
Monitoring RSS Feeds based on User Browsing Pattern

Ka Cheung Sia
∗

and Junghoo Cho
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095, USA

{kcsia,cho}@cs.ucla.edu

Koji Hino, Yun Chi, Shenghuo Zhu, and
Belle L. Tseng

NEC Laboratories America
10080 N. Wolfe Rd. SW3-350

Cupertino, CA 95014 USA

{hino,ychi,zsh,belle}@sv.nec-labs.com

Abstract
RSS has been widely used to disseminate information on the Web
over the years. With the help of RSS feed readers, a user may sub-
scribe to the feeds that are published by her favorite blogs, news
channels, or Websites, and access the most recent content from these
information sources. However, when the size of the subscription list
grows over time, it becomes less manageable for the user to catch
up with the most up-to-date information. In this paper, we propose
a Personal Information Managerthat helps a user monitor the pool
of information sources in her subscription list and recommends rele-
vant articles based on her browsing history. In particular, in order for
the manager to provide the most up-to-date content, we propose a re-
trieval scheduling algorithm that allocates limited system resources
in an optimal way based on the user’s previous access pattern. Exper-
iments show that our scheduling algorithm significantly improves the
freshness of content when compared to other scheduling algorithms
which do not take into account a user’s behavior.

1. Introduction
Weblogs (or Blogs) have been growing rapidly in the past several
years. They have become information sources which are as impor-
tant as the traditional mainstream media. Users often want to follow
closely the new postings of their favorite blogs. With the help of RSS
feed readers, users can subscribe to the RSS feeds published by their
favorite blogs, news channels, or Websites and access the latest con-
tent through the reader. However, when the subscription list expands
over time and contains hundreds of different sources, it becomes less
manageable [1] for users to catch up with the latest news from their
subscription pool.

To face this challenge, we have built the prototype of aPersonal
Information Managerthat adds more intelligence to an ordinary RSS
feed reader. The Personal Information Manager, whose high-level
architecture is given in Figure 1, serves an individual user by collect-
ing recent information from the user’s subscription pool that matches
her personal interest and presents the content in a summarized form.
Our main motivation to build such a personal system, as opposed
to a server-based system, is to preserve users’ privacy. Although
a server-based system may improve the relevance and accuracy of
recommendations through collaborative filtering techniques, some
users are skeptical about the privacy policy and are unwilling to re-
veal their interests to a centralized server.
∗This work is done when the author is in affiliation with NEC Labo-
ratories America

In such a Personal Information Manager, there are constraints on
the available system resources, such as limited network resources
and disk storage. Under such constraints, the performance of the
system, such as the scalability of the system and the content cover-
age of the summarization, relies heavily on the effectiveness of the
RSS feeds’ retrieval algorithm. As a result, designing an efficient
scheduling algorithm for theCrawler module becomes a crucial is-
sue. In this paper, we focus on the design of a scheduling algorithm
that allocates the limited network resources efficiently so that the
content can still be provided to the user in a timely fashion.

Our main contributions in this paper are the following:

• We give a high-level description of the Personal Information
Manager that we have implemented, which assists users in
managing their large pool of RSS feed subscriptions built over
time.

• We develop an intelligent scheduling algorithm that optimizes
the retrieval of RSS feeds based on a user’s access pattern in
order to provide timely content.

• We study the user access patterns and source posting patterns
and show some of their general characteristics. We further
demonstrate that by taking the user browsing patterns into
account, our scheduling algorithm significantly improves the
“freshness” of content provided to the user by the Personal
Information Manager.

The rest of the paper is organized as follows. In Section 2, we
describe the overall architecture of the Personal Information Man-
ager. In Section 3, we give a mathematical model for measuring the
performance of a scheduling algorithm. In Section 4, we develop
the optimal retrieval scheduling algorithm that exploits both a user’s
access pattern and source posting patterns. In Section 5, we evaluate
the performance of our algorithm by experimenting with a real data
trace. In Section 6, we discuss related work in the literature and, in
Section 7, we give conclusions.

