A Survey on view materialization and view maintenance of Datawarehouse
Chiu Wai Man

Computer Sci. & Eng. Dept

CUHK

wmchiu@cse.cuhk.edu.hk

Sia Ka Cheung

Information Engineering Dept

CUHK

kcsia8@ie.cuhk.edu.hk

Yip Wai Fung

Information Engineering Dept

CUHK

wfyip8@ie.cuhk.edu.hk

Abstract

The paper presents a survey of the method for view materialization and view maintenance in data warehouse. In the first half of the paper, we concentrate on various algorithms in optimal view selection. These techniques can be classified into two different approaches: static view selection and dynamic view selection. In the second half of the paper, we studied some problems in view maintenance area, including dynamic update of stored view, view self-maintainability and view consistency.

Content

1 Introduction

2 View Materialization Problems

2.1 Static View Selection

2.2 Dynamic View Selection

2.3 View Storage with Cubetree

3 View Maintenance Problems

3.1 Dynamic Update of View

3.2 View self-maintainability

3.2.1 [image: image1.wmf])

,

,

,

(

)

,

(

1

montreal

S

java

P

match

S

P

T

$

=

View Self-Maintainability Test

3.2.2 Making View Self-Maintainable

3.3 View consistency

4 Conclusion

5 References

1. Introduction

Figure 1 shows a typical model of Data warehouse and how OLAP queries are carried out.

Data warehouse composed of all the data accumulated from numerous operational (transaction) databases since the start of a business. And the data is used to support OLAP (OnLine Analytical Processing) query for decision support. For example, the trend analysis like "Find the total volume of sales for the last 10 years" will require scanning large amount of tables and aggregation operation, which may take up several hours, while the result may be only several floating point value. Some feasible methods to speed up such query are as follow:

· Cache the query result for later use

· Materialize (pre-compute and store) some views that is able to answer the query fast or in a certain amount of time

· Having an indexing scheme across different dimension of the data, so the query require directly scanning the relevant part of data

Among the three methods, we have investigated related works in the first two areas.

2. View Materialization Problems with Datacube lattice

As the Data warehouse store data that comes from different operational database. Some papers [HRU96, BPT97] model this as multidimensional database or multidimensional datacube as show below.

[image: image22.png]The OLAP query is usually collapsing several dimension of the cube, so we can view a trend in a specific dimension, such as the sales figure of different product.

[image: image23.wmf](

)

(

)

(

)

å

å

=

=

+

=

k

i

m

i

i

vi

i

M

V

U

g

M

Q

Q

f

M

G

Qi

1

1

,

,

,

t

When considering the materialization problem, we usually use the datacube lattice structure shown below [HRU96, Gup97, BPT97], because it captures the computational dependencies among different views in a datacube.

The lattice show that a view computed on dimension product (p) and customer(c) can be used to derive view that computed on dimension (p) only.

Base on the datacube lattice, a number of static view selection strategy had been developed [HRU96, Gup97, BPT97]. In the following section, we will have a brief overview of these.

[image: image24.wmf](

)

(

)

(

)

(

)

C

S

C

M

G

M

G

M

C

B

/

,

,

,

È

-

=

t

t

2.1 Static view selection

In [HRU96], it presented a greedy algorithm that given a space constraint, it return a set of views to materialize that minimize the amount of table to scan in answering a arbitrary query, it also proven be to within a constant factor (0.63) of the optimal set of views.

In [Gup97], it assumes the frequencies of all queries are known in advance, and redefine the benefit function in greedy algorithm as follow

[image: image25.png]The first one is the cost of materialize a set of views M in a datacube lattice G. While the second one is the benefit of materializing view C in presence of the set M. We can see that this new cost model take into account the frequency of each query, the update cost of views, and consider the benefit as improvement per unit space used.

Besides, it also presents a greedy-interchange algorithm that exchanges pairs of views inside and outside the selected set whenever there is a benefit.

In [BPT97], it presents two methods to reduce the problem size. The first one is given a set of queries, it enumerates only views are relevant to answer this set of queries. This algorithm makes use of the dependency of attribute. For example, in a location dimension, same city will imply same country relationship, so the view computed on group by city will be able to answer query on group by country.

