
Efficient Approximate Thompson Sampling
for Search Query Recommendation

Chu-Cheng Hsieh
eBay, Inc.

2065 Hamilton Ave.
San Jose, CA 95125, USA

chsieh@ebay.com

James Neufeld
University of Alberta,

Edmonton
4732 Bolter Hall

AB T6G 2E8, Canada
jneufeld@ualberta.ca

Tracy King
eBay, Inc.

2065 Hamilton Ave.
San Jose, CA 95125, USA
tracyking@ebay.com

Junghoo Cho
University of California,

Los Angeles
4732 Bolter Hall

Los Angeles, CA 90095, USA
cho@cs.ucla.edu

ABSTRACT
Query suggestions have been a valuable feature for e-commerce
sites in helping shoppers refine their search intent. In this
paper, we develop an algorithm that helps e-commerce sites
like eBay mingle the output of different recommendation al-
gorithms. Our algorithm is based on “Thompson Sampling”
— a technique designed for solving multi-arm bandit prob-
lems where the best results are not known in advance but
instead are tried out to gather feedback. Our approach is
to treat query suggestions as a competition among data re-
sources: we have many query suggestion candidates compet-
ing for limited space on the search results page. An “arm”
is played when a query suggestion candidate is chosen for
display, and our goal is to maximize the expected reward
(user clicks on a suggestion). Our experiments have shown
promising results in using the click-based user feedback to
drive success by enhancing the quality of query suggestions.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Thompson sampling, query suggestions, multi-armed bandit

1. INTRODUCTION
Most major web search applications generate an alterna-

tive set of suggested search queries, a.k.a. related searches,
after an initial search request to help users refine their search
intent. Such query suggestions are a natural way to facil-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SAC’15 April 13-17, 2015, Salamanca, Spain
ACM 978-1-4503-3196-8/15/04 $15.00.
http://dx.doi.org/10.1145/2695664.2695748

itate user engagement in search applications because they
are easily understood by users and make use of the exist-
ing search infrastructure. Effective query suggestions may
take various forms. For example, they may aid users in re-
fining queries to better match their original intent, often
by providing alternative wording or adding disambiguating
terms. Alternatively, queries may be used as a recommender
system to suggest different, but related, concepts or prod-
ucts which might also interest the user. For example, in the
e-commerce setting the suggestion “iphone cases” for the
query “iphone” may increase the odds of selling multiple
items together.

Because web search settings are typically paired with an
abundance of available data, such as indexed search results
or user interactions, it is possible to generate query sugges-
tions automatically from data. Often, there are abundant
candidates generated from such data and therefore we need
a ranking strategy to determine which suggestions to dis-
play. However, the selection is difficult because of the dy-
namic nature of the context. For example, we sometimes
favor a refinement suggestion “iPhone 6” for a broad inten-
tion query “iPhone”, while we may favor a combined sale
suggestion, say “iPhone 6 case” for the query “iPhone 6”.

In this paper, we treat query suggestions as a competi-
tion among data resources: we have many query suggestion
candidates competing for limited space on the search results
page. We demonstrate that multi-armed bandit (MAB) al-
gorithms are particularly well suited to the task of query
suggestion. This is due to the fact that the query suggestion
problem requires less complex machine learning infrastruc-
ture than other tasks. In display advertising, for instance,
engagement rates often vary widely across users, and ads are
frequently changed, added, or removed by advertisers.1 As
a result, it becomes necessary for the practitioner to predict
the engagement rate on an ad using features of the adver-
tisement, user, and/or query (a.k.a. the context) with the
hope that this learned classifier will generalize to novel, un-
observed contexts. In the query suggestion setting, how-

1Similar observations can be made for recommending news,
music, books, etc.

ever, new suggestions are observed less frequently, i.e. at
the rate that new products and terms are invented, and
suggestion engagement does not vary considerably across
users. Consequently, the relevant context can be reduced
to a set of query-suggestion pairs. Then, the engagement
rate for each pair may be approximated independently.2 This
greatly simplifies the problem as we can avoid designing fea-
tures and experimenting with different supervised-learning
approaches and, instead, directly deploy standard stochastic
multi-armed bandit techniques, for which simple, computa-
tionally efficient, and near-optimal allocation strategies are
well understood [7, 2, 12].