2. Framework
Figure 1 shows the major components of our Personal Information
Manager prototype. The system is comprised of four major mod-
ules: theWeb Access Recordermodule records every page browsed
by the user; theLearnermodule discovers the user’s interest and her
access pattern; theCrawler module is responsible for downloading
and archiving RSS feeds in the subscription list; theRecommenda-
tion providermodule takes the browsing history and the content re-
trieved from the RSS feeds to generate a succinct summary specific
to the user. More details of the four components are given below.



• Web Access Recorder- This module records and stores the
Webpage access history of the user into a file for further anal-
ysis by other modules. The information recorded includes the
URL of the Webpages browsed by the user, the content of the
Webpages, the time stamp of each access, the referring URL
if it exists, etc.

• Learner- This module applies several existing text-mining al-
gorithms, such as TF-IDF clustering and Latent Dirichlet Al-
location (LDA) [2] on the set of browsed documents, and rep-
resents the user’s interests as bags of words. Besides, it also
maintains the user access pattern and the data posting patterns
of each RSS feed being monitored, which will be explained in
Section 4.3 in detail later.

• Crawler- Based on the user access pattern and the data posting
patterns learned by theLearnermodule, theCrawler module
schedules when to download the RSS feeds in the subscription
pool. It also parses and indexes the downloaded content by
using some open-source tools, such as Lucene [3], and stores
them locally for later access.

• Recommendation Provider- Based on the user interests which
have been learned, this module matches the collected RSS
postings with the user profile (currently, this is done by query-
ing the local index of the downloaded RSS postings with the
bags of words found by theLearner), and retrieves relevant
postings to be displayed.

Fig. 1: Overall architecture of the Personal Information Manager

To seamlessly integrate these modules into the Personal Informa-
tion Manager, we chose to implement and package the modules into
a Firefox browser plugin. In this plugin, all four modules function
in the background while the user browses the Web as usual. This
Firefox browser plugin is implemented primarily in JavaScript and
Java. The front-end uses JavaScript and XUL for browser object
communication. The back-end consists of Java objects that use sev-
eral open source tools including Lucene [3] for indexing browsed
Webpages and crawled RSS feeds, ROME parser [4] for handling of
XML content, and Jetty [5] as an embedded servlet container that
serves recommendations to users.

With the system architecture given, in the rest of this paper, we
will mainly focus on issues related to theCrawlermodule, including
how to model and measure the performance of theCrawlermodule’s
scheduling methods, how to efficiently schedule the retrievals, and
how the user access pattern and source posting patterns affect the
scheduling.

3. Retrieval model
In this section, we propose a mathematical model to formalize the
retrieval scheduling of RSS feeds into a constrained optimization
problem.
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Fig. 2: Illustration of relationship between number of articles
missed, retrieval time and user access time

Consider the scenario where a user has subscribed to a large num-
ber of RSS feeds1 and she uses the Personal Information Manager
to monitor this subscription pool. While the blogs, news channels,
and Websites generate new information and assemble them into their
RSS feeds (referred as data sources hereafter), theCrawler module
(referred as the crawler hereafter) determines when to retrieve post-
ings from these data sources to store them locally, which will be
consumed by the user when she accesses the summary produced by
theRecommendation providermodule afterwards.

This task is similar to, yet inherently different from, the crawl-
ing problem faced by general Web search engines. This is because
the Personal Information Manager runs on an ordinary desktop com-
puter under an environment with very constrained network resources.
Also, the effectiveness of crawling is very dependent on an individ-
ual user’s access behavior; for example, suppose RSS feeds are re-
trieved at 3pm daily, two users may have very different experiences
if one accesses the content right after 3pm and the other right before
3pm. As a consequence, we have to schedule retrievals of the RSS
feeds in a way that is tailored for a specific user. Two of the ques-
tions we have to answer include: How to allocate resources among
the RSS feeds in order to match the user’s specific interest? How
to optimize the crawl schedule based on the user’s access pattern?
In the following, we describe a mathematical model of the crawling
task and we introduce several key concepts that lead us to derive an
optimal crawl schedule.

