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1 INTRODUCTION
Recent development of various areas of information and communication technologies has contributed
to an explosive growth in the volume of data. These data can be analyzed for insights that lead to better
decisions and strategic business moves. Amazon Inc. shows us an example that uses data insights to
improve business intelligence. The company gained a patent for what it calls anticipatory shipping, a
method to start delivering packages even before customers click “buy.” This method takes previous
orders, product searches, wish lists, shopping-cart contents, returns, and even how long an Internet
user’s cursor hovers over an item. Analyzing such large-scale, rapid-generated, and various types
of data helps Amazon Inc. shorten the delivery time from their hubs to customers, thereby earning great
customer satisfactory.

The data sets used in the above example are so-called big data. This term refers to data sets that so
large or complex that traditional data processing applications are inadequate. Big data usually has three
V characteristics: volume (the quantity of generated and stored data may not be easily handled by con-
ventional databases), velocity (the speed at which the data is generated and processed to meet the de-
mands and challenges that lie in the path of growth and development), and variety (data generated are
from multiple sources and in multiple formats). These characteristics of big data bring not only huge
opportunities but also huge challenges, including analysis, capture, data curation, search, sharing, stor-
age, transfer, visualization, querying, updating, and so forth.

Thanks to advanced development of big data techniques, these techniques include file systems for
big data [e.g., Hadoop distributed file system (HDFS)], noSQL databases (e.g., HBase), data processing
models for big data (e.g., MapReduce), streaming techniques for big data (e.g., Storm), query engines

Big Data Analytics for Sensor-Network Collected Intelligence. http://dx.doi.org/10.1016/B978-0-12-809393-1.00005-2

# 2017 Elsevier Inc. All rights reserved.
99



(e.g., Impala), big data architecture (e.g., lambda architecture), and so forth. More details will be given
in Section 3. Powered by these techniques, including tools and architectures, it is possible for people to
collect, store, and analyze big data from diverse sources efficiently. Therefore, people are willing to
develop/deploy novel methodologies/devices for collecting data. A wireless sensor network (WSN) is
one of the important sources, which can collect data in several kinds of environments easily.

AWSN is composed of small, low-cost, and self-organized sensor nodes. Fig. 1 gives an illustrative
example of a WSN. Sensor nodes are able to sense the readings from the environment they deployed,
and to communicate with each other within their communication rages in an ad-hoc manner. The read-
ings collected by sensor nodes will relay to “sinks” which can send data outside sensor networks and
receive commands from clients and applications. Once the sensor nodes are deployed, sensor nodes
could send the sensing readings from the environments to sinks periodically. These characteristics
make WSNs a promising solution to collect data in variety of fields, even in areas that people cannot
reach easily—for example, in forest areas, battlefields, and volcano areas.

The major challenging issue on the data management inWSNs is energy preservation. Energy pres-
ervation means that every computation should reduce energy consumption as much as possible. The
energy of sensor nodes is easily exhausted since the sensor nodes are powered by batteries. Once the
energy of sensor nodes is exhausted, the whole network is likely to be partitioned into disjoint sub-
networks so that some readings cannot be sent to any sink. Decentralization is one of the promising
ways to achieve energy preservation, which refers to distributing computation tasks into sensor nodes
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FIG. 1

An illustrative example of wireless sensor networks.
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rather than executing them in a centralized way. In a large-scale sensor network, sensor nodes usually
relay messages for the others so that the batteries of sensor nodes are easily drained. Communicating
with nearby sensor nodes could save more energy of sensor nodes. Therefore, many existing works
used this concept to develop their data management approaches.

Decentralization is helpful for energy saving. However, compared to the global approaches, only
local information could be obtained in each sensor node in decentralized approaches. Therefore, the
design of decentralized algorithms would be more sophisticated, the performance of decentralized al-
gorithms would be limited, and the computation of decentralized algorithms would not be so compli-
cated. Thus, designing data management systems on WSNs in a decentralized way is energy efficient
but the complexity of the data management system will be increased significantly. With such con-
straints and the power of big data technologies, centralization returns and becomes an option when
designing the data management system of WSNs. Using big data systems as data management systems
forWSNs is reasonable as the readings inWSNs could be viewed as big data since they satisfy the three
characteristics: volume (a large amount of sensor nodes may be deployed and keep reporting readings
to sinks), velocity (readings are reported in high speed), and variety (heterogeneous sensor nodes may
exist in a sensor network). Obviously, there is a trade-off between centralization and decentralization
approaches. This chapter will give an overview of both approaches to provide some guidelines to
readers when they build a data management system of WSNs.

