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Abstract— Hiring seasonal workers in call centers to provide
customer service is a common practice in B2C companies.
The quality of service delivered by both contracting and
employee customer service agents depends heavily on the
domain knowledge available to them. When observing the
internal group messaging channels used by agents, we found
that similar questions are often asked repetitively by different
agents, especially from less experienced ones. The goal of our
work is to leverage the promising advances in conversational
AI to provide a chatbot-like mechanism for assisting agents
in promptly resolving a customer’s issue. In this paper, we
develop a neural-based conversational solution that employs
BiLSTM with attention mechanism and demonstrate how our
system boosts the effectiveness of customer support agents. In
addition, we discuss the design principles and the necessary
considerations for our system. We then demonstrate how our
system, named Isa (Intuit Smart Agent), can help customer
service agents provide a high-quality customer experience by
reducing customer wait time and by applying the knowledge
accumulated from customer interactions in future applications.

I. INTRODUCTION

One of the primary factors contributing to business suc-
cess is exceptional customer service[1]. Research[2] has
shown that B2C companies such as Amazon and Zap-
pos have invested many resources to improve the quality
of customer service and achieve business success. Similar
to these B2C companies, Intuit (http://www.intuit.
com) hires thousands of seasonal workers in our call cen-
ters across the world to provide quality customer support,
especially during peak seasons.

A large volume of service calls floods into our call centers
every day. To address an almost endless variety of customer
requests and needs, our customer service agents utilize an in-
ternal communication tool, Slack (http://www.slack.
com), to communicate and discuss customer problems when
speaking with customers. Specifically, they rely on Slack
channels, a mechanism of sending group messages, to ask
for help from other senior agents and employees. Front-line
agents and seasonal workers alike rely heavily on these Slack
channels to consult senior agents and to escalate issues to
managers.

Based on our study, agents often ask identical or similar
questions repetitively. For example: “What does this Error
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code: 41424 (connection timeout) mean?” and “I cannot
delete the very last credit card on file. Please help.” In
addition, many frequently-asked questions are actual system
error or warning messages (such as an internal error code)
directly copied and pasted into the channel by an agent.
While a well-designed agent onboarding and training process
helps reduce occurrences of basic questions, memorizing
answers to all frequently asked questions is not a practical
solution.

In this study, we propose a chatbot-like experience for
answering repetitive questions. The advances in neural-based
technology have fueled the attempts to construct powerful
conversational AI. We believe that a task-oriented chatbot
can best meet our need for automatically answering repet-
itive questions. The imminent benefits brought about by
our system are manifold. On the one hand, our system
reduces a significant amount of workload for senior customer
services agents who assist seasonal workers; on the other, all
knowledge learned over time is accumulated in the AI system
to enable many future research and applications.

Our goal is to build a task-specific chatbot for internal
use to assist agents in solving customer’s issues promptly.
Our chatbot system differs from a general purpose chatbot
in two ways. First of all, for a question with a known
answer, the system should provide the most probable answer
previously hand-crafted by a domain expert such as a senior
service agent, aiming at quick task completion instead of
encouraging conversations. That is to say, “friendliness”
and “human-like” characteristics are less relevant. Secondly,
we would like the system to gauge its own confidence in
answering a given question correctly. For a question with
a low confidence answer or without an answer, our system
should hand over the question to human experts or simply
remain silent.

We summarize our contributions as follows:
• We develop a neural-based conversational system

that employs BiLSTM with attention mechanism and
demonstrate how it boosts the effectiveness of customer
support agents.

• We research principles and propose considerations for
developing agent-assist chatbot applications.

II. PLATFORM OVERVIEW

A. Slack

Slack is one of the mainstream organizational communica-
tion platforms comprising a set of cloud-based team collab-
oration tools and services. Launched in 2014, Slack claims a
customer base of 8 million daily active users from more than



Fig. 1. Slack channel example

70,000+ paying companies and 500,000 organizations [3].
One of the major features of Slack is messaging which offers
both channel-wide and direct messaging. Organizations can
set up different channels to segregate messages, discussions
and notifications by purpose, department or topic. Direct
messages are like traditional instant messaging intended for
a person instead of a group. Intuit adopts Slack as its internal
communication platform.

