Efficient Monitoring Algorithm for Fast News Alert

Ka Cheung "Richard" Sia
kcsia@cs.ucla.edu
UCLA
Goal
- Monitor and collect information from the Web
- Answer most of users’ queries

Challenges
- Billions of pages to monitor
- Information are updated frequently
- Users want information fresh!
Information aggregator framework

- Server-based monitoring and dissemination

![Diagram of server-based monitoring and dissemination](image-url)
Overview

- Modeling the posting generation process
 - Definition of delay
 - Poisson process
Overview

- Modeling the posting generation process
 - Definition of delay
 - Poisson process
- Crawl scheduling
 - Resource allocation (*how often to contact?*)
 - Retrieval scheduling (*when to contact?*)

The collected data

- ∼10k RSS (since September 2004)
- ∼40k Weblogs (since April 2004)
Overview

- Modeling the posting generation process
 - Definition of delay
 - Poisson process
- Crawl scheduling
 - Resource allocation (*how often to contact?*)
 - Retrieval scheduling (*when to contact?*)
- The collected data
 - \(\sim 10k\) RSS (since September 2004)
 - \(\sim 40k\) Weblogs (since April 2004)
New challenges

- Higher requirement on freshness
- Finer time granularity (will traditional assumption be valid?)
Terminology

- t_i - posting generation time
- τ_j - time of the j^{th} contact

$$D(O) = \sum_{i=1}^{k} (\tau_j - t_i), \text{ where } t_i \in [\tau_{j-1}, \tau_j]$$
Posting generation model

- Homogeneous Poisson model
 \[\lambda(t) = \lambda \text{ at any } t \]

- Periodic inhomogeneous Poisson model
 \[\lambda(t) = \lambda(t - nT), \quad n = 1, 2, \ldots \]
Posting generation model

- **Homogeneous Poisson model**
 \[\lambda(t) = \lambda \text{ at any } t \]

- **Periodic inhomogeneous Poisson model**
 \[\lambda(t) = \lambda(t - nT), \ n = 1, 2, \ldots \]

Weekly number of postings (Sep 26 – Jan 8)

- **2 hours posting count (Oct 3 – Oct 9)**
Expected retrieval delay

- Inhomogeneous Poisson model
 rate - $\lambda(t)$
 retrieval time - τ_{j-1}, τ_j

expected delay - $\int_{\tau_{j-1}}^{\tau_j} \lambda(t)(\tau_j - t)dt$
Expected retrieval delay

- Inhomogeneous Poisson model
 rate - $\lambda(t)$
 retrieval time - τ_{j-1}, τ_j

 expected delay - $\int_{\tau_{j-1}}^{\tau_j} \lambda(t)(\tau_j - t)\,dt$

- Homogeneous Poisson model
 expected delay - $\frac{\lambda(\tau_j - \tau_{j-1})^2}{2}$
Maximize resource utilization to provide timely information.
Objective

Maximize resource utilization to provide timely information.

- Resource allocation
 - How often to contact data sources?
Maximize resource utilization to provide timely information.

- Resource allocation
 How often to contact data sources?

- Retrieval scheduling
 When to contact data sources within a day?
Consider n data source O_1, \ldots, O_n

- λ_i - posting rate of O_i
- w_i - weight of O_i (how important)
- N - total number of retrievals per day
- m_i - number of retrievals per day allocated to O_i
Consider \(n \) data source \(O_1, \ldots, O_n \)
- \(\lambda_i \) - posting rate of \(O_i \)
- \(w_i \) - weight of \(O_i \) (how important)
- \(N \) - total number of retrievals per day
- \(m_i \) - number of retrievals per day allocated to \(O_i \)

Optimal allocation

\[
m_i \propto \sqrt{w_i \lambda_i}
\]
m retrieval(s) per day is allocated for data source O, how should we schedule these m retrievals?

- $m = 1$
- $m > 1$
Multiple retrievals per period

m retrievals per period are allocated, when scheduled at time τ_1, \ldots, τ_m, the expected delay is:

$$D(O) = \sum_{i=1}^{m} \int_{\tau_i}^{\tau_{i+1}} \lambda(t)(\tau_{i+1} - t)dt$$

$$\tau_{m+1} = T + \tau_1$$

Criteria for optimality

$$\lambda(\tau_j)(\tau_{j+1} - \tau_j) = \int_{\tau_{j-1}}^{\tau_j} \lambda(t)dt$$
Multiple retrievals per period

Example: \(\lambda(t) = 2 + 2 \sin(2\pi t) \)
Experiment

- ~10k RSS feeds from Sep 21 - Dec 20 2004
- Characteristics of posting generation
9634 RSS feeds are used
Power-law distribution
Is posting rate stable and predictable?

- The closer to diagonal, the more the stability and predictability
- red - top 50%, green - top 80%, blue - rest
Reallocate resource everyday
2 weeks is a good choice
What is the posting pattern?

- Periodic (daily pattern)
- Inactive at night
What are the individual pattern?

- K-mean clustering
- Optimize for different patterns
1. Even scheduling
2. Retrieval scheduling only
3. Resource allocation only
4. Combined
Performance

<table>
<thead>
<tr>
<th>strategy</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>average delay (in min)</td>
<td>645</td>
<td>581</td>
<td>433</td>
<td>395</td>
</tr>
<tr>
<td>max delay (in min)</td>
<td>1440</td>
<td>1440</td>
<td>9120</td>
<td>10073</td>
</tr>
<tr>
<td>standard deviation</td>
<td>392</td>
<td>405</td>
<td>542</td>
<td>560</td>
</tr>
</tbody>
</table>

Statistics breakdown of posting delay using one retrieval per day.
Summary

- Efficient Monitoring
 - Resource allocation
 - Retrieval scheduling
 - Include user access pattern (extension)

- Data
 - 1 year of weblogs and half year of RSS data
 - For prototype testing