Specifically, we propose a lightweight and efficient algo-
rithm that closely resembles the Thompson sampling ap-
proach for the so-called Bernoulli-bandit problem. Thomp-
son sampling is a Bayesian approach which has been shown
to work exceedingly well in published empirical studies [9,
19] as well having strong theoretical guarantees [12, 1, 8].
The differences between our proposed algorithm and the
standard approach result from simplifications necessary to
accommodate multiple (M) query suggestions per request,
which effectively creates a combinatorially large number of
choices per query. In particular, we make the simplifying
assumption that the engagement rate on a specific search
suggestion is independent of the other M − 1 suggestions
present. While this assumption may not always hold, given
the potential dependence between similar suggestions i.e.
“ps3” vs. “playstation 3”, we find that it holds frequently
enough given the considerable computational savings.

We evaluate the performance of our proposed approach in
an offline setting using real user search traffic on ebay.com

collected using an expanded set of presented query sugges-
tions. This allows us to validate whether our approach, when
given a smaller number of suggestion “slots”, recovers the
optimal suggestions. While this analysis is preliminary, the
results are promising and provide sufficient evidence to jus-
tify a live production experiment, as part of our future work,
where evaluation is considerably more straightforward.

2. RELATED WORK
Data-driven technologies for generating query suggestions

are popular in the literature, with approaches differing pri-
marily as to which data sources are used. For instance, as
is the case with search ranking methods, many of the query
suggestion approaches are purely document based ; that is,
they rely on the (indexed) document corpus to produce sug-
gestions. Popular approaches of this type include clustering
similar queries based on the proportion of overlapping search
results [4], relating queries using a graph-walk distance over
the query-document transition graph [5], or directly substi-
tuting individual keywords determined to be similar in the
text corpus [11]. More recently, query suggestion techniques
have leveraged previous user session behaviour, which ex-
ploits the hypothesis that users reformulate queries that re-
turn poor results, as well as follow up queries with related
queries. There are a number of ways in which the result-
ing query co-occurrence data may then be used to construct
suggestions. Notably, Huang et al. [10] were the first to sug-
gest ranking suggestions by observed 1-step query-to-query

2This is roughly equivalent to defining the feature space
to be a set of boolean features that uniquely identify each
query-suggestion pair.

transition probabilities, Boldi et al. [6] recommend ranking
according to a multi-step graph-walk distance metric, and
Ozertem et al. [17] propose ranking according to a super-
vised learning model trained on observed transitions.

Importantly, despite the popularity of these user session
based approaches both in academic and industrial settings,
they often ignore two critical aspects of the data. First,
which of the suggested search queries was clicked by the
user, if any; second, the bias introduced by presenting sug-
gestions to the user. For example, an approach that ranks
suggestions according co-occurrence rates, as suggested by
Huang et al., will bias toward favouring existing query sug-
gestions. This bias creates a positive feedback cycle between
the algorithm and the generated data and, consequently, it is
difficult for the algorithm to remove a poor suggestion from
the list of suggestions or to adapt to changing user pref-
erences. In the machine learning literature this problem is
typically referred to as the exploration-exploitation dilemma.
Stated simply, a suggestion algorithm that learns from past
data must trade off the benefits of collecting data on sug-
gestions that are relatively unseen but potentially valuable
(exploration), with the benefits of presenting the user with
the historically best performing suggestion (exploitation).