3.1 Penalty
Figure 2 illustrates a scenario where a data source generates new
postings at timest′is, while the crawler retrieves them at timeτ1, and
the user accesses the local copies (as retrieved by the crawler) at time
u1. Apparently, the user will miss two recently generated postings
(t4 andt5) atu1 since the local copies were retrieved beforet4.

Under this scenario, we may consider severalpenaltymetrics to
evaluate the performance of the crawler. For example, thedelaymet-
ric [6] measures the time elapsed between the generation of a posting
and its retrieval by the crawler; alternatively, we may use amissmet-
ric that considers the number of postings missed by the user when
she looks at the local copies, since the crawling was done before
these postings were generated; finally we may use amiss-delaymet-
ric that measures the difference between the user’s access time and
the article generation time only for the articles that are missed by

1 Although the majority of RSS feed reader users subscribe to less
than one hundred feeds, we expect such subscription lists may
grow over time, similar to the case of social bookmarking, espe-
cially when the users are provided with a more efficient method
to access content from the subscription.



the user. For example, their corresponding values in the scenario of
Figure 2 are given as follows:

• delay: (τ1 − t1) + (τ1 − t2) + (τ1 − t3),

• miss: |{t4, t5}| = 2

• miss-delay: (u1 − t4) + (u1 − t5).

In this paper, we choosemissas our penalty metric because it appears
to represent a user’s experience in a more intuitive sense for this Per-
sonal Information Manager scenario. We use the symbolM(O, U)
to represent this penalty metric — the number of postings missed by
the userU from the data sourceO.

3.2 Resource constraints and problem definition
Typically, the Personal Information Manager cannot make a large
number of retrievals from each data source in order to keep the
penalty zero, particularly when the subscription pool contains hun-
dreds or thousands of RSS feeds; such constraints can be imposed
both by the data sources and the user. This constraint is often ex-
pressed as a limit on the number of retrievals (N ) to be made within
a period of time (e.g. one day). Among theseN number of re-
trievals, more can be allocated to the data sources which generate
more postings or to those in which the user is more interested. This
can be mapped as a well-studied resource allocation problem where
we need to determine how many retrievals should be allocated to
each data source. In this paper, we assume that we have already de-
cided on the number of retrievals to be made from each data source
(using the algorithms in the literature [7, 6]), and focus on the prob-
lem of deciding the exact retrieval time for each source, so that we
can minimize the penalty:

PROBLEM 1 Given the posting timesti′s, user access timesuk′s

and a fixed number of retrievalsN , find the retrieval timesτj′s such
that thepenalty, M(O, U), experienced by the user is minimized.2

Intuitively, if we know when the user accesses the postings, we
can reduce the penalty metric to zero by scheduling a retrieval right
before every access by the user. For example, in Figure 2, we may
scheduleτ1 beforeu1 but aftert5 to make the penalty zero. Unfortu-
nately, when we have to make the retrieval decision, we do not know
when the postings are generated at the source and when the user will
access the local copies. The best that we can do, then, is trying to
“predict” when these events may happen based on the past patterns
of the posting generation and the user accesses and schedule the re-
trievals based on this prediction. In the next section, we describe
how we model the posting generation and the user accesses for this
prediction.