Another heuristic is target on the roll-up part of OLAP query. "Roll-up" means looking at the data by zooming out to less detailed levels, it is in relation to the "Drill-down" operation, which means zooming in to more detailed levels. It can be visualized in the following example:
Country
Continent
Sales

US
North America
5000000

Canada
North America
900000

Mexico
North America
600000

New Zealand
Australasia
300000

Australia
Australasia
2000000

Continent
Sales

North America
6500000

Australasia
2300000

[image: image26.png][image: image27.jpg]The fist table is a view group by country, while the second table is a view group by continent, we can see that materializing the second view does not improve much for queries as its size reduction from first view is not great. In [BPT07], it presents an algorithm given a set of functional dependency (e.g. country->continent), it prune out those view that does not bring significant reduce of table size compare to views that can derive them.

2.2 Dynamic view selection

In comparison to the static view selection, which require bring down the warehouse periodically and "re-calibrate" the set of materialized view using the algorithm proposed above, DynaMat [KR99] presented a dynamic view management strategy. This strategy makes use of the result of OLAP query occupies small space, and during "roll-up" operations, future queries are likely to be computable from the result of previous queries.

DynaMat propose a view pool that cache the result of OLAP query, when the pool size reach the space constraint (space bound) or exceed the update time window constraint (time bound), stored views in the pool will be evaluated according to a goodness function whether to keep it or not. They proposed several goodness functions to determine which view to replace in the space bound case:

· Least recently used view is replaced first.

· Least frequently used view is replaced first.
· Smaller view size is replaced first, the intuition behind is larger view size are more likely to hit by later queries.
· View with the smallest penalty to sacrifice is replaced first, it means that view with smallest cost to re-compute when a future query hit is replaced first.
In the time bound case, views are replaced during the update period. They assume a delta table dV containing changes to the base relations exist. For a view f in the view pool, there are two ways (cost model) the view can be updated:

· Apply a multi-dimensional query that f represents to the dV to find the delta table that can update f.

· If there exists a view ffather can use to derive f, apply a query on ffather to find the delta table to update f.
A more accurate update cost evaluation function has to consider the effect on update cost of view f 's child view fchild (the views can be derived from view f). Putting all together, let UC(f) be the minimum of two update cost of view f described above, the actual update cost of view f is :

Udelta(f) = UC(f) - Σ(UCnew(fchild)-UCold(fchild)) fchildεv : father(fchild) = f
[image: image28.png]Where UCnew is the update cost without f, and UCold is the update cost with f in the view pool. We then remove views with update cost greater than the update time window, if we still hits the time bound, views are evicted according to the 4 goodness function described before.
DynaMat had shown better performance than optimal static view selection when the number of views grows up to a certain threshold. They measure the performance by means of DCSR (Detailed cost saving ration), which is a hit-rate ratio measuring the fraction of queries can use views in the view pool to answer.

[image: image29.png]2.3 View Storage with Cubetree

In the previous section, we have discussed various algorithms in selecting sub-optimal views for materialization. However, how can we index the stored view so that we can make good use of the stored views ?

In conventional relational storage techniques, views are stored in tables in a relational system. However, this storage techniques suffers from several disadvantages:

· Index dimensions residing in B-trees are separated. As a result, keys are replicated several times in additional to the values stored in the relation storage

· Relational storage data is typically stored unsorted which prohibits efficient merge operations during the updates.

In [YN98], it presents an efficient algorithm for mapping an arbitrary set of OLAP views to a collection of R-trees, called Cubetree. This Cubetree has high efficiency during incremental bulk update and high query throughput. The bulk incremental update relies on their internal organization which is maintained sorted al all times and permits both an efficient merge pack algorithm and sequential writes on the disk. The Cubetree organization combines both storage and indexing in a single data structure and still within the relation paradigm.
Every stored view can be considered as a multi-dimensional data sets. Figure 5 shows typical Cubetree organization where 3 views are mapped to a Cubetree.

A algorithm to map every selected view to minimal set of R-trees is also presented in the paper. This algorithm performs the mapping according to the arity (number of attributes in the projection list) of each view.

After the mapping, every view will occupy a distinct area in the tree-dimensional index space. Thus, a single R-tree interface can be used to answer query of any one of the view. Moreover, conventional search algorithm of R-tree can be applied to speedup the query performance of Cubetree.
[image: image30.png][image: image31.wmf](

)

(

)

(

)

å

å

=

=

+

=

k

i

m

i

i

vi

i

M

V

U

g

M

Q

Q

f

M

G

Qi

1

1

,

,

,

t

In [YN98], it also presents experiments on the query performance of the Cubetree when compared with conventional storage techniques. A random query generator generates 100 queries for selected views in a selected lattice. The query performance is shown as follows:

3. View Maintenance Problems

In the previous section, we see that materializing views can improve OLAP query performance. However, views will not be static all the time. Instead, they will changes when there is transaction. So, we need to update these views when source data changes. How can we update views in a dynamic ways instead query all data sources? How can we view be self-maintained so that they can be maintained without going to the data sources or replicating all base data? How to maintain the consistency of view during updates? All these are problems that we will study in the view maintenance section.