B. Slack Bot User

Slack Bot User is Slack’s built-in feature that can be
programmatically controlled through Slack’s APIs to interact
with users of a workspace in a conversational manner. De-
velopers use the Events API as the primary way for building
applications that receive and respond to events. Examples of
such applications include monitoring and processing channel
activities, posting messages and responding to users, and
creating interactive messages by adding UI widgets such as
buttons. A Slack Bot User application can be installed for dif-
ferent channels and deployed to different Slack workspaces,
which enables us to create a Slackbot that serves multiple
customer service Slack channels and workspaces[4].

III. DATASET OVERVIEW

A. Intuit Slack Channel Chatlog

Raw Slack channel data can be obtained through Slack’s
API. Specifically, one can use channel.history method
to fetch message and event history of a channel. Each
channel history log, all of which can be exported in JSON
format, contains meta information such as main channel
post type, timestamp, and user in addition to the message
text. If there exist replies to a main channel post, a field
replies is added to list associated user and timestamp for
all replies to that original channel post. Here, the timestamp
is a unique key that can be used to join the message text
with meta information for a reply message. For instance, the
threaded response object has a field thread ts which is
the timestamp of the original channel post associated with
this particular reply post. The first dataset we use is the
chatlog from the Slack channel "sbc-ae-tier2sme",
a channel for agents to discuss user account issues. This
dataset contains 20,764 posts generated between April 2017
and May 2018. An initiating question is posted following a
predefined convention where ”Site”, ”Case” (case number),

”CAN” (customer account number) and ”Issue” are specified,
as shown in Figure 1.

B. Customer Support Knowledge Base
Intuit has licensed customer support knowledge base (KB)

to power customer service operation. Subject domain experts
such as experienced customer service agents and technical
writers contribute the knowledge articles in the KB. These
articles contain information for processes, historical issues
and solutions, FAQs and tutorials. Customer service agents
regularly use the KB to search for information to resolve
customers’ issues. At the time of writing, there are more
than 20,000 KB articles covering about 40 products. Each
article’s metadata containing information such as topics and
view counts also serve as a valuable data source.

C. Exploratory Analysis
Across Intuit’s Customer Care organization, there are more

than 500 customer service agent Slack channels. About
60 questions are asked daily in a typical channel, which
amounts to nearly 20,000 questions daily. This huge volume
of questions demand a significant amount of time and efforts
from expert agents, therefore present an opportunity for
optimization.

Table I shows data collected from 6 agent Slack channels
in Intuit-Care workspace between April 2017 and June
2018. It is worth noting that usage patterns vary across
different Slack channels, and general agents outnumber
expert agents 1. Based on the number of questions that
were answered by the top 5 expert agents (those who have
answered the most questions), we see that at least 65% of the
questions are in fact answered by these top 5 expert agents.

Take channel #sbc-ae-tier2sme as an example: dur-
ing the same time period, 1,354 members asked questions,
and only 145 members replied to at least one question.
Within the latter group, only 37 members replied to at least
10 questions, and the top 3 expert agents answered 61.3%
of the 20,764 questions. Clearly there is an urgent need for
automating as much as possible the Q&A tasks for expert
agents.

IV. SYSTEM DESIGN

In this section, we describe our system workflow as shown
in Figure 2. There are five components: data preprocessing

1agents who have answered more than 10 questions



TABLE I
STATISTICS OF INTUIT-CARE SLACK CHANNELS

Channel Questions General Agents Expert Agents Questions Answered by
Top 5 Experts (#)

Questions Answered by
Top 5 Experts (%)

sbc-ace-tier2 8,491 385 38 6,465 76.13
sbc-ae-tier2sme 20,764 1,354 37 14,544 70.04

cc-act-supportability 6,628 220 19 5,172 78.03
sbc-qdbt-pro-t1-tech 21,753 1,602 25 15,923 73.19
sbc-qdbt-pro-t1-bc 9,888 1,220 15 9,356 94.61

cppl-posa-license-t1 46,721 3,400 25 30,482 65.24

Fig. 2. System workflow

(IV-A), inner representation (IV-B, IV-C, IV-D), intent clas-
sification (IV-E) , best answer model (IV-F), feedback loop
(IV-G) and application deployment (IV-H).