3.3 User access and posting pattern
To investigate whether we can observe a certain pattern in the user’s
access behavior, in Figure 3, we show a particular user’s Web-page
access activities during a 2-week time period. Each bar in the fig-
ure represents the number of Webpages accessed by the user within
the corresponding 2-hour period. From the figure, we can observe
certain periodicity: the user makes significantly more accesses dur-
ing the day than in the night and during the weekdays than on the
weekends. To illustrate this periodic fluctuation more clearly, in Fig-
ure 6 we show the average number of Webpages accessed per hour
by each user within one day when we overlap the access history over
2 weeks. The graphs show fluctuations that seem to correspond to
the user’s work schedule (e.g. lunch and dinner breaks, sleeping
habits, etc.). Such observations suggest that a periodic inhomoge-
neous Poisson process [8] may be a good approximation for such
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Fig. 3: A sample 2-weeks user access pattern.

recurring and fluctuating pattern. Roughly, a periodic inhomoge-
neous Poisson process is a Poisson process with varying rateλ(t),
whereλ is a function of timet. Moreover,λ is assumed to exhibit
regular periodicityT such thatλ(t) = λ(t − nT ) for any integer
n. Given the regularly recurring patterns in the user’s access history,
we believe this model is a good fit to describe user accesses.

For the generation of the postings at the sources, we also ob-
serve similar periodicity and fluctuation (as was reported in the lit-
erature [9, 6]). Therefore, we also use a periodic inhomogeneous
Poisson process to model the generation of the postings.

3.4 Expected penalty
Since our model is probabilistic, we cannot know for sure the exact
time of posting generation and user access. Therefore, to minimize
the penalty, the best that we can do is to estimate theexpected penalty
for each scheduling policy and pick the one that minimizes this ex-
pected value. The following lemma shows how we can compute the
expected penalty under our model:

LEMMA 1 For a data sourceO with posting rateλ(t) and a userU
with access rateu(t), assume we schedule the retrievals at timeτj−1

andτj . Then the expected penalty experienced by the user during the
time period within[τj−1, τj ] is as follows:Z τj

τj−1

u(t)(

Z t

τj−1

λ(x)dx)dt 2

PROOF. During a small time intervaldt at timet, there areu(t)dt

number of user accesses. Each access will miss
R t

τj−1
λ(x)dx num-

ber of posts. Therefore, the total expectedpenaltyexperienced by
the user betweenτj−1 andτj is

R τj

τj−1
u(t)(

R t

τj−1
λ(x)dx)dt.

In the following sections, we useΛ(t) and U(t) to denote the
integrals

R t

0
λ(x)dx and

R t

0
u(x)dx respectively.

4. Retrieval schedule
In the following subsections, we will describe the methods to derive
optimal retrieval schedules based on the definitions and metrics we
introduced in the previous section. We first analyze a simple case,
where we can schedule only one retrieval per each periodT , and
generalize it to the case where we are allowed to schedule multiple
retrievals per period.

4.1 Single retrieval
Consider a data sourceO with the periodic posting rateλ(t) and a
userU with a periodic access rateu(t), where both share the same
periodicityT (e.g.,T may be a day). Assume that the postings from



O can only be retrieved once in each periodT . The following the-
orem suggests that the best retrieval time is when the instantaneous
posting rateλ(t) is proportional to the instantaneous user access rate
u(t) according to a value given byU(T )

Λ(T )
.

THEOREM 1 When a single retrieval is scheduled at timeτ , the ex-
pected penaltyM(O, U) is minimized whenτ satisfies the following
conditions:

u(τ)

λ(τ)
=

U(T )

Λ(T )

„
and

u′(τ)

λ′(τ)
>

U(T )

Λ(T )

«
(1)

2

PROOF. Without loss of generality, we consider only the user ac-
cesses within a single interval[0, T ]. The notationM(τ) represents
the expected number of postings missed by the user when the re-
trieval is scheduled atτ , where0 ≤ τ ≤ T . Between[0, τ ], the
user will miss the postings generated between[τ − T, t]; between
[τ, T ], she will miss the postings generated between[τ, t], wheret is
the exact time she accesses the local copies. Therefore, theexpected
penaltywhen we schedule one retrieval at timeτ is,

M(τ) =

Z τ

0

u(t)(

Z T

τ

λ(x)dx +

Z t

0

λ(x)dx)dt

+

Z T

τ

u(t)(

Z t

τ

λ(x)dx)dt

=

Z T

0

u(t)Λ(t)dt − Λ(τ)U(T ) + Λ(T )U(τ)

M(τ) is minimum when

dM(τ)

dτ
= Λ(T )u(τ) − U(T )λ(τ) = 0

and d2M(τ)

dτ2 > 0. After rearranging the expressions, we get Equa-
tion 1.

