
Cost-Efficient Processing of Min/Max Queries over
Distributed Sensors with Uncertainty

Zhenyu Liu
University of California
Los Angeles, CA 90095

vicliu@cs.ucla.edu

Ka Cheung Sia
University of California
Los Angeles, CA 90095

kcsia@cs.ucla.edu

Junghoo Cho
University of California
Los Angeles, CA 90095

cho@cs.ucla.edu

ABSTRACT
The rapid development in micro-sensors and wireless networks has
made large-scale sensor networks possible. However, the wide de-
ployment of such systems is still hindered by their limited energy
which quickly runs out in case of massive communication. In this
paper, we study the cost-efficient processing of aggregate queries
that are generally communication-intensive. In particular, we fo-
cus on MIN/MAX queries that require both identity and value in the
answer. We study how to provide an error bound to such answers,
and how to design an “optimal” sensor-contact policy that mini-
mizes communication cost in reducing the error to a user-tolerable
level.

Categories and Subject Descriptors
F.0 [Theory of Computation]: General

General Terms
Theory

Keywords
MIN/MAX Query Processing, Query Answering with Uncertainty

1. INTRODUCTION
Sensor networks have tremendous potential to extend our capa-

bility in sensing and interacting with the surrounding environment.
The rapid development in low-power micro-sensors and wireless
networks has enabled prototype sensor networks to be deployed
in controlled environments [1]. However their wide deployment is
still hindered by their relatively short lifespan, because sensors typ-
ically operate on a small battery and become inoperable once the
battery runs out. It is therefore of paramount importance to mini-
mize their battery use to extend the lifespan of a sensor network.

In a typical setting, sensors communicate through wireless chan-
nels due to the ease and low cost of initial deployment. In this sce-
nario, the communication among the sensors becomes the principal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05 March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

Central
Server

Sensor 1 Sensor 2 Sensor 1000

Aggregation queries

Answers

Figure 1: A sensor network consisting of 1000 precipitation
sensors distributed at various locations

source of power usage [1], and a number of ongoing research inves-
tigates various mechanisms to minimize sensor communication [2,
3, 4, 5, 1]. In this paper, we study how we can process aggregate
queries efficiently on a sensor network with minimum communica-
tion among the sensors. As our next example illustrates, aggregate
queries are one of the most “expensive” queries to support because
we potentially have to retrieve the current value from every sensor.

Example 1 Consider a sensor network consisting of 1,000 rainfall
sensors (Figure 1). The user issues queries to a central server that
contacts each sensor to retrieve its current rainfall reading. The
current values of all the sensors can be viewed as a 1000-tuple
table, Sensors(id, rainfall), where id is the identity of
each sensor and rainfall is the current rainfall value. Given
this view, the following SQL query computes the maximum rain-
fall among the sensors:

SELECT MAX(rainfall)
FROM Sensors

Note that to compute the exact answer to this query, we potentially
have to contact all the sensors. This process will incur significant
communication overhead on the entire sensor network. 2

In many applications, however, getting the exact (or 100% accu-
rate) answer may not be required, and users may tolerate a certain
level of error in order to save the communication cost.

In this context, we note that MIN and MAX are the two most dif-
ficult queries among the five SQL aggregate functions (MIN, MAX,
AVG, SUM, COUNT) to get an “approximate” answer. For AVG, SUM
and COUNT queries, all we need is a value in the answer. To process
these “value-oriented” queries, we can simply “sample” the current
values of a few sensors and get an approximation. Furthermore, it
is also possible to estimate the error bound of the approximation
using, say, the central limit theorem [6].

In contrast, for MIN or MAX queries on a sensor network, we of-
ten want to know not only the value but also the identity of the
MIN/MAX sensor. For instance, suppose we want to query the
above rainfall sensor network to find out possible flood conditions.
To do that, we issue a MAX query to locate the sensor with the heav-
iest precipitation. Knowing the identity and knowing the value of
the MAX sensor are equally crucial in this task: the sensor’s identity

tells us where the most severe raindrop condition occurs, and the
value tells us how severe the condition is.

Requiring both identity and value in the answer poses a fun-
damental challenge to the cost-efficient answering of MIN/MAX
queries. While we might still find an approximate MIN/MAX value
via sampling, can we still find an “approximate identity” by sam-
pling a few sensors? For instance, suppose we identify the MAX
sensor out of 10 samples drawn from 1000. How do we measure
the error between this “approximate identity” and the “true MAX
identity” in the 1000? How can we combine such an error with the
error in the value component, and further provide an overall error
bound?

In this paper, we study how we can find both the identity and the
value to the answer of MIN/MAX queries using minimum commu-
nication among sensors. We believe this paper makes the following
contributions:
• We propose a formal framework to process MIN/MAX

queries efficiently when the user can tolerate a certain level
of error in the answer (Section 3).

• We describe an algorithm that selectively contacts a few sen-
sors in order to reduce the error in the answer (Section 4).
We also explain in what order the server should contact the
sensors, so that it can obtain the most “accurate” answer
while contacting the minimum number of sensors (Sections 5
and 6).

• We conduct extensive experiments to study the effectiveness
of our proposed policies (Section 7). Our results shows that
in certain cases, the optimal policy may save about 90% com-
munication cost compared to a naive policy.

2. RELATED WORK
Data gathering with minimum communication cost has been

studied in the sensor network community. In earlier works [2, 3, 4,
5] researchers have largely focused on designing efficient routing
protocols that gather precise answers. Recently researchers have
also investigated using statistical summaries to provide approxi-
mate answers to aggregate queries, so that the communication cost
is reduced [7, 8]. Our work differs from the existing ones by pro-
viding both the identity and the value for MIN/MAX queries, plus
we provide an error guarantee to the user so that the user can con-
trol the quality of the result.