The rest of this chapter is organized as follows. Section 2 gives an overview of data management on
WSNs, including sensors as a database, query processing mechanisms, and data collection approaches.
Section 3 introduces state-of-the-art big data tools and frameworks, and concepts. Section 4 demon-
strates some successful examples that build high-performance data management systems for WSNs.
Section 5 proposes some future directions for whomever may be involved in the relevant research fields
of this chapter, i.e., exploiting big data techniques on WSNs. Section 6 concludes the chapter.

2 DATA MANAGEMENT ON WSNs
The purpose of data management in sensor networks is to separate the logical view (name, access, op-
eration) from the physical view of the data. Users and applications need not be concerned about the
details of sensor networks, but about the logical structures of queries. From a data management point
of view, the data management system of a sensor network can be seen as a distributed database system,
but it is different from traditional ones. The data management system of a sensor network organizes and
manages perceptible information from the inspected area and answers queries from users or applica-
tions. This chapter discusses the methods and techniques of data management in sensor networks, in-
cluding the difference between data management systems in sensor networks and in traditional
distributed database systems, the architecture of a data management system in a sensor network,
the data model and the query language, the storing and indexing techniques of sensor data, the oper-
ating algorithms, the query processing techniques, and two examples of data management systems in
sensor networks: TinyDB and Cougar.

This section introduces three essential components of a data management system: storage, query
processing, and data collection. Section 2.1 introduces how the readings are stored among sensor nodes.
Section 2.2 gives an overview about query processingmechanisms inWSNs. Section 2.3 describes how
data collection could be achieved.
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2.1 STORAGE
The first step for data management on WSNs is storage. A naı̈ve approach to store the readings from
sensor nodes is to send all the data readings to sinks once a sensor node gets the readings. It is practical
in small-scale sensor networks. However, in large-scale WSNs, the large amount of data are generated
and relayed by sensor nodes so that the network lifetimewill be reduced. The centralized approaches are
not practical. Tomanage such a large amount of data in an energy-efficient way, the decentralized sensor
database approaches are usually used forWSNsas one of themost energy-efficient forms of data storage.

The sensor database model views the whole network as a database where each sensor node is the
basic unit for storage. The sensor database may be used to store sensor data (the obtained data need to be
stored in some way before processing it), to hold the runtime information (e.g., routing tables), and to
maintain a history of performance statistics (for performance tuning or debugging).

The widely storage approaches could be categorized into three classes: local storage, external stor-
age, and data-centric storage. Fig. 2 shows three different storage approaches where the cloud-like
shape denotes the event, the arrows are the way sensor nodes relaying data, and the circles are the place
storing data. Local storage refers to the sensor node which measures the physical phenomenon that
stores the data. Then, some protocol should be defined in order to allow potential consumers of those
data to find and access the nodes where they are stored. The main drawback is the limited memory
space of sensor nodes and the local view of storing data. External storage refers to the sensor nodes
that send back all the readings to sinks, and manage all the data there. The major drawback is mainly
from the concern of energy preservation. Data-centric storage mixes the two approaches above to-
gether, which defines an event-driven function to decide the sensor nodes where the readings should
be sent [1]. That is, relevant data are categorized and named according to their meanings and all data
with the same general name will be stored at the same sensor node. Then, when users query the data
with a particular name, it can be sent directly to the sensor node that stores those named data.

2.2 QUERY PROCESSING
Query processing in WSNs could be done collaboratively by the server-side and sensor-side. In the
server-side, the operation system for sensor networks is executed in the base station, which is respon-
sible for parsing queries, injecting queries into the network, and collecting results as they stream out of

FIG. 2

Data storage approaches. (A) Local storage, (B) external storage, and (C) data-centric storage.
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the network. Users could submit their queries at the base station. In the sensor-side, the operation sys-
tem is executed on the sensor nodes, which is responsible for receiving queries, processing queries,
communicating, sensing, and sampling.

To provide a user-friendly interface to execute queries, the operation systems for sensor networks
usually supports structured query language (SQL)-like query languages. Such languages could describe
how users would like data from sensor nodes to be collected, transformed, and aggregated. Note that the
query languages usually differ from most significantly from traditional SQL in that its queries are con-
tinuous and periodic. The following example gives a declarative query to obtain the sum of light read-
ings from a set of sensors (S1, S2, S3, S4, and S5) every 2 s (i.e., the sampling period is 2 s).