We illustrate the implication of this theorem using a simple exam-
ple.

EXAMPLE 1 Figure 4 shows a data source (blue solid line) that un-
dergoes a period of high posting activity betweent = [0, 1] and a
period of low posting activity betweent = [1, 2]. Similarly, the user
(red dashed line) also undergoes a fluctuation in her access pattern
but in a reverse way of the data source. According to the theorem, the
best retrieval should be scheduled att = 1. This solution matches
the intuition that the crawler should retrieve right after a large num-
ber of new postings are generated and before the user accesses the
local copies extensively in order to avoid missing too many postings.

2

4.2 Multiple retrievals
Now, we generalize the scenario and consider the case when multiple
retrievals are to be scheduled within one period.

THEOREM 2 When we schedulem retrievals at timeτ1, . . . , τm for
a data source with posting rateλ(t) based on a user access rateu(t),
where both have periodicityT . The expected penalty is minimized
when allτj′s satisfy the following equation:

u(τi)

λ(τi)
=

R τi+1
τi

u(t)dtR τi

τi−1
λ(t)dt

(2)

whereτm+1 = T + τ1 (the first retrieval point in the next interval)
andτ0 = τm − T (the last retrieval point in the previous interval).
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PROOF. Without loss of generality, we consider the expected penalty
of a user when she accesses the content betweenτ1 andT + τ1:

M(O, U) =

mX
i=1

Z τi+1

τi

u(t)(

Z t

τi

λ(x)dx)dt

=

nX
i=1

ˆ
(

Z τi+1

τi

u(t)Λ(t)dt) − Λ(τi)(U(τi+1) − U(τi))
˜

The necessary condition forM(O, U) to be minimum is whendM(O,U)
dτi

=
0 for everyτi. By rearranging the terms, we get Equation 2.

We illustrate the above theorem graphically using an example.

EXAMPLE 2 Figure 5 shows a data source (blue solid line) with the
posting rateλ(t) = 2 + sin(2πt) and a user access rate (red dashed
line) of u(t) = 2+ cos(2πt). Postings are retrieved from the source
six times in one period. Assume that we have decided up to theith

retrieval point and need to determine the(i + 1)th point. Note that
the upper part of the right-hand side of Equation 2 is equivalent to the
dark-shaded area in Figure 5, while the lower part of the right-hand
side of Eq. 2 is equivalent to the light-shaded area of Figure 5. The
theorem states that the expected penalty is minimized whenτi+1 is
selected such that the two areas are in proportion tou(τi)

λ(τi)
, which is

the ratio of the instantaneous user access rate to the posting rate at
time τi. 2



4.3 Computation of schedule
The above theorem only provides the analytical solutions to the op-
timal conditions. In practice, we may need to discretize the con-
tinuous time domain and schedule retrievals at discrete time points.
One naive solution to find the optimal schedule is to enumerate all
possible retrieval schedules and find the best one with the lowestex-
pected penalty. In this section, we describe how to use the conditions
derived previously to compute the optimal schedules efficiently.

Suppose we have discretized one day period into 1440 slots (as-
suming the resolution of retrieval time is set to be one minute). For
the single retrieval case, one can use the method of bi-section to find
the slot that satisfies Equation 1, which may converge to the solu-
tion faster than searching the slot linearly. For multiple retrievals per
interval case, we illustrate how to utilize the condition to compute
the solution as follows: Suppose we have picked the first-two re-
trieval points; we keep applying Equation 2 iteratively to determine
the successive retrieval points. Once we have determined all retrieval
points using the conditions, we then compute theexpected penalty
of this particular schedule. We repeat this procedure for all possible
choices of the first-two retrieval points and choose the schedule with
the lowestexpected penalty; the pseudo-code for this computation
is illustrated in Algorithm 1. This computation basically applies the
necessary condition in Theorem 2 to prune out unnecessary search
space rather than the method that enumerates all possible schedules
and searches.