Answering MIN/MAX queries over imprecise sensor data has
been studied by Cheng et al. and Deshpande et al. [9, 10]. In their
works, the answer’s error is also defined as a probabilistic mea-
sure. Sensor probing policies are proposed to reduce this error by
observing more sensors and obtaining their latest readings. While
these works propose various heuristics in designing sensor prob-
ing policies, in this study we focus on how to achieve optimality in
designing such sensor probing policies.

Our research is also related to answering aggregate queries over
imprecise data replications [11, 12, 13]. In contrast to our work,
these works are mainly concerned about reducing the error bounds
of the returned answers, while our work tries to return both the
identity and the value for MIN/MAX queries.

3. FRAMEWORK
In this section, we describe our framework for processing

MIN/MAX queries with errors. Note that answering MIN queries
is symmetric to answering MAX queries, thus in the remainder of
this paper we only deal with MAX.

Roughly, our high-level framework is as follows: We assume
that the user issues queries to a central server that is responsible

for communicating with the distributed sensors and collecting their
values (Figure 1). The server may not know the exact values of the
sensors at the query time, due to infrequent communications with
the sensors. In our paper, the server models the current value of
the ith sensor as a random variable Xi with an associated proba-
bility distribution fi(x). We also assume that when the user issues
a query, she also specifies how much “error” in the answer she can
tolerate. Given the user-specified error tolerance and the proba-
bility distribution of each sensor, the server decides which sensors
to contact, so that it can reduce the answer’s error to the tolerable
level. In the rest of this section we describe this high-level frame-
work more precisely. In Section 3.1 we first explain how the server
communicates with the sensors and how it represents the current
value of a sensor. Then in Section 3.2 we formalize the notion of
“error” in the answer.

3.1 Data Model and Sensor Probing
Periodically, the server communicates with the sensors in the

network to obtain their current values. The communication may
be initiated either by the sensors or by the server. For example, a
sensor may decide to report its current value to the server for the
following reasons:
• Regular update [1]: The sensor reports its current value to

the server regularly at a certain interval, say once per hour.

• Value-bound violation [11, 9]: The sensor reports its current
value whenever the value exceeds a certain range. For ex-
ample, a rainfall sensor may be required to report the current
precipitation whenever the value deviates +/-50 millimeters
from the previous report. In this case, if the previously-
reported value was 100mm, the current value must be re-
ported whenever it exceeds 150mm or drops below 50mm.

Note that unless the sensors constantly report their current values
to the server, the server does not know the current sensor values for
sure. In this paper, the server models the value of sensor i as a
random variable Xi with an associated probability density function
fi(x). The value of Xi may lie either in a bounded range or in an
unbounded range depending on how sensors communicate with the
server.
• Bounded model : The server knows that the value of Xi lies

within a bounded range [li, ui] (i.e., li ≤ Xi ≤ ui). This
model is appropriate for the above value-bound violation sce-
nario. For example, assuming that a rainfall sensor previ-
ously reported 100mm, and it must report again whenever
the value deviates more than +/-50mm. Without receiving
any further report, the server knows that the current value is
bounded within [50mm, 150mm].

• Unbounded model : Xi may take any value in an unbounded
range. This model may be appropriate if the sensor regularly
updates the server without providing any value-bound guar-
antee.

Note that the exact distribution of fi(x) can usually be obtained
either based on the physical model of how Xi’s value evolves over
time or based on the historical data collected from the sensor. For
example, if historical data indicate that the March raindrop at sen-
sor i follows a bell-shaped distribution centered around 100mm, we
may assume Xi follows a normal distribution in this range (Fig-
ure 2(a)).

Sensor Probing Besides the sensor-initiated communication, the
server may also contact sensor i and retrieve its current value,
which we refer to as sensor probing. Note that after probing Xi,
its value changes from a probability distribution to a single value
(Figure 2).

 fi(x)
probing Xi ⇒ Xi = 120mm

100mm

(a) Xi’s distribution
before probing

(b) After probing

Figure 2: Sensor probing

Answer
uncertainty

Less probing,
high uncertainty

More probing
low uncertainty

of sensors probed

The user-specified
threshold ε

Figure 3: Tradeoff between uncertainty and probing cost

Probing Xi has an associated cost, ci. Depending on the config-
uration of the network, the cost of probing two sensors may be the
same or different, which leads to the following two cost models.
• Unit-probing cost model: Probing every sensor incurs a unit

cost, i.e., c1 = ... = ci = ... = 1.

• Variable-probing cost model: Probing different sensors in-
curs different costs.

3.2 Answer Uncertainty and Uncertainty
Threshold

Our goal is to discover 〈Xmax, xmax〉, the identity Xmax and
the current value xmax of the MAX sensor. Given this problem
formulation, we note that an answer 〈Xmax, xmax〉 can be wrong
if there exists another sensor with a higher value than xmax. Thus,
we define the answer uncertainty as follows:

Definition 1 (Answer Uncertainty, U(Xmax, xmax)) The uncer-
tainty of an answer 〈Xmax, xmax〉, denoted as U(Xmax, xmax),
is the probability that another sensor has a value larger than xmax.
Mathematically,

U(Xmax, xmax) = P (X1 > xmax OR ... OR Xn > xmax)
(1)

where we assume there are n sensors in the network. 2

Intuitively, U(Xmax, xmax) represents how likely the returned
answer is wrong. For example, when U(Xmax, xmax) = 0.1, the
user may get a wrong answer out of every 10 queries. This answer
uncertainty, thus, can be used by the user to specify how much error
is tolerable. We refer to the user-specified error-tolerance level as
the uncertainty threshold, represented by the symbol ε. Depending
on the application, the uncertainty threshold can be either zero or
positive.
• Zero-uncertainty tolerance, ε = 0. Due to the strict require-

ment of the application, the user tolerates no uncertainty in
the answer.