Online learning algorithms, sometimes referred to as multi-
armed bandit methods, are a popular way of addressing this
tradeoff (see [7, 2]). These approaches generally manage
exploration through modelling the uncertainty surrounding
each of the learned predictions. This modeled uncertainty
allows the algorithm to ensure that the optimal action is not
avoided indefinitely due to a poor (unlucky) estimate of its
payoff. Many existing multi-armed bandit approaches come
with strong theoretical guarantees and are effective in prac-
tical settings, e.g. display advertising [15, 9], news article
recommendation [14], and web search ranking [18].

3. MULTI-ARMED BANDITS
The multi-armed bandit (MAB) problem is a sequential

allocation task where the learning agent must decide, at each
time step, which action to allocate a unit resource to maxi-
mize its long term payoff [7]. The phrase multi-armed bandit
is a reference to the colloquial term for a casino slot ma-
chine, which serves as an example for the problem setting:
consider the agent to be a gambler who must decide which
casino slot machine to play at any given time (out of a set
of K ≥ 2) in order to maximize his expected total winnings.
Given that the payout distribution is unknown to the gam-
bler, the gambler must weigh the benefits of playing the best
performing machine based on past experience (exploitation)
versus trying other machines to gain more understanding of
the underlying distributions (exploration).

3.1 Stochastic Multi-armed Bandits
In the stochastic MAB setting the underlying payoff for

each action (or arm) a ∈ {1, 2, ...,K} is assumed to be inde-
pendently and identically distributed according to a fixed,
but unknown, distribution [13]. That is, at each time-step t
the learner chooses some action, at, and receives a stochastic
payoff drawn from the corresponding distribution, denoted
by the random variable rat,t ∈ R. In the query suggestion
setting, the actions correspond to suggested queries and the
payoffs to some engagement metric with the presented sug-
gestion (i.e. a click). The objective is to choose actions in
a way that maximizes the total expected payout or, equiva-

ebay.com

lently, minimize the cumulative regret defined as:

RN
def
= max

a=1,..,K
E

[
N∑
t=1

ra,t −
N∑
t=1

rat,t

]
(1)

for a sequence of N actions. Using the assumptions of the
stochastic setting, we write this regret as RN = Nµa∗ −∑N

t=1 E[µat] =
∑K

a=1 E[Ta(N)](µa∗ − µa), where: µa gives

the expected payoff of action a; a∗
def
= arg maxk=1,..,K µk

denotes the best action; and Ta(N) gives the total number
of plays for action a up until time N .

An important theoretical result in stochastic MAB is the
lower bound given by Lai and Robbins [13] who show that
the asymptotic regret of any allocation scheme is lower bounded
as Ω(logN). In the same paper Lai and Robbins present
an algorithm, based on the idea of upper confidence bounds
(UCB), which (asymptotically) achieves a regret ofO(logN).
This approach was later extended by the UCB1 approach of
Auer, et al. [3], which achieves an O(logN) regret for any
finite time and requires only that the payoff distributions
have bounded support. Despite the fact that the regret for
UCB grows at the best possible rate, improvements in con-
stant factors can make a tremendous difference in practice,
which motivates our interest in Thompson sampling.

3.2 Thompson Sampling
Thompson sampling (TS) is a Bayesian MAB approach

where the (unknown) payoff parameters are inferred from
past data and summarized using a posterior distribution.
Actions are then chosen in proportion to their probability of
being optimal under this posterior [20]. Specifically, suppose
the payoff distribution is given by some parametric likeli-
hood function P (r|a,θ), where θ is a real-valued vector of
unknown, unobserved parameters. By treating θ as a ran-
dom variable, and assigning some known prior P (θ), we can
calculate the posterior distribution over θ given some ob-
served data D. In the stochastic MAB case, the observed
data is given as a sequence of actions and payoffs from time

1 to t, denoted Dt
def
= {(a1, r1), ..., (at, rt)}. Using Bayes

rule, as well as the independence of the observed payoffs,
the posterior distribution may be written as:

P (θ|Dt) ∝ P (Dt|θ)P (θ) =

t∏
i=1

P (ri|ai,θ)P (θ)