SELECT SUM(light)
FROM S1, S2, S3, S4, S5
EPOCH DURATION PERIOD 2 s

Upon receiving these queries, the sink injects them into the WSN. Routing trees are the most common
method of propagating queries and collecting query results from sensor networks, and many routing
protocols in various sensor operating systems adopt this approach: the DHV protocol in TinyOS [2],
ContikiRPL protocol in Contiki [3], and LiteOS [4]. A routing tree can be viewed as a query tree where
the nodes are sensor nodes that participate in the query processing and the edges between nodes rep-
resent the routing paths determined by existing routing protocols. Building energy-efficient routing
trees with respect to queries, i.e., building routing trees that can minimize the total number of messages
of relaying data from sensor nodes to sinks, is an important issue since data transmission are the most
costly operation in WSNs.

One of the most popular solutions is to aggregate many messages into one message on their way to
sinks. This solution works for some widely used queries, such as MAX, MIN, or SUM,1 since they can
be evaluated inside sensor networks. Fig. 3 shows an illustrative example that the MAX value is going

FIG. 3

Executing an aggregation operation MAX.

1Readers should be aware of that this technique cannot be used in all cases. For some complicated operations, it takes more
sophisticated skills to make it work.
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to be extracted from this network. The rectangle node denotes the sink in the network. Sensor nodes are
in the circle and the number associated with the circle is the reading of this sensor node. The sensor
node and the value that a sensor node passes to are represented by the arrowed line and the number
associated with the line, respectively. For example, the reading of A is 2 so that A passes 2 to G. G
receives the results 2 and 6 from A and H, respectively, and gets its reading 7. In this case, only 7
has to be passed to the next sensor node since the maximum of 2, 6, and 7 is 7. Therefore, G passes
7 to the next node J. This shows the example of using aggregation techniques on MAX operations.
Aggregating MAX operations could reduce the total number of messages needed to 10, instead of
17 without aggregation.

In-network aggregate query processing, in which sensor nodes use aggregate operators to reduce
the number of messages, thereby conserves energy [5,6]. Similar to the routing tree, a multicast tree is
proposed to minimize the transmission cost from a given source to a set of receivers [7–9]. Generally,
the solution of finding multicast trees is based on finding Steiner trees, shortest path tree, and so on.
Most studies of multicast trees concentrate on how to construct a multicast tree with the minimum
communication cost or minimum data-overhead. The authors in Ref. [10] proposed an approach to
share the intermediate results among multiple query trees. When multiple aggregate queries are
submitted to WSNs, it is possible to generate the intermediate results of these queries. Sharing these
intermediate results of queries can further reduce the number of messages involved for these queries.
Fig. 4 gives an illustrative example. There are two query trees where Q1 and Q2 are represented as a
solid and dashed line, respectively. The grey nodes are data source. Here, the aggregate operation
SUM is executed. The number associated with a sensor is the intermediate result at that sensor.
Fig. 4A does not share the intermediate results so that the total number of messages for Q1 and
Q2 are 5 and 4, respectively, thereby the total number of messages is 9. Fig. 4B shows an example
that the intermediate result of S4 can be shared. Therefore, sensor node S7 of Q2 could directly obtain
the intermediate result of S4 without accessing readings at S2 and S3. The total number of messages
in Fig. 4B can be derived as 7. Compared to the number of messages incurred in Fig. 4A (i.e., 9),

FIG. 4

Aggregation technique: sharing routing trees. (A) Without sharing. (B) With sharing.
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the reduced number of messages is 2 (i.e., 9!7¼2). Given a set of query trees, it is possible to
investigate further how to share intermediate results among queries. In the example in Fig. 4B,
Q1 is a backbone and Q2 is a non-backbone. This figure shows that the backbone is performed
as usual and non-backbones must adjust their query trees to access the intermediate results of
backbones. Clearly, sharing intermediate results among query trees reduces the number of messages
involved in multiple queries.

2.3 DATA COLLECTION
Data collection is a fundamental work in WSNs, which could be viewed as a special query to ask sen-
sors to send the information sensed in monitored areas to the sink. The naı̈ve approach for data col-
lection is asking all the sensor nodes reporting the readings to the sink in a given period. Once the
number of sensor nodes are huge, this approach may make sensor nodes drain out their batteries easily.
To develop energy-saving strategies, some errors from readings collected are usually allowed, since the
sensor nodes themselves may have some errors in their measurements. In general, approximate data
collection could be roughly realized by probability-based approaches and clustering-based approaches
by exploiting the spatiotemporal locality nature of sensor readings.