• Nonzero-uncertainty tolerance, ε > 0. The user is willing
to tolerate errors up to the level of ε in order to save probing
cost.

Intuitively, as we probe more sensors, the uncertainty of the an-
swer decreases. Figure 3 shows the intuitive relationship among
the uncertainty, the number of probing and a nonzero uncertainty
threshold ε. The horizontal axis is the number of probing, and the
vertical axis is the uncertainty of our answer. The upper left corner
of the curve represents a high uncertainty level when we probe few
variables. The lower right corner represents an uncertainty level
close to zero after extensive probing. The uncertainty threshold ε
represents the user-specified tradeoff point.

Symbol Meaning

{X1,...,Xn} The set of random variables, each representing a sen-
sor’s value

[li, ui] The value range for Xi, where li is the lower bound and
ui is the upper bound

fi(x) The probability density function (p.d.f.) of Xi

ci The cost of probing Xi

Xmax The identity of the maximum variable
xmax The value of the maximum variable
U(Xmax, xmax) The uncertainty of answer 〈Xmax, xmax〉
ε The user-specified uncertainty threshold
P A probing policy
X The set of unprobed variables
Xi ≺ Xj A precedence relation between Xi and Xj

si The slack upper bound of Xi

Gi(x) P (Xi > x)

Figure 4: Symbols used throughout the paper

Algorithm 4.1 MAXFinder({X1, ..., Xn}, ε)
Input:
{X1, ..., Xn}: the entire set of variables to be probed
ε: the uncertainty threshold specified by the user

Output:
〈Xmax, xmax〉: the identity and value of the max variable

Procedure
1. X← {X1, ..., Xn}, X

′ ← ∅
2. DO
3. P ← ChooseProbingPolicy(X, ε)
4. Probe the first variable in P
5. X← X− {variable just probed}
6. X

′ ← X
′ ∪ {variable just probed}

7. 〈Xmax, xmax〉 ← the identity and value of the
max variable in X

′

8. WHILE U(Xmax, xmax) > ε
9. RETURN 〈Xmax, xmax〉

Figure 5: A general probing algorithm

Finally, given that the server needs to return both the identity and
the current value of the MAX sensor, we note that a sensor can be
returned as an answer only when it has already been probed.

In Figure 4 we summarize the symbols in this paper. As we
continue our discussion, we will introduce some symbols that have
not been explained yet.

4. SENSOR PROBING ALGORITHM
We have illustrated that we can use probing to reduce the answer

uncertainty until it meets the uncertainty threshold ε. Our main
goal is to optimize the probing cost in this process. In this section,
we first describe a high-level probing algorithm and then discuss
the core challenge in optimizing the probing cost.

4.1 A General Probing Algorithm
Algorithm MAXFinder in Figure 4.1 depicts the general probing

procedure. We highlight the main features and concepts of this
algorithm as follows.

Core data structure. At any time the system maintains two sets of
variables, X corresponding to all the unprobed sensors, and X

′ cor-
responding to all the probed sensors. These two sets are initialized
accordingly in Step 1 to reflect that no sensor has been probed in
the beginning.

Probing policy. In Step 3 of the algorithm, the system consid-
ers all potential probing sequences for the unprobed variables and
picks the one that is most likely to incur the minimal probing cost.
We refer to a sequence of unprobed variables in X as a probing
policy, denoted as P: XP

1 → ... → XP
|X|. For example, a prob-

X2 = 500
X2

X1

1000 0

400 600

(a) Two variables X1 and X2
under the bounded model

X1 = 750

(c) X1 ≥ 600

X1 = 520

(d) 400 ≤ X1 < 600

X1 = 300

(e) X1 < 400

(b) The only type of
outcome of probing X2

X1

1000 0

X2

400 600

X2

400 600

X2

400 600

Figure 6: Searching for the maximum between X1 and X2 with
zero uncertainty

ing policy on four unprobed variables {X1, X2, X3, X4} may be
X4 → X1 → X2 → X3. After considering potential probing
policies and picking the “best” one P in Step 3, the system probes
the first variable in P in Step 4. If the maximum answer so far still
does not meet the uncertainty threshold, ε (condition in Step 8), the
system continues to its next probing.

Policy-selection. The effectiveness of Algorithm MAXFinder is
primarily determined by Step 3, where the system evaluates all po-
tential probing policies and picks the one that will lead to the mini-
mum probing cost. Unfortunately, at this stage the system does not
know the sensors’ current values which determine the exact cost of
each policy. As a result, the system can only “guess” the cost of
each policy and choose the “best” on that basis. We use a simple
example to illustrate how the system can evaluate the “likely cost”
of various probing policies.

Example 2 Consider searching for the maximum between two
sensors when the user tolerates zero uncertainty (i.e., ε = 0). As
shown in Figure 6(a), the value of these two sensors, X1 and X2

are bounded in [0, 1000] and [400, 600], respectively. To simplify
the example, we assume both variables follow uniform distributions
and incur unit-probing cost. In the ChooseProbingPolicy step, we
need to compare the costs of two possible policies, Pa: X2 → X1

and Pb: X1 → X2.
• The cost of Pa: X2 → X1. Given its value range, the out-

come of probing X2 always falls within X1’s range (Fig-
ure 6(b)). Thus, even after probing X2, X1 still has a chance
to be the maximum. We have to further probe X1 to obtain
the zero-uncertainty answer. Therefore Pa always leads to a
probing cost of 2.

• The cost of Pb: X1 → X2. The cost depends on the probing
outcome of X1. There are three important cases to consider:

– X1 ≥ 600 (Figure 6(c)): X1 is greater than X2’s upper
bound and is thus the maximum. In this case, we can
stop probing and return X1 as the answer. The overall
probing cost is 1.

– 400 ≤ X1 < 600 (Figure 6(d)): Since X1 is within
X2’s range, we cannot decide whether X1 is the maxi-
mum. As a result, we have to further probe X2 and the
overall probing cost is 2.

