Automatically Identifying Localizable Queries

Michael Welch, Junghoo Cho
UCLA Computer Science
Department

Localizable Queries

- Some queries are location sensitive
 - "italian restaurant" → "[city] italian restaurant"
 - "courthouse" → "[county] courthouse"
 - "drivers license" → "[state] drivers license"
- Our task: identify this class of queries

Motivation

- Why automatically localize?
 - Reduce burden on the user
 - No special "local" or "mobile" site
 - -Improve search result relevance
 - Not all information is relevant to every user
 - Increase clickthrough rate
 - Improve local sponsored content matching

Motivation

- Significant fraction of queries are localizable
 - Roughly 30%, but users only explicitly localize them about ½ of the time
- Users exhibit consensus on which queries are localizable

Our Approach

- Identify candidate localizable queries
- Select a set of relevant features
- Train and evaluate supervised classifier performance

Keep It Simple

- General principle: keep it simple
 - We're dealing with web scale data
- Independent processing stages
- Features should be easy to compute
 - Distributable, in parallel

Our Approach

- Identify candidate localizable queries
- Select a set of relevant features
- Train and evaluate supervised classifier performance

Identifying Base Queries

- Queries are short and unformatted
- Use string matching
 - Compare against locations of interest
 - Using U.S. Census Bureau data
 - -Tag matching parts and extract the "base"
 - Filter out false positives in the classifier
 - -Simple, yet effective

Example: Identifying Base Queries

Example: Identifying Base Queries

- Three distinct base queries
 - Remove stop words and group by base
 - Allows us to compute aggregate statistics

Base	Tag
public libraries california	city:malibu
public libraries malibu	state:california
public libraries	city:malibu, state:california

Our Approach

- Identify candidate localizable queries
- Select a set of relevant features
- Train and evaluate supervised classifier performance

Distinguishing Features

- Hypothesis: localizable queries should
 - Be explicitly localized by some users
 - Occur several times
 - From different users
 - Occur with several different locations
 - Each with about equal probability

Localization Ratio

• Users vote for the localizability of query q_i by contextualizing it with a location ℓ

$$r_i = \frac{Q_i(L)}{Q_i + Q_i(L)}$$

Susceptible to small sample sizes

Occurrence Counts

- Measure overall popularity of query
 - Not necessarily indicative of localizability
 - Can be used to normalize other measures
- User-related counts
 - Users often issue same query multiple times
 - Unique user count is a better measure of popularity for our purpose
- Location counts
 - Number of distinct locations

Location Distribution

The "fried chicken" problem

Tag	Count	Tag	Count
city:chester	6	city:rice	2
city:colorado springs	1	city:waxahachie	1
city:cook	1	state:kentucky	<u>163</u>
city:crown	1	state:louisiana	4
city:louisiana	4	state:maryland	2
city:louisville	2		

Location Distribution

The "fried chicken" problem

Tag

city:chester

city:colorado sp

city:cook

city:crown

city:louisiana

city:louisville

	Count
	2
е	1
	<u>163</u>
	4
	2

Location Distribution

$$\forall \ell \in L(q_b) \Pr[\ell \in q_\ell \mid q_b = base(q_\ell)] \approx \frac{1}{|L(q_b)|}$$

- Informally: given any instance of a localized query q_l with base q_b , the probability that q_l contains location ℓ is approximately uniform across all locations that occur wth q_b .
- Approximate the distribution with mean, median, min, max, and standard deviation

Clickthrough Rates

- Assumption: greater clickthrough rate indicative of higher user satisfaction
- Calculated clickthrough rates for both the base query and its localized forms
 - Binary clickthrough function
- Clickthrough rate for localized instances
 17% higher than nonlocalized instances

Our Approach

- Identify candidate localizable queries
- Select a set of relevant features
- Train and evaluate supervised classifier performance

Classifier Training Data

- Selected a random sample of 200 base queries generated by the tagging step
- Filtered out base queries where
 - $-n_1 \leq 1$
 - $-u_q = 1$
 - -q=0
- From remaining 102 queries
 - 48 positive (localizable) examples
 - 54 negative examples

Evaluation Setup

- Evaluated supervised classifiers on precision and recall using 10-fold cross validation
 - Precision: accuracy of queries classified as localizable
 - Recall: percent of localizable queries identified
- Focused attention on positive precision
 - False positives more harmful than false negatives
 - Recall scores account for manual filtering

Individual Classifiers

- Naïve Bayes
 - Gaussian assumption doesn't hold for all features
- Decision Trees
 - Emphasised localization ratio, location distribution measures, and clickthrough rates

Classifier	Precision	Recall
Naïve Bayes	64%	43%
Decision Tree (Information Gain)	67%	57 %
Decision Tree (Normalized Information Gain)	64%	56%
Decision Tree (Gini Coefficient)	68%	51%

Individual Classifiers

- SVM
 - Improvement over NB and DT, but opaque
- Neural Network
 - Also opaque
 - Best individual classifier

Classifier	Precision	Recall
SVM	75%	62%
Neural Network	85%	52%

Ensemble Classifiers

- Observation: false positive classifications differ for individual classifiers
- Combined DT, SVM, and NN using a majority voting scheme
- Achieved 94% precision with 46% recall

Main Contributions

- Method for classifying queries as localizable
 - -Scalable, language independent tagging
 - Determined useful features for classification
 - Demonstrated simple components can make a highly accurate system
- Exploited variation in classifiers by applying majority voting

Future Work

- Optimize feature computation for real-time
 - Many features fit into MapReduce framework
- Investigate using dynamic features
 - Updating classifier models
 - Explicit feedback loops
- Generalize definition of "location"
 - Landmarks, relative locations, GPS
- Integration with search system

Acknowledgements

- Anonymous reviewers and survey participants provided valuable data and feedback
- Generous travel support provided by
 - -ACM SIGIR
 - -Amit Singhal, in honor of Donald B. Crouch
 - Microsoft Research, in honor of Karen
 Sparck Jones.

Questions or Comments?

... and hopefully some answers