Probability-based approaches are used to realize approximate data collection with building prob-
abilistic models of sensing readings collected fromWSNs [11,12]. The authors in Ref. [12] explored a
model-driven architecture, and a centralized probabilistic model was used to estimate the readings of
the sensor nodes. Furthermore, the authors in Ref. [11] employed spatial correlation for approximate
data collection, where a replicated dynamic probabilistic model is built to predict sensor readings. If the
readings are predicted accurately, sensor nodes will not send their readings to the sink, thereby reducing
the communication cost. In these works, probabilistic models need to be built and carefully maintained.
It is not easy to build appropriate probability models that capture sensed readings fully, because the
reading distribution may vary.

Clustering-based approaches are to find some representative nodes which represent a group of
sensors so that only representative nodes need to report their readings to the sink. The authors in
Ref. [13] derived an extension of a declarative query, termed a snapshot query, for WSNs. Snapshot
queries can be answered via a data-driven approach using a linear regression model to predict read-
ings of 1-hop neighbors. The authors in Ref. [14] formulated data gathering into a connected
correlation-dominating set problem to select representative nodes. These representative nodes
should form a connected subgraph in order to relay sensed data. Thus, the number of selected nodes
should be sufficiently large to form a connected correlation-dominating set. The authors in Ref. [15]
proposed a centralized algorithm, named EEDC, which partitions sensor nodes based on spatial cor-
relation into disjointed cliques such that sensor nodes in the same clique have similar readings. Fur-
thermore, a round-robin schedule is employed to share the workload of the data collection in each
clique. The authors in Ref. [16] proposed a more sophisticated approach to reduce the number of
representative nodes based on the fact that one sensor node may represent sensor nodes at a farther
distance, rather than only one-hop. Moreover, extending network lifetime should also take remaining
energy of sensor nodes into account. According to the concept above, the authors in Ref. [16] mod-
eled selecting representative nodes into a set-cover problem, developed both centralized and distrib-
uted algorithms, and proposed the corresponding maintenance mechanisms to dynamically select
new representative nodes.
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3 BIG DATA TOOLS
In 1969, Edgar F. Codd proposed the famous relational model to provide a declarative method for spec-
ifying data and queries. Since then, IBM started to build System R—a prototype of managing data and
allowed users to send a query to retrieve desired information using a standardized query language
“SQL.” The database management system (DBMS) became a standard of data storage and processing
until the 2000s.

Along with the introduction of personal computers and the invention of the Internet, the volume of
data are growing so rapidly such that traditional solutions like DBMS are incompetent to satisfy busi-
ness needs. The term “big data” was then introduced and corresponding ecosystems of big data are
developed, contending as well as collaborating with each other to become the new standard.

Most big data systems can be viewed as workflows: an application is represented by a directed graph
that chains one job after another. Each job consumes an input data set and output data set. Most of the
time, both input andoutput data sets are immutable. For example, in theHadoopdistributed system, aswe
shall discuss in Section 3.2.1, jobs are chained by directory names and data are stored to disk.

Despite the fact that expensive I/O operations are expected in such design, the workflow notion is
very popular because it has many advantages. (1) Many clients can consume one dataset without af-
fecting each other. (2) Jobs are loosely coupled so that they can be developed in different language and
are set to different schedules/priorities. (3) Failure recovery is straightforward—each transition output
acts as checking points. (4) Finally, the flow of data processing are easily traceable.

This section will discuss some popular technologies that were developed for the age of big data. We
shall start with the data storage, followed by batch data processing, streaming data processing, and end
with a discussion on popular architecture design.

3.1 FILE SYSTEM
The foundation of every big data architecture is to find an efficient and reliable way to store a large
volume of data for later processing. The two main strategies of dealing with large data are partitioning
and replicating: partitioning means cutting sizable data into pieces so they can be stored in different
machines; replication means duplicating the data so that a system can achieve fault recovery and aug-
ment the throughput. We shall also discuss the idea of caching, which speeds up the data processing
through reducing the expensive I/O operations and data transferring across networks.

Apache Hadoop, an open source big data framework, was initiated in 2006, aiming to be a frame-
work for the analysis and transformation for very large data sets. Hadoop consists of seven components
where the most obvious ones are a processing component based on the MapReduce paradigm (see
Section 3.2.1), and a distributed file system to store data.