– X1 < 400 (Figure 6(e)): In this case X2 is the max-
imum. However, because we need to return both the
identity and the value of the maximum answer, we still
need to probe X2 to get its value. Thus the overall cost
is still 2.

Note that we need to make a decision between Pa and Pb be-
fore we probe any variable. Thus, we have to consider all possible
values of the variables and compute the expected cost of Pa and

policies like
… Xi → … → Xj …

policies that conform to “ Xi Xj”
and will be further explored

policies like
… Xj → … → Xi …

policies that violate “ Xi Xj”
and will be discarded

Figure 7: Search space pruning from precedence relation:
“Xi ≺ Xj”

Pb. The expected cost of Pa is 2. The expected cost of Pb is
1 · P (X1 ≥ 600) + 2 · P (400 ≤ X1 < 600) + 2 · P (X1 < 400).
Given X1’s uniform distribution between 0 and 1000, the expected
cost of Pb is 1 · 0.4+2 · 0.2+2 · 0.4 = 1.6. Since Pb incurs lower
expected cost, we pick Pb as the “best” probing policy. 2

The above example illustrates that the best policy is chosen based
on its expected probing cost. The expected cost of a policy depends
on 1) the variable sequence in the policy, 2) the probability distri-
bution of each variable, and 3) the user-specified threshold ε. Due
to space constraint, we provide the exact formula in the extended
version of this paper [14].

Adaptiveness in MAXFinder. Note that at the beginning of each
probing iteration, the system re-evaluates all probing policies in
Step 3 again. This re-evaluation is necessary to adjust the probing
policy adaptively based on the probing results so far. For exam-
ple, before probing any variable, the optimal policy on four vari-
ables may be X1 → X2 → X3 → X4. But after probing
X1 and knowing its value, the optimal policy on the remaining
three variables may change to X4 → X3 → X2 from the initial
X2 → X3 → X4.

4.2 Reducing The Policy-Search Space
In Step 3 of Algorithm MAXFinder, note that we potentially have

to enumerate all probing policies and compute their expected cost.
This enumeration is computationally very expensive when we have
a reasonably large number of variables. For example, if we have
100 variables, we need to consider 100! ≈ 10158 potential permu-
tations of the variables. In this section, we discuss how we may
reduce this large search space. Our main idea for the reduction is
as follows: If we know that probing X1 before X2 always leads
to a lower probing cost, we can discard any policy that probes X2

before X1. We formalize this idea by introducing the notion of
precedence relation.

Definition 2 (Precedence Relation, Xi ≺ Xj) We define that the
variable Xi should precede Xj , denoted as Xi ≺ Xj , if and only if
for any policy P: ... → Xi → ... → Xj → ..., simply switching
the positions ofXi andXj always leads to another policyP ′: ...→
Xj → ...→ Xi → ... with a higher expected cost. 2

Basically, Xi ≺ Xj means Xi should be probed before Xj

under all circumstances. In other words, any policy that probes
Xj before Xi can be safely thrown away. Figure 7 illustrates
the pruning effect of a precedence relation. As the figure shows,
a precedence relation Xi ≺ Xj allows us to partition the pol-
icy space by half and throw away one of the partitions. Thus,
we can significantly reduce the policy-search space. In the next
two sections, we explain how we can identify the precedence re-
lations between variables. Our study shows that the solution for
the zero-uncertainty-tolerance case differs significantly from that
of the nonzero-uncertainty-tolerance case. Hence, we discuss these
two cases separately. Section 5 discusses the zero-uncertainty case.
Section 6 discusses the nonzero-uncertainty case.

5. OPTIMAL PROBING POLICY UNDER
ZERO-UNCERTAINTY TOLERANCE

In this section, we study how to determine the precedence re-
lations among the sensors under zero-uncertainty tolerance. Our
study shows that
• When sensor values lie in bounded ranges (the bounded

model in Section 3), there exists a very simple mechanism
to find the optimal probing policy.
• When the sensor values are unbounded (the unbounded

model in Section 3), we essentially have to probe all sensors
in order to return a zero-uncertainty answer.

In Section 5.1 we present our findings for the bounded model. Sec-
tion 5.2 is for the unbounded model. The results apply to both the
unit-probing cost and the variable-probing cost models.

5.1 Optimal Policy for The Bounded Model
To motivate our finding, we use another simple example.

Example 3 We search for the maximum between two sensors, X1

and X2, under a zero-uncertainty setting. The values of X1 and
X2 are bounded in [0, 1000] and [700, 900], respectively. Probing
X1 costs 2 and probing X2 cost 1. Can we determine the prece-
dence relation between these two variables without evaluating the
expected cost of every possible policy? What criteria can we use?
Should we first probe X2 given that its mean value is likely to be
higher than that of X1, plus probing X2 is cheaper? 2

The following theorem is our answer to the above question:

Theorem 1 Under zero-uncertainty tolerance and the bounded-
variable model, Xi ≺ Xj if and only if ui > uj . 2

Proof Please refer to the extended version of this paper [14]. ¥

According to the above theorem, we can determine the prece-
dence relation simply by examining the upper bounds of the vari-
ables. That is, a variable Xi should be always probed before Xj as
long as Xi has a larger upper bound. We emphasize that this theo-
rem does not assume what distributions the variables should follow
within their bounds.

Note that this theorem provides a simple and efficient way to
discover the optimal policy. Since a variable must be probed be-
fore others if it has a larger upper bound, we can obtain the opti-
mal probing policy by sorting all unprobed variables by their upper
bounds. The following corollary formalizes this finding.