In order to choose an action at time t + 1, the Thomp-
son sampling algorithm samples a payoff parameter from
the posterior, θ̂t+1 ∼ P (θ|Dt), then chooses the action that
maximizes the expected payoff using this parameter:

at+1 = arg max
a

∫
rP (r|a, θ̂t+1)dr

Intuitively, this sampling strategy manages the explore-
exploit tradeoff almost automatically because the posterior
distribution reflects the uncertainty around the parameter
vector. That is, if the algorithm is uncertain about some
parameters (i.e. the corresponding action payout estimates),
their sampled values will range wildly. These actions will
potentially be explored, which in turn reduces the poste-
rior uncertainty of the related parameters, permitting more
exploitive behavior in the next round.

The drawback of the TS approach is that for many cases
sampling from the posterior distribution is not computa-

tionally feasible, nor is computing the above integral. How-
ever, in the query suggestion task, as well as many web sce-
narios, the success of a particular recommendation is mea-
sured by binary outcomes, e.g., does the user click the link,
purchase an item, create a new account. In such cases
the payoff distribution for action a may be modelled by
a Bernoulli distribution with unknown parameter θa (let
θ = (θ1, ..., θK)). By substituting the appropriate likelihood
function into the above posterior and assuming a conjugate
prior, P (θa) = Beta(θa;α, β) for some practitioner-defined
parameters α, β, we arrive at:

P (θa|Dt) = Beta(Sa,t + α, Fa,t + β)

where Sa
def
=

∑
t:at=a rt gives the number of “success” events

for arm a and Fa
def
=

∑
t:at=a 1 − rt the number of “fail-

ure” events. This posterior allows us to summarize all past
events with only two parameters and can be simulated ef-
ficiently. Additionally, it is straightforward to specify prior
parameters α and β as they are the number of “successes”
and “failures,” respectively. In this work, we defer to the
de facto standard and use a uniform, relatively uninformed
prior with α = 1 and β = 1. The pseudocode for this ap-
proach is given in Algorithm 1.

Algorithm 1 Thompson sampling for Bernoulli bandits

Require: prior parameters (for all arms) αa, βa . default:
α = 1, β = 1

Initialize: Sa = 0, Fa = 0, ∀a
1: for each t = 1, 2, . . . do . each round
2: for each a = 1, . . . ,K do . each action
3: Sample θ̂a ∼ Beta(Sa + αa, Fa + βa)
4: end for
5: Observe reward rt from playing arm â := arg maxi θ̂i
6: if rt = 1 then
7: Sâ := Sâ + 1
8: else
9: Fâ := Fâ + 1

10: end if
11: end for

This algorithm, dubbed Bernoulli-bandit Thompson sam-
pling, significantly outperforms other MAB variants empiri-
cally [9, 16], but meaningful theoretical analysis had eluded
researchers until recently. New work has revealed that, in
the Bernoulli-payoff setting, the finite-time regret of TS is
O(log(N)) with constant terms that closely match the Lai-
Robbins lower bound [12].

In addition to these strong published results, TS grants
a number of problem-specific benefits for the query sugges-
tion task. In particular, new related search suggestions are
continually being added to the set of possible choices as new
product terms are introduced. In the TS approach, a new
action can be added seamlessly: one simply sets initial pa-
rameters Sa = Fa = 0 and the algorithm begins exploring
the new suggestion. In contrast, adding new actions into
an UCB implementation, which chooses the action with the
highest average plus confidence bound, results in that new
action being chosen at every request until the confidence
bound shrinks to roughly the same size as the other bounds.
In the theoretical analysis of cumulative regret, these strate-
gies are not significantly different, but in terms of user ex-
perience the differences are stark.

Lastly, in web-scale systems handling millions of requests
daily, it is rarely possible to update the posterior parameters
(Sa and Fa) in real time. However, due to its randomized
behavior, a TS approach will choose a variety of actions
over time even if the posterior parameters are not updated.
Again, this contrasts with deterministic UCB approaches,
which will continue to choose the same action until the em-
pirical means and confidence bounds are updated.