Its corresponding storage system, Hadoop distributed file system (HDFS) became a separate project
in 2009. HDFS contain two types of nodes: NameNode and DataNode. NameNode record attributes for
files and directories like permissions, modification, namespace, and disk quotas, and content are split
into large blocks, say 128 MB, into DataNode. Naturally, a client talks to the NameNode to look up its
corresponding DataNode locations. Similar to Google file systems (GFS), to achieve fault tolerance,
each block has its replica stored in other DataNodes.

Although HDFS and GFS share a lot of commonalities, one of the key difference between GFS and
HDFS is the notion of a lease. In HDFS, when a client is permitted to write to the file, no other client can

106 CHAPTER 5 BIG DATA MANAGEMENT ON WIRELESS SENSOR NETWORKS



do so. The writing client needs to renew a lease periodically by notifying the NameNode. This design (a
lease) allows Hadoop to schedule tasks easily.

The secondgeneration ofHadoopwas introduced in late 2012.Oneof its newkey featureswasYARN
(Yet Another Resource Negotiator), a cluster management technology. The fundamental idea is to sep-
arate resource management and job scheduling/monitoring.With the help of YARN, Hadoop can easily
maintain a multi-tenant environment, with better security controls and better availability.

3.2 BATCH PROCESSING
3.2.1 MapReduce in Hadoop
MapReduce is a programming model for processing and generating large data sets [17]. It contains two
main processes: (1) map(k, v) -><k0, v0> and (2) reduce(k0,<v0>*) -><k0, v0>. The map takes input as
key/value pair and produces another intermediate key/value pair. On the other hand, MapReduce is
used to aggregate/summarize data—for example, to count the number of words appearing in a docu-
ment. The map operation breaks content into words:

map(String key, String value):

// key: document identifier

// value: full text in the document

for each word w in value:

Emit Intermediate(w, “1”);

A reduce operation adds up counts for each word w:

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

A hidden step in between map and reduce is a shuffle step—redistributing/grouping<k0, v0>* by
every word w such that the reduce operation above then sums up the total and emits.

MapReduce programs are not guaranteed to be fast or a panacea for every problem. Authors in Ref.
[18] concluded that relational databases still have advantages for several scenarios. However, with the
release of Apache Hadoop project, one of the most popular frameworks to support the MapReduce
paradigm, MapReduce has been extensively adapted to deal with the big data challenge.

3.2.2 RDD in Spark
Probably one of the most promising breakthroughs on data processing would be the project Apache
Spark. It was initiated by Matei Zaharia at UC Berkeley’s AMPLab in 2009, and later became an open
source project in 2010.

One of the main shortcomings of MapReduce is that its data flow overlooks reusability. For most
data-centric tasks, to complete a task one must perform many linear data flow: reading data from disk,
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shredding data into pieces, distributing them among network to conduct a map function to process data,
summarizing result in the reduce step, and eventually storing results on a disk. Reading from and then
writing to disk are expensive operations that should be avoided when possible, they are even more
costly if we have to distribute data into machines across a network.

A new data structure, resilient distributed dataset (RDD), was introduced to greatly “speed up” the
process through encouraging data caching and operations grouping. An RDD is a read-only distributed
data collection that can be rebuilt if needed. According to research in Ref. [19], Spark can perform 10
times faster than the classical map-reduce system because of the usage of RDDs.

Under the hood, operations are categorized into two types: transformations and actions. Transfor-
mations refer to operations that can be further optimized by grouping together. Operations like map,
filter, sample, union, intersection, groupBy, etc. fall into this category. For example, assuming a long
list of integers are provided, our goal is to divide each number by two, and next to report its square. Two
operations are in essence mergeable. A similar concept can be extended to merge operations that re-
quire no global knowledge—operations that can be completed in one machine without the need of re-
shredding and re-distributing. On the other hand, some operations, such as finding the top N integers,
require a global sorting and thus later operations cannot proceed unless the current operation has been
summarized. Operations like reduce, collect, count, first, take, etc. fall into this category.

In Feb. 2014, Spark became a top-level Apache project. In 2015, Spark project has more than 1000
contributors and is now one of the most active open-source projects. Many libraries have been devel-
oped on top of Spark, including:

• Spark SQL: allow SQL queries be written against data;
• Spark Streaming: allow user to write streaming jobs the same way you write batch jobs;
• MLlib: implementation of many machine learning algorithms, such as classification and

clustering; and
• GraphX: implementation of many graph algorithms, including PageRank, SVD++, etc.