A. Data Preprocessing

The Slack channel data dump is in JSON format. Every
post is indexed by a timestamp. We follow the general
text analytic practice for processing the Slack post text
data. The posts are first converted to lowercase before
we perform stemming, lemmatization and tokenizing. We
also use timestamps to join reply posts with the original
question posts. In addition, as covered in IV-D, we use
”term replacers” to replace recognized name entity, email
addresses and currency numbers for better word embedding
results. To illustrate: company name ”Intuit” is replaced by
”<company name>”; currency number ”$12.54” is replaced
by ”<currency number>”.

B. Word Embedding

Word embedding is a powerful distributed representation
method introduced by Mikolov at [5]. A notable property
of word2vec is that vectors of similar words tend to have
close cosine similarity.

One challenge for us is that agents often use Intuit-specific
acronyms and jargons in Slack channel communication. For
example, ”cx” is used to mean ”customer” and ”sf” refers
to ”Salesforce”. To tackle this challenge, we train word
embeddings over the Intuit Slack chatlog. We use gensim[6]
to get the word embeddings for our dataset with window size
5 and negative sampling rate 0.1. By using word embeddings

trained from Intuit corpora, we are able to effectively alle-
viate the acronym problem. For example, the cosine simi-
larity between ”cx” and ”customer” reaches 0.88; similarly
for word pairs (’pto’, ”paymentech”), (’sf’,’salesforce’), and
(’qbo’, ’qbdt’), cosine similarity scores are 0.88, 0.95 and
0.91 respectively.

C. Sentence Embedding

In order to quantify the meaning of each sentence, we use
sentence2vec to build the embedding for each sentence.
The sentence2vec model is proposed by [7]. Here we
denote each sentence as S. The sentence2vec model
considers each n-gram inside a sentence and generates the
overall sentence embedding by averaging all n-gram’s em-
beddings.

Let R(S) represent the set of all possible n-grams for sen-
tence S and vw denote each n-gram embedding, the sentence
embedding vS can be computed by using the formula:

vS :=
1

R(S)
vR(S) =

1
R(S) ∑

w∈R(S)
vw (1)

D. Feature Extraction

Customer service is a complex domain where the domain
knowledge accumulated over time has great value, especially
for a sophisticated financial software product like Quick-
Books. Besides relying on their knowledge of prior cases
and solutions, agents often recognize the type of customer
service questions from keywords or key sentences in the
question texts. For example, a question that contains currency
numbers and keywords such as ”bills” or ”receipts” usually



refers to the case where the customer is confused about a
monthly payment increase after a discount period expires.
The presence of specific keywords or entities is usually a
strong indication of certain types of questions. Therefore, a
carefully hand-crafted feature set can lead to better model
performance. We introduced the following features to aug-
ment our word embedding features:

1) Specific Name Entity: We use Name Entity Recognition
(NER) techniques to extract meaningful entities such as
company names and people names. For this NER task,
we use SpaCy[8], a Python compatible natural language
processing package.

2) Email Addresses and Currency Numbers: For email
addresses and currency numbers, we use pattern-based reg-
ular expressions to detect their presence in the text.

3) Identification Numbers: As shown in the example in
figure 1, when agents ask questions in a Slack channel, they
sometimes provide several associated identification numbers
such as Customer Account Number(CAN), case number,
and license number. These identification numbers can be
extracted by matching prefixes such as ”CAN”, ”Case”, or
”license”.

4) Intuit Specific Terms: Intuit specific glossaries and
their synonyms are important features. They include terms
such as product names (QuickBooks/QBO/QBOA/QBDT),
internal information processing platform (paymentech/PTO),
OS version (Mac, Windows) and the like.