To learn the functions,λ(t) andu(t), from the past posting history
and the user access history, we count the number of postings and
the number of user accesses perhour and represent them as a 24-
bin histogram. We then smooth out the 24-bin histogram by linear
piecewise interpolation (or by some other smoothing functions) to
obtain a discretized version ofλ(t) andu(t).

We choose one hour as the bin size for the estimation ofλ(t)
andu(t) because when the bin size is much smaller (say, a minute),
the histogram may contain many spikes, while when the bin size is
much larger (say, 2 or 3 hours), the histogram may not capture the
fluctuation precisely, and both will result in poor prediction accuracy.

Algorithm 1 optimal schedule algorithm
smooth the input histogram with more number of bins.
for all possible position ofτ1

for all possible positions ofτ2

while desired number of retrievals not reached
apply Eq. 2 to determineτj+1

if τj+1 exceed one periodthen
break

end if
end while
if τm−1, τm, τ1, τ2 satisfy Eq. 2then

compute expectedpenaltyof the schedule
else

continue
end if
computeexpected penaltyof the schedule

end for
end for
select the schedule with smallestexpected penalty

5. Experiment
In this section, we show some statistics of the user browsing pat-
terns collected by the Personal Information Manager prototype and
the data posting patterns of the set of RSS feeds we monitored. We
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Fig. 6: Samples of user browsing activity patterns

then illustrate the performance improvement over existing schedul-
ing algorithms based on this real data trace.

5.1 Description of dataset
To obtain the browse history of users, we recruited nine users from
the staff of the NEC Labs and the student of the UCLA CS depart-
ment and ask them to install a trimmed-down version of the plugin
described in Section 2, which records the time, the content, and the
referring URL of the Webpages2 a user has browsed. We collect their
browsing activity for 3 consecutive weeks. During the same period
of time, we monitor and download the postings from a collection
of 1.5K frequently updating RSS feeds in theblogger.com do-
main to be used as the subscription pool and to learn the posting
patterns and evaluate our scheduling algorithm. Although authors
from blogger.com come from around the world and the posting
update time specified in the RSS feeds are expressed in various time-
zone, in both the experiment and graphs shown in this section, they
are normalized to the Pacific Daylight-savings time (PDT).

5.2 User access pattern
In order to acquire the “actual” user access pattern, the Personal In-
formation Manager needs to be fully functional so it can capture the
user access times of the local copies of RSS feeds. Since the proto-
type is still in development when we carry out the experiment, we
assume, instead, a user’s normal Webpage browsing activities to be
her access pattern of local copies of RSS feeds.

Daily fluctuation

Fig 6 shows four samples of the user access patterns obtained from
the volunteers. They all demonstrate the periodicity as described in
Section 3. The daily access activity overlapped over 2 weeks closely
resembles a user’s work schedule. Our algorithm can exploit such
fluctuations to devise tailor-made crawl schedules to provide the user

2 Certain Webpages, such as those start withhttpsin the URL and
those coming from well-know Web-based e-mail services, are not
captured. Users are also given the option to exclude Webpages
from certain domains from being captured due to privacy concern.
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Fig. 7: Samples of link following in user browsing history

with fresh content.

Link following

Other than the daily fluctuation pattern, we also investigate the link
following pattern. For each page visited by the user, its referring
URL, which indicates the previous URL that leads the user to the
current page, is recorded.