3.3 STREAMING DATA PROCESSING
The classic big data technology, such as Hadoop MapReduce, achieves high throughput of data pro-
cessing at a cost of having high latency. When data are batch processed, making data available for
(near) real-time analysis becomes a challenge. Recalling the steps of MapReduce, shuffling will only
start when all map tasks have completed. The wait for shuffling, the scheduling, and the data transfer-
ring across nodes all commit to the high latency.

Certain attempts allow the system to reduce its latency. In this section, we are discussing the ad-
vances toward real-time analysis, a.k.a. streaming processing. Several real-time/streaming processing
systems for big data have been proposed in recent years [20]. The most famous projects include Storm
(Twitter), Spark-streaming (Databricks), and Samza (LinkedIn).

3.3.1 Continuous operator model
One of the pioneers of streaming processing is the project Storm. Its initial release was on Sep. 17,
2011, and it became a top-level Apache open-source project in 2014. Storm, MapReduce Online
[21], and many streaming databases are often considered to be based on a continuous operator model
[22]. In the continuous operator model, long-lived, stateful operators process each record and contin-
uously update their internal states, and then send new records out.
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Naturally, some operators might malfunction, and to achieve scalability, two common strategies are
often used: (1) to have replication—two copies of each node are used for processing the same records,
and (2) to use upstream backup—rebuild the failed node’s state by sending data to the corresponding
operator again. The former approach costs two times the hardware, and requires some synchronization
protocols like Flux to coordinate; the latter one requires the system to wait when rebuilding the failed
node’s state through re-running [23].

3.3.2 Discretized stream model
Another stream processingmodel, discretized streams (D-Streams), was introduced in Spark-streaming.
The term “D-Streams” comes from the notion of having a never-ending sequence ofRDDs.According to
the report from Ref. [24], Spark-streaming is at least two times faster than Storm at their study.

Simply put, D-Streams treats streaming as a series of deterministic batch operations, for example,
map, reduce, and groupBy, of fixed duration like 1 s or 100 ms. Computations are considered as a set of
short, stateless, deterministic tasks, and intermediate states are stored as RDDs (see Section 4.1.3).
Since the input data has been chopped into finer granularity, with the help of RDDs, which try to keep
data in memory, a sub-second end-to-end latency is attainable.

D-Stream models are stateless and thus recovery can be achieved by parallel recovery—when a
node fails, other nodes in the same cluster can work in parallel to recompute the missing RDD in that
no state information is stored in the failing node. The system may also periodically create state RDDs,
say, by replicating every 10th RDD, as checkpoints to speed up the recovery; however, since the lost
partitions can be recomputed in any other nodes in parallel, its recovery is often fast. On the contrary, an
upstream backup is slow because it depends on a single idle machine to perform the recovery.

4 PUT IT TOGETHER: BIG DATA MANAGEMENT ARCHITECTURE
Until now we have focused on the functions, libraries, and tools that are used for storing and processing
data on both WSNs and big data systems. This section will focus on architecture: how to combine
pieces into a solution that satisfy user needs.

To achieve the aforementioned properties, lambda architecture was proposed in 2013 [25]. One of
the authors in Ref. [25], Mr. Marz, is the creator of the Apache Storm project, and during his time work-
ing on Twitter, he developed a concept to build Big Data system as a series of layers, consisting of a
batch layer, a serving layer, and a speed layer, as shown in Fig. 5.

4.1 BATCH LAYER
Imagine that a user needs to send a query to be answered by the system. One may consider the operation
as an equation:

query = function (all data)

When the size of data are big, to speed up the process, an obvious way is to have some precomputed
intermediate stages (views). That is,

batch view = function_1 (all data)

query = function_2 (batch view)
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The batch layer regularly precompute raw data and store output into an immutable, constantly mas-
ter data set. Batch computations are often simple and straightforward, i.e., acting as a single-thread
program, and parallelism comes naturally by consuming only partial input data once at a time—scaling
to however many nodes you have available. Eventually, the batch layer produced batch views and these
views are then used by the serving layer. In practice, both Hadoop MapReduce and Apache Spark are
ideal frameworks to serve as the batch layer.

4.2 SERVING LAYER
The goal of serving layer is to have a framework/application that answers user queries-based views.
Since it is usually take a few hours for raw data to be computed, serving queries based on batch views
generated from batch layer will be out of data by a few hours. The latency issue can be addressed later
by incorporating real-time views generated from speed layer. Cloudera Impala, Elephant DB, and
Apache HBase are popular choices for batch-layer output.