4. MULTIPLE QUERY SUGGESTIONS
For the case when only a single query suggestion is pre-

sented to the user, it is straightforward to apply the Thomp-
son sampling approach (Section 3.2). To begin, it is neces-
sary to construct a manageable number of query-suggestion
pairs by eliminating obvious mis-matches. While there are
numerous ways to achieve this, the most straightforward way
is to choose the top L initial search queries by volume and
generate candidates using co-occurrence data. Specifically,
we collect the queries entered after the initial query and use
the top K, by volume, as the set of suggestions. Here, K
should only be kept large enough to ensure we do not miss
a suggestion that has a chance of being the optimal choice.
Given a manageable set of suggestions, say {s1, ..., sK}, for
each query, {q1, ..., qL}, we can deploy L independent in-
stances of the TS approach in Algorithm 1 with suggestions
corresponding directly to actions.

However, in most applications there is enough space to
supply multiple suggestions to the user at once. For in-
stance, at ebay.com up to 10 related search suggestions are
displayed at one time; a screenshot of the related search in-
terface is given in Figure 1. Even in the case where we must
provide M > 1 suggestions per request, it is possible to de-
ploy the same TS algorithm using meta-actions. That is,
we construct an expanded set of actions where each action
corresponds to a unique sequence of M suggestions, which
makes MK actions if duplicates are permitted. This action
space is far too large for any practical implementation and
so we reduce the size of this action space.

A natural way to reduce the size of the action space is
to assume that the probability of user engagement on a
suggestion is independent from its position and the other
M−1 suggestions present. Specifically, if we let {z1, ..., zM}
denote the set of indices, zi ∈ {1, ...,K}, for the sugges-
tions present on some request, and (θ1, ..., θK) denote the
Bernoulli parameters describing the engagement probability
on each suggestion, the likelihood function is as follows:

P (r|(sz1 , ..., szM), (θ1, ..., θK))

=

M∑
i=1

P (ri|(sz1 , ..., szM), (θ1, ..., θK))

=

M∑
i=1

P (ri|szi , θzi) =

M∑
i=1

θzi

(2)

where ri ∈ {0, 1} is an indicator variable for an engagement
at position i and r =

∑
i ri. Using this likelihood we arrive

at a TS approach very similar to Algorithm 1 except that the
M suggestions with the largest engagement rate, according
to a sampled θ, are shown to the user instead. The Beta
posterior updating remains unchanged.

Additionally, we inject two modifications to the algorithm
based on our observations of scenarios in practice. First, in
line 12, we propose to update Fazm

by 1
M−1

instead of 1.

Algorithm 2 M-Independent arm Thompson sampling

Require: prior parameters (for all arms) αi, βi . default:
α = 1, β = 1

Initialize: Sa = 0, Fa = 0, ∀a
1: for each t = 1, 2, . . . do . each round
2: for each a = 1, 2, . . . ,K do . each arm
3: Sample θ̂a from the Beta(Sa + α, Fa + β)
4: end for
5: (z1, ..., zM) ← topM (sorted (θi)) . Select M items
6: Observe rewards (r1, . . . , rM) from playing arms

(az1 , . . . , azM)
7: for each m = 1, 2, . . . ,M do . each arm
8: if rm = 1 then . Success on the arm zm
9: Sazm

= Sazm
+ 1

10: else
11: if r = 1 then . Observing a reward at some

arm, r =
∑

i ri

12: Fazm
= Fazm

+
1

M − 1
13: else
14: Fazm

= Fazm
+

γ

M
15: end if
16: end if
17: end for
18: end for

Namely, we assign“one” failure (but not M−1 failures) if we
confer one success to some arm at each round, and the failure
is shared by all the remaining arms. This helps prevent po-
tential under-exploration that might occur as a result of our
independence assumptions: otherwise, we might shift a bell
curve (a prior) to the left too quickly. Second, we introduce
the rate parameters γ (line 14) to accommodate the igno-
rance of not observing a user action. Intuitively, γ is a scale
factor to control the rate at which the posterior uncertainty
decreases when no user decision is spotted. For example at
γ = M , the algorithm sees no-response as dissatisfaction.