Based on this information, we reconstruct the path preceding ev-
ery page visited3. Figure 7 shows the distribution of pages that are
accessed by following different numbers of links from four sample
users. Although individual patterns vary, it indicates a general trend
that the majority of the pages are accessed by following three links or
less; this may be partly explained by the advance of search engines;
users are becoming less likely to spend their effort browsing the Web
by following links. On the other hand, for the Webpages being ac-
cessed by following a greater number of links, this may indicate that
the user spends more effort to locate the information; thus, when we
consider the relevance and importance of a Webpage to the user’s
interest, such pages may need to be weighted more.

Predictability of access pattern

As the crawler optimizes retrieval schedules based on a user’s access
pattern, which is obtained from past history, it is important for the
pattern to be predictable. To investigate this issue, we compare the
correlation between the hourly number of Webpage accesses across
two consecutive days in the 2 weeks browsing activities obtained.
Figure 8 shows the correlation of all the 9 users’ hourly Webpage
access rate 24 hours apart. Suppose a user accesses 10 Webpages
between 3pm to 4pm on day 1, and she accesses 15 Webpages be-
tween 3pm to 4pm on day 2, it will be recorded as(10, 15) in the
graph. The points are sorted according to their proximity to the di-
agonal linex = y, where the closer the points are to the diagonal, the
more predictable the access pattern is. To better visualize the data,
we show the strata of points that are within 50% and 90% proximity
to the diagonal, and it indicates that user’s access pattern is fairly

3 A precise and accurate reconstruction is inherently difficult be-
cause some pages are filtered due to the concern for user privacy.
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Fig. 8: Correlation of user access rate in consecutive days

predictable.

5.3 Posting pattern
For posting pattern, each feed is represented by a 24-bins histogram
which is the hourly posting rate averaged over the first two weeks.
In our investigation, we observe that a large number of data sources
share very similar posting patterns. To exploit this similarity, we de-
cide to group the sources into a smaller number of clusters of similar
posting patterns and compute their optimal retrieval schedules based
on the class pattern, which is represented by the cluster centroid, they
belong to. The effect of clustering can be two-folded: on one hand,
it aligns data sources with less training instances to a more represen-
tative and common pattern instead of using a spiky and inaccurate
pattern obtained from only one observation; also, it reduces the time
spent to compute retrieval schedules for every source. On the other
hand, it may reduce the accuracy of estimated posting patterns; thus
giving a higher penalty.

The K-means method with Euclidean distance is used to cluster
the posting patterns. Figure 9 shows the four major patterns found in
our dataset. The graphs, to a certain extent, show different patterns
of blogging activities: some blogs tend to generate postings around
the clock (e.g. collaboration of several authors), while some blogs
tend to have their posting time confined within a very specific time
period (e.g. professional bloggers that write articles according to
their regular schedule).

5.4 Performance evaluation
In this section, we evaluate the performance of our proposed method
by comparing it with other scheduling algorithms that do not con-
sider user access pattern as follows:

• Uniform - a simple method that schedules retrievals evenly
spaced. For example, with 3 retrievals per day, each are spaced
8 hours apart. The majority of client-side RSS feed readers
employ this policy.

• Data only- a method that optimizes retrieval schedules based
on thedelay [6] metric, which, in fact, is equivalent to our
penaltymetric while assuming the user access rate to be con-
stant.

• User+data- our retrieval scheduling method that is optimized
based on thepenaltymetric by considering both the posting
patterns of data sources and the specific user access pattern.
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Fig. 9: Samples of data posting patterns.

We first compute the posting patterns and the user access pat-
tern based on the data collected in the first two weeks. The post-
ing patterns are first clustered into 20 groups and the class centroids
are used as representatives to compute their optimal schedules. We
then simulate the retrievals using the trace of user access times and
posting times in the third week under different resource constraints
(from 2 to 5 retrievals per RSS feed per day). For every user access,
we compute thepenalty(the number of postings missed in the 1.5k
RSS feeds subscription pool) to evaluate the performance of each
scheduling algorithm. Figure 10 shows the comparison of the three
methods. To make it easier to comprehend the numbers, we scale the
penaltymetric with respect to the performance achieved by theuni-
form schedule and average the percentage reduction ofpenaltyover
9 users. We observe that, in general,user+datareduces 40% of the
number of postings missed as compared touniform; when compared
to data only, it reduces roughly 25% on average.