3.1 Dynamic Update of Views

Many strategies have been proposed in the literature for updating a single warehouse view, and the common approach is to split into two phases - propagate and install.

· Propagate means computing a delta table containing changes to the view. Usually denote this by Comp(V).

· Install means changing values in the view base on delta table computed. Usually denote this by Inst(V).

We have studied "Shrinking the Warehouse Update Window" [LYG99] which presents a strategy in reducing the update time by rearranging these operations.
Consider the following example:

V3 is defined over V2 and V1.
View V3

Product Name
Total Sale

Office 2000
3000

Windows 2000
7000

Red Hat Linux
5000

View V1

Product ID
Product Name

1
Office 2000

2
Windows 2000

3
Red Hat Linux

View V2

Product ID
Store
Day
Sale

1
A
1
1000

1
B
1
2000

2
A
1
3000

2
C
1
4000

3
D
1
5000

In the second day, new products come out and new sales figure comes, below is the delta table for V1 and V2.

ΔV1

Product ID
Product Name

4
Oracle 8I

5
SPSS

ΔV2

Product ID
Store
Day
Sale

1
A
2
2000

1
B
2
2000

2
C
2
2000

3
D
2
2000

There are two strategies to compute data table ΔV3:

1. [image: image32.wmf](

)

(

)

(

)

(

)

C

S

C

M

G

M

G

M

C

B

/

,

,

,

È

-

=

t

t

Join ΔV1 and V2 , install changes to V1, join ΔV2 and V1' (the updated V1), install changes to V2.

2. Join ΔV2 and V1 , install changes to V2, join ΔV1 and V2' (the updated V2), install changes to V1.

Both strategic can compute ΔV3, we denote the cost as Comp(V3). And the following table size:
V1 = 3, V2 = 5, ΔV1 = 2

ΔV2 = 4, V1' = 5, V2' = 9

We see that if strategy 1 need (2+5)+(4+5) = 16 tuples scan, while strategy 2 need (4+3)+(2+9) = 18 tuples scan.

The example here imply us to install views with smaller change in size first, as we can see strategy one can be expressed as: Comp(V3,(V1)), Inst(V1), Comp(V3,(V2)), Inst(V2), Inst(V3). [LYG99] call this as 1-way view strategy.

Putting all together, the order to intall views and the dependencies among views, carryout a topological sort base on these constraints will give an optimal strategic to minimize the time required for updating warehouse.
3.2 View Self-maintainability

A data warehouse is typically a dedicated database system that is separated from the organization’s online transaction processing (OLTP) System. It stores materialized view over data from one or more sources in order to provide fast access to information for decision support. Maintaining these views efficiently in response to base updates is difficult, since it may involve querying external sources where the base data reside. Thus, the two critical questions that must be addressed in the problem of view self-maintenance are to determine whether a view is maintainable, and how to maintain it.

In this section, we are going to discuss methods in determining view self-maintainability using Complete Test for View Self-Maintainability (CTSM) and making view self-maintainable using additional auxiliary views.
3.2.1 View Self-Maintainability Test

Given a conjunctive view definition Q, a view V is the results of applying Q on a base data D and a update u to the base data D. [HUY96] presents a test that determines whether or not Q(Du) depends only on V and u, regardless of the actual database D, subject to the constraint that V = Q(D). This test is called Complete Test for View Self-Maintainability (CTSM).