Corollary 1 Let X = {X1, X2, ..., X|X|} be the set of unprobed
variables, ranked in a descending order of their upper bounds, i.e.,
u1 ≥ u2 ≥ ... ≥ u|X|. Under zero-uncertainty tolerance, policy
P : X1 → X2 → ...→ X|X| is optimal. 2

Proof Please refer to the extended version of this paper [14]. ¥

In summary, under zero-uncertainty tolerance, we can find the
optimal policy by sorting all unprobed variables by their upper
bounds in the descending order.1

5.2 Optimal Policy for The Unbounded Model
In the unbounded model, a sensor’s value can be arbitrarily large.

As long as we still have one sensor left unprobed, there is a slight
chance that this unprobed sensor may turn out to be the maximum.
Thus, to guarantee zero uncertainty we essentially have to probe all
sensors. In the extended version [14] we have provided a theorem
that formalizes this finding.
1Given that the optimal policy is solely determined by the upper bound of each vari-
able, the optimal policy does not change depending on the probing outcome. Thus, we
do not need to re-evaluate the optimal policy in every probing iteration in this case.

6. OPTIMAL PROBING POLICY UN-
DER NONZERO-UNCERTAINTY TOL-
ERANCE

In the previous section we learned that the upper bounds play
a very important role in deriving precedence relations under the
zero-uncertainty setting. In this section we show that under some
conditions, we can use a similar concept, called a slack upper
bound, to derive precedence relations for the nonzero-uncertainty
setting. We first motivate this concept in Section 6.1 using a sim-
ple two-sensor scenario with unit-probing cost. We then gener-
alize the result to a multi-sensor scenario with unit-probing cost
in Section 6.2, and further to the scenario with variable-probing
cost in Section 6.3. The solution in this section applies to both the
bounded- and unbounded-variable models, so we no longer differ-
entiate them.

6.1 Optimal Policy in A Two-Sensor Scenario
with Unit-Probing Cost

We use the following example to motivate the concept of slack
upper bound.

Example 4 We revisit the two-sensor scenario in Figure 6(a). This
time we set the uncertainty threshold ε = 0.15.

Under the previous setting of zero-uncertainty tolerance, we re-
turn X1 as the max without probing X2, if and only if the value of
X1 is larger than the upper bound of X2, i.e., X1 ≥ u2 = 600.

Under nonzero-uncertainty tolerance, however, we can returnX1

even when its value is slightly less than 600 because the user can
tolerate an uncertainty up to 0.15. We note that as long as X1 is
larger than 570, we can consider X1 as larger than X2 with uncer-
tainty less than 0.15. 2

The above example shows that under the nonzero-uncertainty
setting, the value 570 (which satisfies P (X2 > 570) = 0.15) plays
a similar role to X2 as X2’s upper bound u2 does under the zero-
uncertainty setting. Thus, we define 570 as the slack upper bound
of X2:

Definition 3 (Slack Upper Bound, si) Given the uncertainty
threshold ε, the slack upper bound of variable Xi, denoted as si, is
a point such that

P (Xi > si) = ε 2

Figure 8 shows the relationship among P (Xi > x), ε, and si.
By definition, P (Xi > x) is a monotonically decreasing function
towards zero. The slack upper bound of Xi, si, is the cross point
at which P (Xi > x) goes below the uncertainty threshold ε. To
simplify our future discussion, we define the function Gi(x) as

Gi(x) = P (Xi > x)

Under this definition, Gi(si) = ε.
The following lemma shows that in a two-sensor scenario with

unit-probing cost, the slack upper bound indeed plays the same role
as the upper bound in determining the precedence relation between
variables:

Lemma 1 In a two-sensor scenario with unit-probing cost, X1 ≺
X2 if and only if s1 > s2. 2

Proof Please refer to the extended version [14]. ¥

 x

ε

si 0

Gi (x) = P(Xi > x)

Figure 8: The relationship among Gi(x), ε and the slack upper
bound si

 x

ε

sj si

 Gi (x) Gj (x)

Figure 9: Visualizing the second condition in Theorem 2

6.2 Optimal Policy in A Multi-Sensor Sce-
nario with Unit-Probing Cost

Lemma 1 suggests that in a simple scenario, we can derive the
optimal policy by sorting the variables’ slack upper bounds. Un-
fortunately, when there are more than two sensors, our study shows
that si > sj does not necessarily imply Xi ≺ Xj .2 Thus, in the
remainder of this section, we first identify an additional condition
that, when combined with si > sj , is sufficient to derive a prece-
dence relation between Xi and Xj for three-or-more-sensor sce-
narios. After we discuss this condition we explain how we handle
situations when the condition is not met. The following theorem
provides such an additional condition:

Theorem 2 Under nonzero-uncertainty tolerance and unit-
probing cost, Xi ≺ Xj if
• si > sj , and

• ∀x > si, Gi(x) > Gj(x) 2

Proof Please refer to the extended version [14]. ¥

In Figure 9 we show the graphical meaning of the second con-
dition in Theorem 2. According to the condition, to the right of
si (the shaded region), Gi(x) is always above Gj(x). Given that
when x > si, both functions are below the horizontal line of ε, we
can rephrase the condition as “Gi(x) and Gj(x) should not inter-
sect below ε.”

The following corollary shows that if the second condition is met
for every pair of variables, we can derive the optimal probing policy
directly by sorting the slack upper bounds.

Corollary 2 Let X = {X1, X2, ..., X|X|} be the set of unprobed
variables with unit-probing cost, ranked in a descending order of
their slack upper bounds, i.e., s1 ≥ s2 ≥ ... ≥ s|X|. Policy P :
X1 → X2 → ... → X|X| is optimal if the second condition in
Theorem 2 holds for any Xi and Xj with i < j. 2

Proof Please refer to the extended version [14]. ¥

Figure 10 depicts the overall relations of Gi(x)’s when the con-
dition in Corollary 2 is met. Basically, no two Gi(x) functions
intersect beneath the horizontal line of ε. This condition may hold
in certain special cases, for example, if all variables follow expo-
nential distributions with different λ values.

