
Peer Clustering and Firework Query Model in the
Peer-to-Peer Network

Cheuk Hang Ng
Department of Computer
Science and Engineering
The Chinese University of

Hong Kong
Hong Kong SAR

chng@cse.cuhk.edu.hk

Ka Cheung Sia
Department of Computer
Science and Engineering
The Chinese University of

Hong Kong
Hong Kong SAR

kcsia@cse.cuhk.edu.hk

Chi Hang Chan
Department of Computer
Science and Engineering
The Chinese University of

Hong Kong
Hong Kong SAR

chchan@cse.cuhk.edu.hk

Irwin King
Department of Computer
Science and Engineering
The Chinese University of

Hong Kong
Hong Kong SAR

king@cse.cuhk.edu.hk

ABSTRACT
Clustering technique is used in database and information
retrieval system for organizing data and improving retrieval
efficiency. We surmise such functionality is valuable to a
Peer-to-Peer (P2P) distributed environment. In this paper,
we introduce the concept of peer clustering at the level of
overlaying network topology, thus, data inside the P2P net-
work are organized in a fashion similar to a Yellow Pages.
Moreover, the usability of these systems depends on effec-
tive techniques to retrieve information, however, the current
strategies used in existing P2P systems are inefficient. To
avoid query messages flooding and saving resources in han-
dling irrelevant queries, we propose a content-based query
routing strategy, the Firework Query Model, to improve ex-
isting retrieval methods. In contrast to broadcasting the
query message, our query message is routed intelligently ac-
cording to its content. Once it reaches the target cluster, the
query message is broadcasted to all peers inside the cluster
much like an exploding firework. We design and implement
a DIStributed COntent-based Visual Information Retrieval
(DISCOVIR) system with content-based query functionality
and improved query efficiency. We demonstrate its scalabil-
ity and efficiency through simulation.

Keywords
Peer-to-Peer (P2P) Application, Content-based Query Rout-
ing, Multimedia Clustering, Information Retrieval

1. INTRODUCTION
The appearance of Peer-to-Peer (P2P) applications such

as Gnutella [8], Napster [14], Morpheus [13] and Freenet [7],
have demonstrated the significance of distributed informa-

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM xxx.

tion sharing systems. These models offer advantages of de-
centralization by distributing the storage, information and
computation cost among the peers. For example, by dis-
tributing data storage over networked computers, one can
have a virtual data storage that is possibly many magni-
tudes larger than what can be stored in a local computer.
In addition, such distributed file system with data redun-
dancy would provide zero down time and a powerful fault
tolerance mechanism [16, 4]. One may also envision data se-
curity by distributing pieces of an encrypted file over many
computers. Doing so, one imposes a difficult barrier for
intruder to overcome because he needs to break into sev-
eral computers before getting the file [20]. With a suitable
data segmentation technique, we are able to deliver high-
bandwidth data, e.g., streaming video, using a collection of
computers with slower connection speed [11]. Likewise, one
may also distribute the computation among different com-
puters to achieve a high throughput. Because of these desir-
able qualities, many research projects have been focused on
designing different P2P systems and improving their perfor-
mance. Compared with previous works, our contribution to
P2P applications are:

1. Rich Query–users can perform query based on con-
tent of information rather than simple filename or meta
data.

2. Efficient Data Location–efficient location of data
under an environment with no index storage in cen-
tralized server or distributed among peers.

In this paper, we propose a strategy for clustering peers
that share similar properties together, thus, data inside the
P2P network will be organized in a fashion similar to a Yel-
low Pages. In order to make use of our clustered P2P net-
work efficiently, we also propose a new content-based query
routing strategy, the Firework Query Model (FQM) [15],

which aims to route the query intelligently according to the
content of query to reduce the network traffic of query pass-
ing in the network. Our proposed routing and searching
algorithm makes use of deliberately formed connection be-
tween peers and routing of queries intelligently to increase
query performance without strict requirement on network
topology and location of data placement, while adaptable
to current P2P network. We also incorporate multimedia
features in consideration when building the network and
routing queries. In particular, we design and implement
a DIStributed COntent-based Visual Information Retrieval
system (DISCOVIR) [6], as shown in Fig. 1, which is com-
patible to Gnutella network, for users to share and retrieve
images.