Consider the following example:

A job brokerage house use a materialized view match(P,J,S,L) to match people between people P with skill S and multi-sited jobs J at location L,

where the view match is derived from the following relations :

apply(P,J,S)

Person P applies for job J indicating that P has skill S to offer

site(J,L)
L is one of the job J’s location

prefer(P,L)
P is willing to work at location L

use(J,S)
S is one of job J’s required skills

Consider the insertion of a tuple in site(java, montreal) and a test :

[image: image34.png]
We can know that there are the view is already updated if T1 is satisfied. Conversely, if T1 is not satisfied, there might be unseen skills used in java and who are willing to work in montreal. Thus T1 is a maximal test that guarantees view match to be self-maintainable for the insertion of site(java,montreal). We call such test Complete Tests for Self-Maintainability (CTSM)

In [HUN96], it presents an algorithm find the CTSM based on conjunctive query view which is formally defined as follows:

[image: image2.wmf])

,

(

),

,

(

:

)

'

,

'

,

'

(

:

Z

U

S

U

X

r

Z

U

X

Q

-

n

where
[image: image3.wmf]U

,
[image: image4.wmf]X

 and
[image: image5.wmf]Z

denotes sets of variables,
[image: image6.wmf]'

U

,
[image: image7.wmf]'

X

 and
[image: image8.wmf]'

Z

 denote subsets of
[image: image9.wmf]U

,
[image: image10.wmf]X

 and
[image: image11.wmf]Z

 respectively, r is the predicate for the update relation, and S denotes a conjunction of sub-goals.
[image: image12.wmf]U

 represents the variables shared between the sub-queries
[image: image13.wmf])

,

(

U

X

r

 and
[image: image14.wmf])

,

(

Z

U

S

.

With this definition, we can derive CTSM with the minimal z-partition of the conjunctive query Q. A z-partition is the partition of the sub-goals
[image: image15.wmf])

,

(

Z

U

S

 into groups such that no two groups share the same z-variable. A minimal z-partition is a z-partition such that further partitioning is not possible without introducing groups sharing the same non-distinguished variables (
[image: image16.wmf]Z

in the above definition).

3.2.1 Making View Self-Maintainability
In the previous section, we mentioned methods in testing self-maintainability of a view. When a view is not self-maintainable, we have to query the data sources in order to maintain the view. The problems associated with querying the data sources are that the sources may periodically be unavailable, may be expensive or time-consuming to query, and inconsistencies can result at the warehouse unless care is taken to avoid them throughout the use of special maintenance.

In [QGMW96], it presents an algorithm to determine what extra information, called auxiliary views, can be stored at a warehouse in order to maintain a view without accessing base data at the sources. Given a view definition V, derives a set of auxiliary views A such that view V and the views A taken together can be maintained upon changes to the base relations without requiring access to any other data.

The working mechanism of auxiliary view determination is as follows:

1. Construct a join graph G(V) for view V where there is an edge e(Ri,Rj) from Ri to Rj if V contains a join condition Ri.B = Rj.A and A is a key of Rj.

2. Construct some relation functions from the join graph constructed in step 1 for each relation Ri, including Dep(Ri,G), Dep+(Ri,G) and Need(Ri,G).

3. After constructing the relation functions , we can determine the auxiliary views with a algorithm shown in Figure 9.

[image: image33.png]
After the determination of auxiliary view, the paper continues to introduce techniques to maintain views using the derived auxiliary views on certain type of change in source database, including insertions, deletions or updates to a base relations.

To show that the auxiliary view is sufficient to maintain the view, the authors in [QGMW96] transform the view maintenance expressions written in terms of changes and the base relations to equivalent view maintenance expressions written in terms of the changes, the view and the auxiliary. This shows the any changes on the views do not depend on the base relation and the views are self-maintainable.

3.3 View Consistency

In a data warehouse, information are integrated from several distributed data sources, there are two major problem of ensuring data consistency. Firstly, each view should reflect the base data consistently. Secondly, multiple views should be mutually consistent. Before the view materialization, source consistency should also be maintained. Source consistency means the consistency between any update of base data and the transaction being made. However, in this paper we will focus on multiple view consistency (MVC).
Multiple View Consistency

Usually, in a data warehouse, they may be several views reflecting similar set of base data. For example, in the banking industry, banker may want to know the relationship between customers’ age and their trend of investment. Also the relation between income and trend of investment may also be important. So, several views may be materialized for such purpose. In this case, multiple view consistency may not be so important as inconsistency have little impact on the results. However in some cases, the mutual consistence between multiple views are essential. For example, a warehouse may be used to handle customer inquiries. When customers call with questions, their data being read should be consistent, say their checking account record, credit card record should match their linked saving account record. Thus multiple view consistency is a must in this case.

Example on inconsistency of multiple views

Now, let’s look at a simple example that demonstrate multiple view inconsistent. Suppose there are 2 views V1 = R
[image: image17.wmf]><

 S and V2 = S
[image: image18.wmf]><

T.

