the effectiveness of our proposed re-
trieval policies. To measure the improvement from indi-
vidual retrieval decisions, we compare the performance
of the following 4 retrieval policies:

1. Uniform scheduling: All sources are retrieved the same
number of times and the retrieval points are scheduled at
uniform intervals. The result from this policy can be con-
sidered as the baseline.

2. Retrieval scheduling only: All sources are retrieved the
same number of times, but the retrieval points are opti-
mized based on our scheduling algorithm.

3. Resource allocation only: We retrieve postings different
numbers of times depending on the source, but the re-
trieval points are scheduled evenly.

4. Combined: The sources are retrieved different number of
times. The retrieval points are also optimized using our
scheduling algorithm.

Based on our earlier results, the first 2-week data are
used to learn the posting rates and posting patterns, and
the remaining 76 days are used to simulate the retrievals
and to compute the average delay under different re-
source constraints. The results are shown in Figure 13.
The horizontal axis shows the average number of re-

trievals per day and the vertical axis shows the overall
average delay at the given resource constraint.
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Figure 13. Performance of 4 retrieval poli-
cies under different resource constraints.

This result shows that the retrieval scheduling (2)
alone reduces the delay by12% compared to the uni-
form scheduling (1). The resource allocation (3) alone
reduces the delay by33%. When combined together (4),
we observe about40% reduction in delay.

While the resource allocation and the retrieval
scheduling policies are both effective in reducing the av-
erage delay, we note that the improvements are obtained
through different mechanisms. Under the resource allo-
cation policy, resources are taken away from the sources
of low posting rates (or the sources of low impor-
tance) and allocated to the sources of high posting rates
(or of high importance). Thus, while we decrease theav-
eragedelay, we end upincreasingthe maximumdelay
for the sources of low posting rates under this policy. In
contrast, the retrieval scheduling policy improves the de-
lay simply by selecting the best retrieval time without
reallocating resources, so the maximum delay is not af-
fected by this policy. To illustrate this point, Table 1
shows the average and the maximum delays for the pre-
vious four strategies assuming one retrieval per day per
source on average. We can see that the maximum de-
lay of strategy 2 (retrieval scheduling only) is the same
as that of strategy 1 (uniform), while strategy 3 (re-
source allocation) shows a significant increase in the
maximum delay. Given this result, when it is impor-
tant to keep a tight bound on the maximum delay, we
may decide to employ the retrieval scheduling pol-
icy only.

4.5. Comparison with prior work

In this section, we compare the result from our re-
trieval policy against the policies proposed in the lit-
erature. In particular, we compare against the two op-



strategy 1 2 3 4

average delay (in min) 645 581 433 395
max delay (in min) 1440 1440 9120 10073
standard deviation 392 405 542 560

Table 1. Statistics breakdown of posting
delay using one retrieval per day.

timal crawling policies described in [5]. For the com-
parison, we implement the two policies in [5], measure
the resulting overall average delay, and show the results
in Table 2. In obtaining the delays, we assume one re-
trieval per day per feed. The two rows CGM03(Age)
and CGM03(Freshness) show the delays from the op-
timal age policy and the optimal freshness policy in the
paper, respectively. For ours, we use theCombinedpol-
icy from the previous section.

strategy average delay (in min)

Ours 395
CGM03(Age) 590
CGM03(Freshness) 40,105

Table 2. Comparison with CGM03 policy

From the table, we can see that the optimal freshness
policy shows significantly worse delay than the other
two policies. This high delay is because the freshness
policy decides to ignore the sites with high posting rates,
as is well documented in [5]. The optimal age policy
shows significantly better delay than the freshness pol-
icy, but still shows 50% more delay than ourCombined
policy. The improvement of our policy comes from both
the fact that it can exploit the daily fluctuation of post-
ing rates7 and that it is specifically optimized for the de-
lay metric.