In general, however, the condition in Corollary 2 may not hold
for all pairs of variables. For example, in Figure 11, G2(x) and

2An example provided in the extended version [14] illustrates this finding.

 s2 s1 x

ε

s|X|

 G|X| (x) G2 (x) G1 (x)

Figure 10: A sample scenario in which Corollary 2 applies

 x

ε
 G3 (x) G1 (x) G2 (x) G5 (x) G4 (x)

Figure 11: A sample scenario in which Corollary 2 does not
apply

G3(x) intersect with each other underneath ε. As a result, we can-
not apply Corollary 2 to directly derive the optimal policy. In this
case, we need to first identify all pair-wise precedence relations
based on Theorem 2, further reduce the policy search space using
the derived precedence relations, and finally find the optimal pol-
icy by computing the expected cost of each policy in this reduced
search space.

For instance, in case of Figure 11, Theorem 2 gives us seven
precedence relations (X1 ≺ X2, X1 ≺ X4, X1 ≺ X5, X2 ≺ X4,
X2 ≺ X5, X3 ≺ X4, and X3 ≺ X5), so we can reduce the policy
search space to only 6 candidates.3

6.3 Optimal Policy in A Multi-Sensor Sce-
nario with Variable-Probing Cost

In this section we show that with variable-probing cost, we need
an extra condition to derive the precedence relation between Xi

and Xj :

Theorem 3 Under nonzero-uncertainty tolerance and variable-
probing cost, Xi ≺ Xj if
• si > sj ,

• ∀x > si, Gi(x) > Gj(x), and

• ci < cj . 2

Proof Please refer to the extended version [14]. ¥

Thus, in the most general case, we need to derive precedence rela-
tions using Theorem 3 to reduce the policy-search space.

6.4 A Greedy Policy
In certain cases, the size of the sensor network may be too large,

so we may not be able to examine even the pruned search space
exhaustively. In this section, we present a greedy approach that can
handle such cases. This greedy approach, as our later experimental
results will show, often yields near-optimal performance.

The greedy approach is based on the following idea: The prob-
ing procedure (Algorithm 4.1) stops as soon as the answer uncer-
tainty U(Xk

max, x
k
max) decreases below the level of ε. Here we

use 〈Xk
max, x

k
max〉 to represent the answer after the kth probing

iteration. Thus, the greedy policy picks the unprobed variable that,
once probed in the k + 1th iteration, will make U(Xk+1

max, x
k+1
max)

decrease the most. In the variable-probing cost scenario, this de-
crease should also be normalized by the variable’s probing cost.

To implement this policy, we first illustrate how to predict
U(Xk+1

max, x
k+1
max) assuming we will probe Xi in the k + 1 iter-

ation. Here we give a sketch of the analysis, and the detailed
formula can be found in the extended version [14]. Computing
U(Xk+1

max, x
k+1
max) is not straightforward because xk+1

max depends on
the outcome of probing Xi. Without the actual probing, we must
investigate how different values of Xi, xi, may affect xk+1

max:
• xi ≤ xk

max. Thus xk
max is still the maximum value in the

k + 1th iteration, i.e., xk+1
max = xk

max.

• xi > xk
max. Thus xi becomes the maximum value in the

next iteration, i.e., xk+1
max = xi.

3In the extended version of this paper [14], we present a Divide-N-Conquer algorithm
that reduces the search space even further. When we use Divide-N-Conquer on Fig-
ure 11, we need to compare only 3 policies out of 5! = 120 potential policies.

Without knowing xi, we need to consider both cases above.
Since in each case we know the concrete value xk+1

max, we can com-
pute U(Xk+1

max, x
k+1
max) in that case using Eq. (1). Afterwards, we

combine the U(Xk+1
max, x

k+1
max) value with the probability of each

case and compute the expected uncertainty in the k+ 1th iteration,
E[U(Xk+1

max, x
k+1
max)].

After we compute the “expected” decrease of uncertainty after
probing Xi, we need to combine the decrease with Xi’s probing
cost ci. Thus the greedy policy would pick Xi that maximizes

U(Xk
max, x

k
max)− E[U(Xk+1

max, x
k+1
max)]

ci

7. EXPERIMENTAL RESULTS
In this section we experimentally study the behavior of the poli-

cies discussed in the previous sections. We perform the study on
both a synthetic dataset and a real precipitation-sensor dataset. Due
to space constraints, we include the results on the synthetic dataset
in this paper and report the results on the real dataset in the ex-
tended version [14]. In the current stage we assume unit-probing
cost, and we defer the experimental study of the variable-probing
cost model to the future work.

7.1 Dataset and Experimental Setup
We simulate a scenario with 1000 sensors. The value of each

sensor is bounded and follows a uniform distribution. Thus we
have 1000 variables following the bounded model. To generate
such a dataset, for each variable Xi we need to 1) generate a value
range, which is kept by the central server and 2) come up with the
value for that variable, which represents the current reading of the
corresponding sensor. The value of each variable is only known
when it is probed.

In generating the value ranges for the 1000 variables, we want
to control the overlapping among those variables. We expect that
when the variables overlap a lot, more probing is needed to clarify
the situation and find the maximum. To study how various overlap-
ping scenarios affect the behavior of a probing policy, we introduce
a parameter R called the max radius. With a given R, we assign a
value range for Xi as follows. First we randomly pick a point in
[0, 1000] as the middle point for this value range, say, mi. We then
randomly choose a number ri between 0 and R as the radius for
this interval, and assign [mi − ri,mi + ri] as the value range for
Xi. A larger R value results in larger value ranges on average, and
causes more variables to overlap. For example, when R = 50, a
variable might roughly overlap with 50 other variables.