4.3 SPEED LAYER
The speed layer aims to reduce the latency by allow arbitrary functions to be computed on the fly based
on the incremental data. Instead of accessing the raw data, speed layer updates the real-time views im-
mediately when it receives new data. In practice, stream-processing technologies are often used in this
layer, such as Apache Storm, SQLstream, and Apache Spark-streaming.

Every time a batch layer operation is complete, we should discard corresponding pieces in real-time
view because they are no longer needed. We can summarize the lambda architecture into the following
three formula:

batch view = function_1 (all data)

real-time view = function_2(real-time view, new data)

// incremental update

query = function_3 (real-time view, batch view)

All data
(HDFS/GFS)

New data
stream

Merged
view

Real-time data

Increment
views

Process
stream

[Precompute]
(MapReduce/Spark)

Partial

Batch

Real

Partial Partial

FIG. 5

Lambda architecture.
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Note that speed layer require random writes, and thus it is often more vulnerable and complicated,
in terms of implementation and operation. If anything goes wrong, one may simply discard the
real-time view and in a few hours, the batch layer will help to recover the system into normal state.
In practice, not every algorithm can be computed incrementally, and an approximation algorithm is
then introduced to get a close answer. For example, HyperLogLog set can be used to compute unique
counts [26].

5 BIG DATA MANAGEMENT ON WSNs
5.1 IN-NETWORK AGGREGATION TECHNIQUES AND DATA INTEGRATION
COMPONENTS
In-network aggregation is an important concept in both big data management and WSNs. In WSNs, as
discussed in Section 2.2, many in-network aggregation approaches are well developed. The main goal
is to save more energy for WSNs. The similar functionality exists in the big data systems: data inte-
gration components, such as Flume and Kafka, Flume and Kafka are designed to manage data flow, to
avoid data explosion, and to unify the data representation. Data integration components usually play a
key role in constructing a large-scale system since the incoming data may vary from sources and they
may feed in the different destinations. Such systems usually provide data-driven decision and user-
defined functions to manipulate data. Therefore, by combining two concepts, it is possible to integrate
in-network aggregation techniques in WSNs and data integration components in big data systems.

Authors in Ref. [27] classified the data integration into three categories: complementary, redundant,
and cooperative data integration. Fig. 6 shows illustrative examples of these three categories, which

FIG. 6

Three categories of data integration.
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are borrowed from Ref. [27]. Complementary data integration is performed when source nodes obtain
different pieces of data that need to be fused in order to complete the scene. In the redundant fusion
approach, if two source nodes share the same piece of data, the data is first ranked and fused into a
high-quality single piece of data. This approach therefore offers trustiness and reliability of sensed data.
Cooperative data integration is used when independent sources are fused their data to produce a new
piece of data. Cooperative data integration is suitable for the body sensor networks. The killer appli-
cations for body sensor networks are human-centric applications like health and sports monitoring. To
choose where the data integration modules should be put, one should consider the complexity of the
computation needed and the scale of a sensor network. For example, regarding cooperative data inte-
gration, the computational power of sensor nodes cannot afford complicated operations but the mean-
ing of readings from different sensor nodes should be checked mutually to make sure the event
described by these readings. Moreover, the body sensor networks are usually on a small scale. There-
fore, this data integration would be better to put in the big data system (i.e., data integration should be
done in a centralized manner).

To conclude, as main sources of big data, exploiting in-network aggregation could prolong the life-
time and contribute to reduction of data volume of the big data, thus accelerating of the values discov-
ery process from this big data. However, the decision where the data integration component is put
should be taken the scale of wireless networks and the computational complexity of operations into
account.

5.2 EXPLOITING BIG DATA SYSTEMS AS DATA CENTERS
A very popular way to combiningWSNs and big data systems is to deployWSNs as data sources for big
data systems and to construct the components of big data systems as a center of data storage and an-
alytics. Interestingly, in early 2000, almost all the centralized approaches were evolved into the cor-
responding distributed approaches. However, with the rise of power of big data systems, the trend of
data management comes back to the centralized approaches. This section gives two cases, which follow
this concept to integrate big data systems and WSNs.