E. Intent Classification

The goal for the intent classification component is to
map each question to a specific predefined intent class. An
example of the intent classification is depicted in Figure 3.
We define for our model a number of intent classes from each
dataset. Features combining word embeddings and hand-
crafted features are used by the intent classifier. We employ
the attention-based model to generate a vector representation
for each question and predict the correct intent class for the
question.

Our neural-based intent classification model consists of
the following layers:

Fig. 3. Intent classification example

1) Input Layer: For the input layer, we use the pretrained
word embedding from our corpora. We replace unseen words
with an UNSEEN token which translates to a predefined
special embedding for the token.

2) BiLSTM Layer: We use a bi-directional Long-Short
term memory (BiLSTM) network layer to generate a hidden
representation for each token.

3) Self-Attention Layer: We use the self-attention layer
to generate an output of a uniform length from sentences
of varying lengths. For the self-attention layer, we use
the layernorm and residual structure to encapsulate each
attention layer.

4) Output layer: We use a densely connected layer to
generate the output label with the softmax function.

F. Best Answer Model

The ability to evaluate the similarity between two ques-
tions is critical for building our task-specific chatbot. To
this end, we adopt the neural-based model to calculate
the distributed representation of each sentence from word
embedding of every token in the sentence.

Word Mover Distance: When matching a given question
with historical questions, we use word mover distance
(WMD)[9] to evaluate the similarity between two sentences.
Word mover distance is defined as the minimum value
of the sum of the word embedding’s consine distance
between a set of word pairs. Each word pair consists of
one word from the first sentence and the other word from
the second sentence. For example, given two sentences:
"The boy eats bananas." and "The child
enjoys candies.", we can construct three word pairs:
("boy", children), ("eats","enjoys"), and
("bananas","candies"). We denote the distance
between word i and word j as c(i, j) =

∥∥xi− x j ‖ 2 .
Assuming word i is mapped to word j for Ti j times, the
word mover distance can be represented as the following
constrained optimization problem:

min
T>0

n

∑
i, j=1

Ti jc(i, j) (2)

We calculate the WMD in two phases by quickly filtering out
a large number of impossible sentences before calculating the
accurate WMD. Specifically, the best answer is generated
following these steps: (1) All historical questions in the
chatlog are transformed into their sentence embeddings. The
new question’s sentence embedding is used to select the top
500 closest embeddings within its intent class. (2) Calculate
the WMD between the new question and each of the top
500 historical questions identified in step (1) and return the
answer associated with the historical question of minimum
WMD.

G. User Feedback in the Loop

For continuous improvement of the system, we add
thoughtfully designed feedback buttons to the GUI to so-
licit valuable feedback from users without disrupting the
conversation flow. The acquired user feedback is used for



Fig. 4. An example of the issue reported in Slack channel and the extended
thread

(a) An example of the issue reported in an agent Slack channel

(b) The example reply text by Slackbot

retraining the core machine learning model to improve model
performance.

H. Slack Application Deployment

Amazon Web Services (AWS) provides the capability for
hosting a Slack application through its ChatOps collaboration
model[10]. It involves building a Slack app with webhooks
and interactive components, writing Lambda functions to
handle the interactive messages, and creating a service API
to interact with AWS EC2 instances. This part of the system
is built with Python 3.5.

V. DEMONSTRATION

In this section, we demonstrate the behaviors of Isa, our
Slack bot. 5(a) illustrates an example of an issue posted by
a customer service agent regarding an email contact change
request. 5(b) shows Isa’s replies to the posted issue. Isa first
provides a possible solution for the issue: file a Master Admin

Fig. 5. an example of the response button design

claim for the issue. Subsequently, links to historical threads
of posts similar to this issue are also provided. In the event
that the issue is too complicated for the system to find a best
answer for, Isa is designed to remain silent. This is because
accuracy is much more important than recall for our system:
providing wrong or irrelevant information to the inquiring
agents would be counterproductive.

VI. RELATED WORK

The research streams of conversational AI fall into two
main categories: general purpose conversational systems
(chitchat systems) and task-specific or domain-specific chat
systems. Chitchat systems attempt to simulate casual con-
versations without any specific purpose. In contrast, task-
specific chat systems focus on certain subject domains aim-
ing to solve specific tasks.