After generating a value range for Xi, we need to come up with
the actual value for Xi. Given Xi’s uniform distribution, we pick
a random value xi uniformly from [mi − ri,mi + ri]. After this
step, we create one test case for these 1000 variables. For a fixed
max radius R, we generate 5000 of such test cases, and we repeat
this process for R = 25, 50, 75 and 100.

7.2 Zero-Uncertainty Tolerance, ε = 0

In this section we study how efficient the optimal policy is un-
der zero-uncertainty tolerance. That is, we want to see how many
sensors the optimal policy probes, compared to some naive method
that requires excessive probing.

A naive probing method. In the bounded model, if the upper
bound of variable Xi is smaller than the lower bound of Xj , Xi

is always smaller than Xj and can never be the maximum. Thus,
in what we call the “naive probing method,” we probe only the
variables whose upper bound is larger than all other lower bounds.
For example, when the ranges for X1, X2 and X3 are [700, 870],

R 25 50 75 100
avg # of sensors probed, naive 18.75 33.69 48.45 62.65
avg # of sensors probed, optimal 5.76 7.73 8.75 9.74

Figure 12: Efficiency of the optimal policy under the zero un-
certainty setting and various overlapping scenarios

0.050.10.150.20.250.3
0

2

4

6

8

10

12

14

16

18

20

ε

A
vg

 #
 o

f s
en

so
rs

 p
ro

be
d

Naive
Greedy
Optimal

18.75

3.86

(a)
0.050.10.150.20.250.3

0

5

10

15

20

25

30

35

ε

A
vg

 #
 o

f s
en

so
rs

 p
ro

be
d

Naive
Greedy
Optimal

33.69

5.20

(b)

0.050.10.150.20.250.3
0

5

10

15

20

25

30

35

40

45

50

ε

A
vg

 #
 o

f s
en

so
rs

 p
ro

be
d

Naive
Greedy
Optimal

48.45

5.80

(c)

0.050.10.150.20.250.3
0

10

20

30

40

50

60

70

ε

A
vg

 #
 o

f s
en

so
rs

 p
ro

be
d

Naive
Greedy
Optimal

62.65

7.42

6.42 8.14

(d)

Figure 13: Avg # of sensors probed by the optimal and the
greedy polices on the synthetic dataset: (a) R = 25 (b) R = 50
(c) R = 75 (d) R = 100

[850, 950] and [900, 925], respectively, X1 is always smaller than
X3, so the naive method only probes X2 and X3. We use the re-
sult of this naive method as the base comparison point against our
optimal policy.

Efficiency of the optimal policy. We compare the optimal policy
with this naive method to study the former method’s efficiency. For
each test case under a fixed R, we execute both the optimal pol-
icy and the naive method. We then average the number of sensors
probed by both methods over all the 5000 test cases, and summa-
rize the results in Figure 12. For example, on the test cases with
R = 100, on average the optimal policy probes 9.74 sensors, and
the naive method probes 62.65. This represents a 84.4% saving on
the side of the optimal policy.

The impact of R on the number of probing. Recall that a larger
R, the max radius, causes more variables to overlap and should lead
to more probing. As Figure 12 shows, the optimal policy (the third
row) does require more probing in larger R settings.

7.3 Nonzero-Uncertainty Tolerance, ε > 0

In this section, our primary goal is to study the efficiency of the
optimal and the greedy policy under nonzero-uncertainty tolerance.
Further, we empirically study the difference between the optimal
and the greedy policies.

Efficiency of the optimal and the greedy policies. We compare
both the optimal and the greedy policies against the naive probing
method described in Section 7.2, and see how much probing each
method saves. We perform the study under the following param-
eter settings: 1) The max radius R: 25, 50, 75 and 100. 2) The
uncertainty threshold ε: from 0.3 to 0.025 at each interval of 0.025.

Figure 13 summarizes the results for various R settings. In each
figure, the x-axis shows the different ε values, and the y-axis shows
the average number of sensors probed by the three methods: 1)
the naive probing method, 2) the greedy policy and 3) the opti-
mal policy. The figures suggest that in general both the optimal
and the greedy save a great amount of probing compared to the
naive method. For example, under the setting of R = 100 and

0.050.10.150.20.250.3
0

0.05

0.1

0.15

0.2

0.25

ε

A
ct

ua
l e

rr
or

 /
A

vg
 U

(χ
m

ax
) error = ε

Greedy Actual error
Greedy Avg U(χ

max
)

Optimal Actual error
Optimal Avg U(χ

max
)

(a)

0.050.10.150.20.250.3
0

0.05

0.1

0.15

0.2

0.25

ε

A
ct

ua
l e

rr
or

 /
A

vg
 U

(χ
m

ax
) error = ε

Greedy Actual error
Greedy Avg U(χ

max
)

Optimal Actual error
Optimal Avg U(χ

max
)

(b)

0.050.10.150.20.250.3
0

0.05

0.1

0.15

0.2

0.25

ε

A
ct

ua
l e

rr
or

 /
A

vg
 U

(χ
m

ax
)

error = ε
Greedy Actual error
Greedy Avg U(χ

max
)

Optimal Actual error
Optimal Avg U(χ

max
)

(c)
0.050.10.150.20.250.3

0

0.05

0.1

0.15

0.2

0.25

ε

A
ct

ua
l e

rr
or

 /
A

vg
 U

(χ
m

ax
)

error = ε
Greedy Actual error
Greedy Avg U(χ

max
)

Optimal Actual error
Optimal Avg U(χ

max
)

(d)

Figure 14: Actual inaccuracy of the optimal and the greedy
policy on the synthetic dataset: (a) R = 25 (b) R = 50 (c)
R = 75 (d) R = 100

ε = 0.3 (Figure 13(d)), the optimal policy probes 6.42 sensors on
average, representing 89.8% saving compared to the naive method;
the greedy policy probes 7.42 sensors, representing 88.2% saving.