5.2.1 Case 1: Fire security system
Here, a fire security system will be discussed [28] which is called the Human Agent Robot Machine
Sensor (CFS2H). CFS2H is a multi-agent system that consists of five subsystems. For ease of under-
standing, the five subsystems are described by the objects in the corresponding subsystems: Sensor,
BigData, Human, Agent, and Robot. The interaction of this system is as follows:

1. Sensors collects readings of the environment, to send readings to the central big data system for
further analysis. While detecting possible fire threats, Sensors will send the notification to Human,
and send commands to Agent to detect the fire location.

2. Agent finds the locations of fire accident and sends the precise coordinate to Human and Agent.
3. Human and Agent move to the location.
4. Agent sends the notification and live video to Human.
5. Human controls Agent to direct people close to the fire accident to the nearest exit.

Here, the BigData subsystem in this work was designed to be a centralized place where all the data from
all other subsystems could be processed. While every subsystem has to communicate with two or three
other subsystems, BigData subsystem has to communicate with all of them. Its main role is to be a
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central data analyzing and processing station. It should be able to receive and send data to any sub-
system. In case of any danger, BigData subsystem has to send warnings and commands to proper sub-
systems to acknowledge them about it. More specifically, WSN and BigData subsystems establish
communication with other subsystems and exchange information without any obstacles. The BigData
subsystem stored all the incoming data; received readings from Sensor, query from Human, location
and temperature from Agent, location and current state from Agent, and sent current state to Human,
and threshold (used to detect fire accidents) to Sensor.

5.2.2 Case 2: Environment monitoring system
An air quality monitoring system is discussed here [29]. Authors in Ref. [29] built an environment
monitoring system which consists of WSNs to collect the readings of air pollutant, like SO2, CO,
NO2, and so on, and a big data pipeline to import, process, and store data from sensor nodes.

The whole system is shown in Fig. 7, which is borrowed from Ref. [29]. This system consists of
three parts:

1. Data Acquisition Module (DAM): This module includes the sensing-related devices, such as sensor
nodes and sinks.

2. Message OrientedMiddleware (MOM): This module is responsible for the communication between
DAM and DPM. This component transmits the information obtained from the base stations to the
processing and storage system, providing independence of operation for both modules. AMOM is a

FIG. 7

The architecture of the environment monitoring system.
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distributed component that provides asynchronous messaging between applications as well as
reliable information delivery mechanisms, guaranteeing the independence of their architectures.
This module could be built by message queue systems, such as RabbitMQ or Kafka.

3. Data Processing Module (DPM): This module operates in both streaming processing system and
batch processing manners. Stream processing for detecting and sending real-time alarms if
necessary, and for computing some statistics, and MapReduce for further data analysis. As
mentioned in Section 4, this work also uses Lambda architecture.

Batch processing is executed every 24 h. The data on HDFS are computed by MapReduce
to obtain some statistics and some widely used query results, such as mean temperature of each
base station per day, min/MAX/avg levels about pollutants, and so on. For stream processing,
Storm is used to execute several operations in real-time where each operation could be
represented as a spout or a bolt and the relationship among them could be represented as a Storm
topology. For example, statistics were computed in three levels of aggregation: sensor, Gateway,
and Base station, which are done by SensorStadisticsBolt, GatewayStatisticsBolt, and
BaseStatisticsBolt, respectively. Interested readers could refer to Ref. [29] for more detail.
In addition to the components for batch processing and stream processing, an in-memory
database Redis is used as a cache to store the information of sensor nodes, including identifier,
locations, type of sensors, and so on.

To conclude, this work not only consider the big data system as a centralized storage and processing
center, but also consider how to combine message queues, and to exploit lambda architecture in their
implementation. However, the role of WSNs remains at a data source. These cases told us that
a promising way to combine WSNs and big data systems is to move all the computation to the big
data system side and keep operations of WSNs as easy as possible. It makes sense because of the com-
putational power of sensor nodes are limited. However, the well-developed approaches in WSNs have
not integrated with the big data systems so far. From Section 5.1, one could understand that it may be
possible to put some of easy tasks in big data systems in WSNs by the well-developed algorithms. A
future research direction may be to design a more sophisticated architecture to do so.

6 CONCLUSION
This chapter gives an overview of the data management issues and solutions in WSNs and big data
systems. Specifically, three major issues for data management are introduced: storage, query proces-
sing, and data collection. Some big data storage, computation models, and the architecture are intro-
duced. Finally, some case studies of exploiting big data systems for data management on WSNs are
discussed. The future works could aim at taking a good balance between centralization (get computa-
tion back to big data systems) and decentralization (put computation down to sensor nodes).
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