5. EXPERIMENTS
We now consider an online related search application. Giv-

en a user issuing a query to an e-commerce site, the goal is to
prompt the best related queries (suggestions) for that user.
There are various ways of measuring performance, and here
we adopt the click-through rate (CTR) estimation, i.e. what
is the probability that a user is interacting with the related
searches module? Intuitively, one may consider a click as a
user’s recognition of valuable or useful information.

5.1 Setup
Ideally, the best way of running experiments is to deploy

our algorithm in production and observe the outcome. How-
ever, without evidence of potential success, it is infeasible to
deploy an algorithm to ebay.com because millions of trans-
actions are potentially affected.

We evaluated our work by replaying user actions recorded
in eBay logs. To start, we extracted user activities related
to query transitions (changes). Specifically, each transition
consists of a triplet (q, s, r) where q refers to some query, s
refers to q’s immediately successor (q 6= s) in the same user
session, and r refers to its reward. If s is the result of the
related search module displayed in the search result page of

ebay.com
ebay.com
eBay

Figure 1: Related Search on ebay.com

q, the reward r = 1; otherwise, r = 0. For example, in Fig-
ure 1, if a user clicks on“iphone 4s”, the triplet is (q =“iphone
5”, s =“iphone 4s”, r = 1), and if a user manually types a
new query “htc”, instead of interacting with related search
module, the triplet is (q =“iphone 5”, s =“htc”, r = 0). For
simplicity, all data are case insensitive.

We conducted experiments based on data collected from
the first two weeks of November, 2013. We evaluated our al-
gorithm against the top-100 popular queries based on count-
ing transitions of q → s in terms of related-search clicks.
The top-100 queries guarantee hundreds of thousands of ap-
pearances to eBay users and thousands of clicks on related
searches. Thus, the CTR of s given q (which later serves as
the ground truth) across two weeks are reliable. To protect
business sensitive information, the queries selected are not
reported, but one may expect that the top popular queries
are often short (2-3 words), e.g. “iphone 5,” “xbox 360,”
“watch,”“dress,”“ps4,”.

In sum, to evaluate our concept, we use the following strat-
egy: suppose that we displayed I candidates. If we were only
allowed to display M suggestions, can our algorithm identify
the best candidates? That is, the solution should correctly
identify M suggestions with high CTRs from I choices.

5.2 Evaluation
The objective of the algorithm is to maximize the total

accumulated rewards based on determining which related
searches to be displayed. Analogously, it aims to minimize
the expected cumulative regret RN , or the total loss caused
by not displaying a set composed of the best candidates:

RT
def
=

N∑
t=1

(E∗M − EM) (3)

where E∗M indicates the optimized CTR, i.e. the expected
CTR when a set of best M choices with highest CTRs are
displayed, and EM is the measured CTR from display arms
(z1, ..., zM) (line 5 of Algorithm 2).

To compute EM , or the CTR of a set of M suggestions be-
ing displayed, we assume related searches are independent
from each other with respect to CTR, and thus we have
EM =

∑
z∈(z1,...,zM)

E(z). The best choice, composed of re-

lated searches with the highest E(z), then naturally refers
to those queries with their CTRs ranking in the top in that
their sum becomes the largest.

It is worth mentioning that E(z), the expected CTR of the
candidate z to the query q, is often not constant over a long
period of time. A breaking event could affect E(z). For ex-
ample, it is expected to see a difference on the E(z =“iPhone
4”) for the query“iPhone”before the release of iPhone 5, ver-
sus after it. To alleviate concerns over fluctuating CTRs, in
our experiments we constrain to 2 weeks. We focus on pop-
ular queries because we can collect enough user feedback to
evaluate our work.