Comparing the optimal policy with the greedy policy. In general
the optimal policy saves about 10%-15% on the number of sensors
probed. For example, in Figure 13(d), for an uncertainty thresh-
old ε = 0.3, the optimal policy probes 6.42 sensors, whereas the
greedy policy probes 7.42 sensors. In this particular case, the op-
timal policy saves 14.1% compared to greedy. This result suggests
that in real applications when searching for the optimal policy may
be time-consuming, the greedy policy provides a relatively close
approximation.

The impact of ε on the number of sensors probed. We expect
that as the user requires less uncertainty, more probing is needed.
This general trend can be observed in all sub-figures. In Fig-
ure 13(d) for example, the optimal policy probes 6.42 sensors to
reach the uncertainty level of 0.3, whereas it probes 8.14 sensors to
reach 0.05.

The impact of R on the number of probing. As we have seen
in the zero-uncertainty case, a larger R value leads to more prob-
ing. In the nonzero-uncertainty case, the results exhibit the same
trend. For example, to reach the uncertainty level of 0.3, the opti-
mal policy probes 3.86 sensors in R = 25, 5.20 in R = 50, 5.80 in
R = 75 and 6.42 in R = 100.

Actual error in the returned answer. The last task performed
on the synthetic dataset is to study whether the actual error in the
answers matches the uncertainty that the system “guarantees.” For
example, if in all testing cases the system returns an answer with
a “claimed” uncertainty of 0.05, then asymptotically we expect to
observe 5 wrong answers out of every 100 testing cases.
• Computing the “claimed” uncertainty. In the experiment,

for each testing case Algorithm 4.1 may terminate with
different uncertainty level U(Xmax, xmax) (as long as
U(Xmax, xmax) < ε). Thus we average U(Xmax, xmax)
over all 5000 cases as the uncertainty level that the system
“claims.”

• Computing the actual error. We first compute the correct
MAX answer for each testing case. By comparing against the
correct answers in all cases, we can check the percentage of
the cases that the system is actually wrong.

We compare these two measurements on every R and ε setting,
and summarize the results in Figure 14. In each sub-figure, the x-
axis lists different ε settings, and the y-axis shows 1) the average
U(Xmax, xmax) and 2) the actual error by both the optimal and the
greedy policies. The diagonal line represents “error = ε.” From the
figures we observe the following:
• In all cases, both the average U(Xmax, xmax) and the ac-

tual error are always below the ε level. This happens because
U(Xmax, xmax) < ε is the stopping condition for all prob-
ing processes (Step 8 in Algorithm 4.1).

• In all cases, the actual error always agrees with the average
U(Xmax, xmax). Basically this result means we have ob-
tained the desirable error level as we have requested.

8. CONCLUSION AND FUTURE WORK
In this paper we studied the cost-efficient processing of

MIN/MAX queries over distributed sensors. We first used a prob-
abilistic measure to define the uncertainty embedded in the an-
swers. Further, we analyzed the optimal sensor-probing policy
that uses minimum probing to reduce the answer uncertainty to a
user-tolerable level. Our analysis was performed under both zero-
uncertainty tolerance and nonzero-uncertainty tolerance. Finally,
we experimentally evaluated the behavior of both the optimal pol-
icy and a proposed greedy policy. The results show that the pro-
cessing of MIN/MAX queries can be very cost-efficient for both
policies.

In our current experiments we focused on the unit-probing-cost
scenario. In the future we plan to perform experimental study in
the variable-probing-cost scenario.

9. ACKNOWLEDGEMENTS
The authors gratefully acknowledge Carlos Brito for earlier dis-

cussion and feedbacks.

10. REFERENCES
[1] G.J. Pottie and W.J. Kaiser. Wireless integrated network sensors.

Communications of the ACM, 43(5):51–58, 2000.
[2] H.Ö. Tan and Ï. Körpeoǧlu. Power efficient data gathering and aggregation in

wireless sensor networks. SIGMOD Record, 32(7):66–71, 2003.
[3] Bhaskar Krishanamachari, Deborah Estrin, and Stephen Wicker. The impact of

data aggregation in wireless sensor networks. In International Workshop of
Distributed Event Based Systems (DEBS), 2002.

[4] S. Lindsey and C.S. Raghavendra. Pegasis: Power-efficient gathering in sensor
information systems. In Proceedings of IEEE Aerospace Conference, 2002.

[5] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient
communication protocol for wireless microsensor networks. In Proceedings of
33rd Annual Hawaii International Conference on System Sciences, 2000.

[6] D.D. Wackerly, W. Mendenhall III, and R.L. Scheaffer. Mathematical Statistics
with Applications. Duxbury, 6th edition, 2002.

[7] K. Kalpakis, V. Puttagunta, and P. Namjoshi. Accuracy vs. lifetime: Linear
sketches for approximate aggregate range queries in sensor networks. Technical
report, Computer Science and Eletrical Engineering Department, University of
Maryland Baltimore County, 2004.

[8] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate aggregation
techniques for sensor databases. In Proceedings of ICDE ’04, 2004.

[9] R. Cheng, D.V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries
over imprecise data. In Proceedings of ACM SIGMOD ’03, 2003.

[10] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. 2004.

[11] C. Olston and J. Widom. Offering a precision-performance tradeoff for
aggregation queries over replicated data. In Proceedings of VLDB ’00, 2000.

[12] T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the
median with uncertainty. In 32nd ACM Symposium on Theory of Computing
(STOC), 2000.

[13] S. Khanna and W.C. Tan. On computing functions with uncertainty. In
Proceedings of ACM PODS ’01, 2001.

[14] Z. Liu, K.C. Sia, and J. Cho. Cost-efficient processing of min/max queries over
distributed sensors with uncertainty. Technical report, Computer Science
Department, UCLA, 2004.