Another observation from the results is that the number of clusters
used in grouping posting patterns does not affect the performance too
much. As indicated in Figure 10, theuser+dataalgorithm that uses
5 and 20 clusters shows comparable performance. This suggests that
clustering posting patterns can reduce the computation of optimal
schedules while not introducing too much degradation on the user’s
experience. This characteristic can be attributed to the fact that opti-
mal retrieval schedules are more user-access-pattern oriented.

6. Related work
Web crawling is a well-studied research problem. The majority of
them are oriented toward search engines that serve a large popula-
tion of users [7, 10, 11, 12, 13]; thus the optimization objectives
are more focused on the change characteristics of the Webpages or
the collective behavior of search engine users. There are some web
crawling algorithms that take the collective user behavior into ac-
count. In user-centric web crawling [14], Webpages are refreshed by
considering their positions in the result list and the query frequency
of their related keywords made by the users. Focused crawling [15]
concentrates on how to obtain an initial crawl of the portion of the
Web likely to be of interest to a particular community of users. In
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Fig. 10: Comparison of three methods on the penalty metric

the model of [16], an embarrassment based metric is introduced to
determine when to refresh a page by minimizing the likelihood of a
user to access stale or irrelevant content in the search engine result
page.

The idea of a browsing assistant dates back 10 years. When fol-
lowing hyperlinks was the prevalent method of surfing the Web, as in
contrast to the current search engine dominated era [17], Letizia[18]
was a tool that recommended hyperlinks on the Webpage currently
viewed by a user based on analyzing the user browsing history and
pre-fetching the linked content in advance. Since then, many re-
search thrusts [19, 20, 21] have proposed different methods to im-
prove the relevance of recommendations to a user’s browsing inter-
est. The algorithm developed in our paper can be a good complement
to them to further improve the freshness of recommendation items.
Besides, a recent research in experiencing the Semantic Web [22]
has benefited us in both the architectural design and implementation
of the Personal Information Manager.

In terms of improving the user’s browsing experience in the time
perspective, pre-fetching is a technique commonly used to reduce the
wait-time of loading Webpages. Such techniques can be deployed at
different locations on the Web. In particular, when it is deployed on
the client side [23], pre-fetching algorithms predict the links on the
current page that are likely to be accessed by the user in the future
and request them in advance; hence, it reduces the waiting time of the
user when loading pages. In the case of deployment on the server-
side[24, 25], pre-fetching works by analyzing the web access log for
document access patterns; it then pre-fetches subsequent documents
from disk into main memory to reduce the access time when they
are requested by the clients afterwards. Similar techniques can also
be deployed on proxy servers [26] which serve a collection of users
within a subnet.

7. Conclusion
In this paper, we have proposed a Personal Information Manager that
helps users to better manage the enormous amount of information
that exists on the Web. In particular, we have developed a RSS feeds
monitoring algorithm that exploits both the irregularity of data post-
ing patterns and user access pattern to schedule retrievals efficiently
under a network-resource constrained environment. Our results have
demonstrated that the Personal Information Manager can provide the



user with much more updated content when compared to existing ap-
proaches under the same resource constraints.

With the advance of artificial intelligence and easily available con-
tent publishing softwares, the increase in recommendation relevance
and the diversity of content improve the usability of personal infor-
mation assistants. We believe this to be a promising direction of
accessing information from the Web other than the use of search en-
gines in the foreseeable future. Also, existing RSS feed readers can
also benefit from our proposed monitoring policy to deliver more
up-to-date information to users while minimizing the amount of net-
work resources used and imposing less of a burden on the RSS feed
hosting sites.
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