5.3 Discussion

Figure 2: Regret reduction curve (γ = 0.02)

Figure 2 summarizes the results of three different settings
of M . All three settings follow a similar trend (declining
in RT) when applying Algorithm 2. Under the hood, we
replay all user decisions in the same order as they were in
our search log. The x-axis represents the moment of xth
occurrence of displaying related searches; the y-axis shows
the average RT of all queries we analyzed against a baseline
in percentage scale. The baseline refers to the expected re-
gret RT (Equation 3) when EI is always selected randomly.
Intuitively speaking, it is the cost (i.e. CTR loss) paid if
we explore all candidates evenly; the decline indicates the
selection of candidates with better CTR over time.

It is natural to expect a smaller RT when increasing M
because the chance of identifying good candidates in three
slots (M = 3) is higher than in one slot (M = 1), especially
at the early phase of learning. That is, a worse choice means
a greater loss when M = 1 than when M = 3. We also notice
that around 400 ∼ 800 on the x-axis the decreasing process
reaches a plateau, signifying rapid convergence when apply-
ing the algorithm in practice because 400 occurrences can be
achieved for most queries on a site like eBay. Moreover, a
large drop in the early phase (< 100 on the x-axis) suggests
its potential when dealing with rare queries.

An immediate next step is to investigate the penalty fac-
tor γ in Algorithm 2. The choice of γ reflects one’s belief
toward a user’s rewriting a query instead of interacting with
related searches. Setting γ = 0 suggests complete ignorance
to rewritings, i.e., one may consider rewritings as shifts in
intent or other unrelated user actions. In contrast, setting
γ = M treats a rewriting as a failure, i.e. all candidates
displayed to users then receive an even penalty.

In Figure 3, we summarize our findings as regards γ by
highlighting four choices. Applying penalties (γ > 0) gener-
ally leads to a faster descent in the early stages, and it may

ebay.com

Figure 3: The choice of gamma (M = 2)

also lead to less regret eventually (in this example, γ = 0.1
or 1). However, penalizing too much brings negative effects.
For example, γ = 0.1 reduces regret faster than γ = 1. If
we consider no user feedback as a failure of the classical TS
proposed, i.e. γ = M = 2, it leads to even worse results. Ap-
parently, the optimized γ depends on the type of a reward
and the chance of observing of a reward. In our experiments
where the reward is a user’s clicking and its chance is CTR,
we found γ = 0.05 ∼ 0.25 to be a decent range based on
heuristic trials. This deserves further study in that with a
better understanding of user satisfaction, we may associate
γ with other factors, like dwell time or bounce rate.

6. CONCLUSION AND FUTURE WORK
In this paper, we investigated the possibility of viewing re-

lated searches in a e-commerce search as an exploration/ex-
ploitation problem. By collecting user-feedback as rewards,
we extended the idea of Thompson sampling to provide func-
tionality for continuously refining related searches. We also
investigated the consideration of user rewriting behaviors,
and conducted a heuristic study of how to achieve less re-
gret by tuning a penalization factor. The proposed algo-
rithm requires only one parameter to tune, and thus is easy
to implement and to scale. Our historical study also con-
firms its potential and robustness in practice.

Future work includes a further theoretical analysis of its
finite-time regret, testing in a production environment to
measure true regret, a deterministic study on the parame-
ter γ, removal of the independence assumption among re-
lated searches, and modifications of the algorithm to ac-
commodate rare queries. Furthermore, if introducing new
related search candidates is done routinely, one may con-
sider a mechanism to explore newly introduced candidates,
or to gradually “forget” obsolete information.

Acknowledgement

We thank Yoni Medoff for his comments and feedback on
this paper and Chris Severs and Sunny Li for their insights
on improving related searches.