The followings are the content of base relation and the views at each time interval.

R:

S:

T:

V1:

V2:

Time

A
B

B
C

C
D

A
B
C

B
C
D

t0

1
2

-
-

3
4

-
-
-

-
-
-

t1

1
2

2
3

3
4

-
-
-

-
-
-

t2

1
2

2
3

3
4

1
2
3

-
-
-

t3

1
2

2
3

3
4

1
2
3

2
3
4

Table 1: Change of base relations and views.

Initially, as S is empty, V1 and V2 are also empty. At t1, a tuple [2,3] is inserted into S. At t2, change to V1 is made and [1,2,3] is inserted in V1. At t3, change to V2 is also made.

For both V1 and V2, the above view maintenance steps are correct. Their contents reflect correctly the states of base data after the updates. However, at t2, V1 and V2 are not mutually consistent. They reflect different instances of the base data. V1 reflects the updated base relations while v2 does not.

In this case, algorithm for maintaining multiple view consistency is needed. The simplest way to solve MVC problem is to use a single integrator process to handles all the updates sequentially. For each updates in base data, the integrator generates the changes to all views and send it to the data warehouse. Obviously, this is unacceptable in high update rate environment.

Algorithm ensuring MVC

In [multiple view consistency for data warehousing], a new algorithm that ensures MVC is suggested. This algorithm should work with single view consistency algorithms. However it is independent of the data model, while the single view one may depend on the data model and the type of views defined.

An architecture that allows as much parallelism as possible is proposed in this algorithm. Such architecture is shown below.

Firstly, updates from data source are reported to the integrator. Then the integrator forwards the updates to relevant view managers. Each view manager is a separate process that handles the delta computation for individual views. After the delta computations, the resulting “action list” for each view is then forwarded to the merge process. The merge process collects the entire action list and holds them until all affected views are available to be modified. Then it sends the entire action list to the data warehouse in a single transaction.

Simple Painting Algorithm

In the merge process, there is a special algorithm for it to decide when to hold and when to forward actions. This is the Simple Painting Algorithm (SPA). This SPA can guarantees complete warehouse states. In the SPA, a new data structure called the View Update Table (VUT) is introduced. Let us denote the set of relevant views received from the integrator as RELj and the action list received from the view managers as ALyj. The SPA will be explained by the following example.

Example on Simple Painting Algorithm

Suppose we have 3 views: V1 = R
[image: image19.wmf]><

S, V2 = S
[image: image20.wmf]><

T
[image: image21.wmf]><

Q and V3 = Q. There are 2 source updates: U1 on S and U2 on Q. When the merge process received REL1 and REL2, the following VUT is built. It is a 2 dimensional table where VUT[i,x] corresponds to update Ui and view Vx.

V1(R,S)
V2(S,T,Q)
V3(Q)

U1(S)
(white)
(white)
(black)

U2(Q)
(black)
(white)
(white)

View Update Table (VUT)

In SPA, each entry in the VUT contains a color field. The colors represent the corresponding state of the receiving of action list for each pair of update and view. There are 4 possible colors:

· White (w): waiting for the corresponding action list for the entry;

· Red (r): the corresponding action list has been received, but the merge process is waiting for other actions before applying it;

· Gray (g): the corresponding actionlist has just been applied;

· Black (b): the entry need not be examined.

Each view manager will send one AL per relevant update. Even if there is no action corresponding to a view, it will also send an empty AL to the merge process to notify it that there is no need to update a certain view. When the action list is expected to be received for an entry, the color will be white. After the action list is received, it will be saved in an array WT and the color of such entry will change to red. In our example, suppose the merge process receives AL21 from VM2 (which handles V2). The merge process saves this action list in WT1 and set the color of the corresponding entry to red.

V1
V2
V3
WTi

V1
V2
V3
WTi

U1
w
w
b
Ø
(
U1
w
r
b
{AL21}

U2
b
w
w
Ø

U2
b
w
w
Ø

Although the AL for V2 is received now, the merge process still cannot apply it yet. It is because other AL for this update (U1) has not been received. Thus the merge process needs to wait until AL11 is received. After that, the merge process can apply both action lists together and update both views. When the action lists are being applied, the color of the corresponding entry will change to gray.

Submitting the view maintenance transaction to the warehouse

There is still one problem concerning the SPA algorithm. For example when a certain view is derived from another view, it needs to wait for such view to update before its own update. Let the updates for the first set of views be WT1 and let the latter one be WT2. Even if WT1 is submitted to the warehouse before WT2, it is still possible that WT2 is committed before WT1 in the data warehouse.