In this work, we focus on task-oriented conversational
systems. Typical techniques for building conversational sys-
tems include sequence-to-sequence models and reinforce-
ment learning frameworks. Conversational AI designers also
leverage the information extracted from external databases
and previous chat history.

A prominent research direction for task-oriented systems
is to adopt end-to-end sequence-to-sequence models. The
related work can be classified into two categories. The first
category [11][12][13][14] is mainly based on the Memory
Network[memory network]. In [15], the author introduces a
RNN model with recurrent attention over a large external
memory to predict the answer. In [16], the author adopts
the memory network from Q&A in the dialogue where
the answer is selected by the model from a given set of
answers. In [13], the author uses multiple RNNs to construct
a dialogue system: the first RNN is used to capture the
user’s intent and the second one serves as a belief tracker
to maintain a multinomial distribution over a given value
set.

The second category of end-to-end task-oriented sys-
tem research focuses more on accessing the external li-
braries and generating internal representations for the input
sentences.[17][18][19]. In [17], Lowe et al use two RNNs
to encode both the input and the external unstructured text
information while TF-IDF and hashing techniques are used
to decide the relevance. [19] uses Freebase as the external
knowledge base where named entity recognition is applied to
identify the key entity in a sentence followed by extracting
relevant entity from the knowledge base to answer more
specialized questions.



VII. DISCUSSION

A. Cold Start Problem

During the development of our chatbot, we encounter the
cold start problem where we do not have enough labeled data
for training the intent classification model. To address this
problem, we use feature-based annotating method. We create
several keyword phrases as feature and apply these keyword
phrase filters to the responses of each thread. For example,
"Master Admin claim" is a common solution for re-
solving account related issues. Thus, we define a filter to
detect "Master Admin claim" and its synonyms such
as "MA claim" to find all matched conversations and label
them as "account related issue". We successfully
acquire 7,073 labeled data points using this method.

The assumption behind using feature-based annotation
method is that many questions are asked repetitively. Since
answers are mainly provided by a small number of experts,
the word selection by this small group of experts should be
highly consistent for these repetitive questions. Our feature-
based annotator can successfully label a large number of
questions which serve as the initial data points to train our
intent classifier. We believe this approach can also be applied
to other domains where answers to repetitive questions are
provided by a small group of users.

B. Interaction Design

Although machine learning plays an increasingly impor-
tant role in improving user experience, UX design is often
deemed as important in successful chatbot designs[20].

Since Isa is an agent-assist chatbot, we make several
special decisions for its interaction design.

First of all, Isa does not initiate private individual chats
with agents. Instead, it joins a predefined channel and listens
to every chat between agents. Such a design enables seamless
integration into the existing workflow without requiring
agents to change their habit.

Secondly, we choose to have Isa send its reply as a follow-
up message in the same message thread instead of sending
a direct private chat to the inquiring agent or posting a
new thread to the channel. This is because a private chat
message requires the recipient agent to switch between chat
frames, which is not very user-friendly. Similarly, a new
thread posted to the channel is broadcast to every member
of the channel, which can become unnecessarily distracting
for other agents not involved in the message thread.

Lastly, Isa displays a feedback widget at the end of
the chat to collect feedback that is used to incrementally
improve our model over time. This is illustrated in Figure
5. If the inquiring agent does not find the provided answer
useful, a follow-up widget containing our intent categories is
presented to the agent to obtain the correct intent label from
the agent.

VIII. CONCLUSION

In this work, we present a system that provides a chatbot-
like experience for answering repetitive questions to assist
seasonal workers and general agents. We discuss the design

principles and necessary considerations for such system. We
show that a task-specific chatbot suits our needs and propose
a solution that employs BiLSTM with attention mechanism.
Our system helps customer service agents in providing
delightful customer experience by reducing customer wait
time and by preserving knowledge generated from customer
interactions to power other future applications. Our system
also sheds light on how to combine human intelligence and
modern machine learning techniques together in delivering
high quality customer experience.
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