7. REFERENCES

[1] S. Agrawal and N. Goyal. Analysis of thompson
sampling for the multi-armed bandit problem. CoRR,
2011.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Mach.
Learn., 47(2-3):235–256, May 2002.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2):235–256, 2002.

[4] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query
recommendation using query logs in search engines. In
Current Trends in Database Technology-EDBT 2004
Workshops, pages 395–397. Springer, 2005.

[5] D. Beeferman and A. Berger. Agglomerative clustering
of a search engine query log. In Proceedings of the
sixth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 407–416.
ACM, 2000.

[6] P. Boldi, F. Bonchi, C. Castillo, D. Donato, and
S. Vigna. Query suggestions using query-flow graphs.
In Proceedings of the 2009 workshop on Web Search
Click Data, pages 56–63. ACM, 2009.

[7] S. Bubeck and N. Cesa-Bianchi. Regret analysis of
stochastic and nonstochastic multi-armed bandit
problems. Foundations and Trends in Machine
Learning, 5, 2012.

[8] S. Bubeck and C.-Y. Liu. Prior-free and
prior-dependent regret bounds for thompson sampling.
In Advances in Neural Information Processing Sys.,
pages 638–646, 2013.

[9] O. Chapelle and L. Li. An empirical evaluation of
thompson sampling. In J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. C. N. Pereira, and K. Q.
Weinberger, editors, 25th Annual Conference on
Neural Information Processing Systems, NIPS ’11,
pages 2249–2257, 2011.

[10] C.-K. Huang, L.-F. Chien, and Y.-J. Oyang. Relevant
term suggestion in interactive web search based on
contextual information in query session logs. Journal
of the American Society for Information Science and
Technology, 54(7):638–649, 2003.

[11] R. Jones, B. Rey, O. Madani, and W. Greiner.
Generating query substitutions. In Proceedings of the
15th international conference on World Wide Web,
WWW ’06, pages 387–396, New York, NY, USA,
2006. ACM.

[12] E. Kaufmann, N. Korda, and R. Munos. Thompson
sampling: An asymptotically optimal finite-time
analysis. In Proceedings of the 23rd International
Conference on Algorithmic Learning Theory, ALT’12,
pages 199–213, Berlin, Heidelberg, 2012.
Springer-Verlag.

[13] T. L. Lai and H. Robbins. Asymptotically efficient
adaptive allocation rules. Advances in applied
mathematics, 6(1):4–22, 1985.

[14] L. Li, W. Chu, J. Langford, and R. Schapire. A
contextual-bandit approach to personalized news
article recommendation. In Proceedings of the 19th
international conference on World wide web, pages
661–670. ACM, 2010.

[15] T. Lu, D. Pál, and M. Pál. Contextual multi-armed
bandits. In International Conference on Artificial

Intelligence and Statistics, pages 485–492, 2010.

[16] B. May and D. Leslie. Simulation studies in optimistic
bayesian sampling in contextual-bandit problems.
Technical report, Technical Report 11: 02, Statistics
Group, Department of Mathematics, University of
Bristol, 2011.

[17] U. Ozertem, O. Chapelle, P. Donmez, and
E. Velipasaoglu. Learning to suggest: a machine
learning framework for ranking query suggestions. In
Proceedings of the 35th international SIGIR
conference on Research and development in
information retrieval, pages 25–34, 2012.

[18] F. Radlinski, R. Kleinberg, and T. Joachims. Learning
diverse rankings with multi-armed bandits. In
Proceedings of the 25th international conference on
Machine learning, pages 784–791. ACM, 2008.

[19] S. L. Scott. A Modern Bayesian Look at the
Multi-armed Bandit. Appl. Stoch. Model. Bus. Ind.,
26(6):639–658, 2010.

[20] W. Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, pages 285–294, 1933.

	Introduction
	Related Work
	Multi-armed Bandits
	Stochastic Multi-armed Bandits
	Thompson Sampling

	Multiple Query Suggestions
	Experiments
	Setup
	Evaluation
	Discussion

	Conclusion and Future Work
	References