A simple solution to this problem is to submit the WT1 and then submit WT2 only when W1 is committed. This solution is good when the transactions to the warehouse are small and transaction overheads are low. The merge process can also choose to sequentially submit those dependent transactions while submit the others in a parallel manner. If the warehouse DBMS support transaction dependency, the merge process can even send all transactions to the warehouse in parallel with their dependency information. Thus the execution sequence is then decided by the warehouse DBMS.
4. Conclusion

The fundamental role of a data warehouse is to provide data for supporting decision-making. As a result, to be able to answer query in a short time is a critical factor for the success of a data warehouse system. The paper presents a survey of the methods handling problems in view materialization and view maintenance in data warehouse. In the first part of the paper, we studied various methods in selection optimal view for materialization so that query can be answered with the help of these views. In the second half of the paper, we studied various algorithms in view self-maintainability, consistency and dynamic updating.

5. References

[BPT97] E.Baralis, S. Paraboschi, and E. Teniente. Materialized View Selection in a Multidimensional Database. In Proc. of VLDB, pages 156-165, Athens, Greece, August 1997

[Gup97] H. Gupta. Selection of views to materialize in a data warehouse. In Proc. Sixth ICDT, pages 98-112, Delphi, Jan. 1997

[HRU96] V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes efficiently. In SIGMOD, pages 205-216, 1996

[KR99] Yannis Kotidis and Nick Roussopoulos. DynaMat: A dynamic view management system for data warehouses. In SIGMOD Intl. Conf. on Management of Data, 1999

[LYG99] W. J. Labio, R. Yerneni and H. Garcia-Molina. Shrinking the warehouse update windows. Technical report, Stanford University, 1999. Available at

http://www-db.stanford.edu/pub/papers-/setvm.ps
[YN98] Yannis Kotidis and Nick Roussopoulos. An Altnerative Storage Organization for ROLAP Aggregate Views Based on Cubetrees. In SIGMOD, pages 249-258, 1998

[HUY96] N. Huyn. Efficient View Self-Maintenance. In Proc. of the ACM Workshop on Materialized Views: Techniques and Applications, 1996.

[QGMW96] D. Quass, A. Gupta, I. Mumick, and J. Widom. Making Views Self-Maintainable for Data Warehousing. In Proc. of the Conference on Parallel

and Distributed Information Systems, 1996.

[ZWG97] Y. Zhuge, J. L. Wiener and H. Garcia-Molina, Multiple View Consistency for Data Warehousing. In Proc. of the International Conference on Data Engineering, Binghamton, UK, 1997.

�

Figure 1: Typical Data Warehouse Model

Product

Supplier

Customer

Figure 2 : A Multi-dimensional DataCube

Figure 3: Datacube Lattice Structure

�EMBED Equation.3���

�EMBED Equation.3���

�EMBED MSPhotoEd.3���

Figure 4: View Storage with Cubetree

�EMBED MSPhotoEd.3���

Figure 5: Cubetree organization

�

Figure 7: Query Performance on Views

V3

V2

V1

�EMBED MSPhotoEd.3���

Figure 8: Elements of view self-maintenance problem

�EMBED MSPhotoEd.3���

Figure 9: Algorithm to Derive Auxiliary Views

Basedata-1

Basedata-2

……..

Basedata-n

Source Consistency

View Consistency

MVC

View-m

………

View-2

View-1

Figure 10: Three layer of consistency

Data

Source

Data

Source

View Mgr 2

View Mgr 3

View Mgr 1

Data

Source

Updates

Updates

Updates

Integrator

Warehouse

View 1, View 2, View 3

Actions

Actions

Actions

Merge Process

Updates

Updates

Figure 11: Data warehouse architecture

1

_1050248033.unknown

_1050248038.unknown

_1050248040.unknown

_1050255620.unknown

_1050255650.unknown

_1050248041.unknown

_1050251494.unknown

_1050248039.unknown

_1050248035.unknown

_1050248036.unknown

_1050248034.unknown

_1050248029.unknown

_1050248031.unknown

_1050248032.unknown

_1050248030.unknown

_1050240014.unknown

_1050247960.unknown

_1050248028.unknown

_1050248026.unknown

_1050247032.unknown

_1050245111.unknown

_1050237104.unknown

_1050239621.unknown

_1050237102.unknown