4.6. Savings from protocol changes

We now briefly investigate the potential savings in
bandwidth from a protocol change that allows the re-
trieval of new postings since the user’s last visit. Our
data shows that the average size of a posting is 560
bytes, and each RSS feed returns 12 most recent post-
ings on average. Out of the 12 postings from each feed,
we find that only about 4.3 postings are new after one
day on average. Therefore, if users retrieve new post-
ings once a day, the protocol change can avoid down-
loading 7.7 postings on average, reducing the bandwidth
consumption by7.7/12 = 64%.8 Clearly, the savings

7 The policies in [5] is derived based on the assumption that the
posting rate remains the same over time for each source

will be more significant if users make more retrievals per
day. This estimate shows the clear benefit of this proto-
col change and suggests that this change may be worth-
while to pursue.

5. Related work

There exists a large body of literature on Web-crawler
research [7, 9, 10, 15, 12, 4, 6, 5]. In spirit, the prob-
lem setting of the crawler research is similar to ours,
but the exact models and the overall goals are signif-
icantly different. For example, reference [4, 6, 5] as-
sume the homogeneous Poisson model to describe Web-
page changes (which does not consider the fluctuations
in the change rate as discussed in Section 2.2) and de-
velop strategies to optimize freshness or age of existing
Web pages. In this paper, we propose the periodic inho-
mogeneous Poisson model to capture daily fluctuations
in the generation of new postings and study the prob-
lem of delay optimization, which is more appropriate in
our context.

In recent work [19, 29], more sophisticated goal met-
rics have been proposed to improve the freshnessper-
ceived by users; this is done by carefully optimizing
the crawling strategy based on the query load and user
click-through data. Since these studies are specifically
designed for search engines, however, their goal met-
rics and crawling strategies are not directly applicable
to our context. Also, in these studies, a page is assumed
to change identically after every download; we believe
that a more sophisticated change model, such as our pe-
riodic inhomogeneous Poisson model, can further im-
prove the results of these studies.

Reference [18] proposes thedivergence metric,
which is similar to our delay metric; interestingly, the fi-
nal optimization ends up quite different from ours be-
cause of the fundamental difference in the underlying ar-
chitecture. The reference assumes a source-cooperative
architecture, where data sources actively notify the
clients of any changes, while we assume apull archi-
tecture, wherepassivedata sources are periodically
contacted by clients.

Researchers have also studied publisher-subscriber
systems [1, 3, 11, 17, 25, 30] and proposed strategies for
the efficient dissemination of information in these sys-
tems. This body of work mainly focuses on the efficient
filtering of incoming data stream against a large pool of
existing subscriber profiles; differently from this body
of work, our aggregator is not passively waiting for new
data to come in; instead, the aggregator actively pulls
from different data sources to collect new postings.

8 We assuming that the increased size of the protocol header isneg-
ligible compared to the size of the postings.



Google Alerts [13] provides ways for users to sub-
scribe to a set of news sources and get notified of any
new articles through an email. Unfortunately, the details
of Google’s implementation are closely guarded secret;
we believe our work provides the formal foundation to
the delay minimization problem and investigates impor-
tant issues in this context in the open literature.

6. Conclusion
In this paper we have proposed and investigated the

problems related to an RSS aggregator that retrieves in-
formation from multiple RSS sources automatically. It
off-loads the bandwidth consumed at the RSS sites and
allows users a central access to new information. In par-
ticular, we have developed a new RSS monitoring algo-
rithm that exploits the non-uniformity of the generation
of new postings and is able to collect new data efficiently
using minimal resources. Our results have demonstrated
that the aggregator can provide news alert significantly
faster than the best existing approach under the same
resource constraints. In addition, an empirical analysis
has shown that 2 weeks worth of data is good enough
to learn and predict the characteristics of data genera-
tion in existing RSS feeds. It also shows that incorporat-
ing the if-modified-since mechanism in RSS avoids re-
trieval of redundant postings and significantly reduces
the bandwidth consumption.

The ability to provide timely information to Web
users is of high commercial value to a Web service
provider in both attracting user traffic and mining user
behavior. We believe that providing an aggregated infor-
mation portal is a promising direction to pursue given
the growth of both information and users on the Inter-
net.
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