Figure 1: Screen capture of DISCOVIR.

In the following, we first review current issues of P2P in
Section 2. We present the algorithm of Peer Clustering and
Firework Query Model in Section 3. Then, we proceed to
report and analyze our experimental results in Section 4.
We give our final remarks and conclusion in Section 5.

2. BACKGROUND
Both Napster and Gnutella have demonstrated the possi-

bility of distributing storage over computers in the Internet.
Such kind of P2P network offers the following advantages:

1. Resource Utilization–The storage, information and
computational cost can be distributed among the peers,
allowing many individual computers to achieve a higher
throughput [21].

2. Increased Reliability–The P2P network increases
reliability by eliminating reliance on centralized coor-
dinators that are potential critical points of failure [5].

3. Comprehensiveness of Information–The P2P net-
work has the potential to reach every computers on the
Internet, while even the most comprehensive search en-
gine can only cover 20% of web-site available as stated
in some statistics [12].

Figure 2 shows an example of a P2P network that differ-
ent information are shared by different peers. When a peer
initiates a search, it broadcasts a query request to its con-
necting peers. Its peers then propagate the request to their

own peers and this process continues. Unlike the client-
server architecture of the web, the P2P network aims at
allowing individual computer, which joins and leaves the
network frequently, to share information directly with each
other without the help of dedicated servers. Each peer acts
as a server and as a client simultaneously. In these networks,
a peer can become a member of the network by establishing
a connection with one or more peers in the current network.
Messages are sent over multiple hops from one peer to an-
other while each peer responds to queries for information it
shares locally.

Figure 2: Illustration of information retrieval in a
P2P network.

Current strategy still needs a lot of improvement to solve
the scalability problems:

1. The bottle-neck at the centralized server storing the
index, like Napster.

2. The flooding of query messages when data location
process is decentralized, like Gnutella.

To address the data location problem, Chord [22], CAN
[17], Pastry [18] and Tapestry [24] tackle it by distributing
the index storage into different peers, thus sharing the work-
load of a centralized index server. Distributed infrastructure
of both CAN and Chord use Distributed Hash Table (DHT)
to map the filename to a key, and each peer is responsible
for storing certain range of (key, value) pairs. When a peer
looks for a file, it hashes the filename to a key and ask the
peers responsible for this key for the actual storage location
of that file. Chord models the key as an m-bits identifier
and arranges the peers into a logical ring topology to deter-
mine which peer is responsible for storing which (key, value)
pair. CAN models the key as point on a d-dimension Carte-
sian coordinate space, while each peer is responsible for (key,
value) pairs inside its specific region. Such systems take a
balance between the centralized index and totally decentral-
ized index approaches. They speed up and reduce message
passing for the process of key lookup (data location); how-
ever, they incur a penalty for redistributing index storage
when peers join and leave the network frequently, especially

in a dynamic environment like the Internet. Moreover, such
kind of schemes rely on the trustworthy of peers participat-
ing in the network. The problem is serious if malicious peers
deny to respond to queries which it is assumed to be respon-
sible for under the condition of no duplicate index storage
in other peers.

Current researches and on-going developing systems [22,
17, 18, 24, 10, 3] focus on the requirement of efficient inser-
tion and retrieval of content in a distributed storage infras-
tructure. Filenames or meta-data, such as ID3 tag of MP3,
are both used as queries and indexing terms for data. Al-
though DHT based methods are extensible from exact match
to textual similarity matches of filenames by breaking into
“n-grams”[23], penalty on system performance is not dis-
cussed in detail. Besides, manual operation of summarizing
data to filename or meta-data is a tedious job, what if we
want to perform more complex search, other than filename
matching? Suppose I want to find an image similar to this
one, I want to find a document with similar content to this
one, etc. Such modern information retrieval tasks are ad-
dressed in the notion of client-server approach [2], what if
we perform this in a P2P information system?

Based on the problems raised above, we ask: are we able
to formulate a P2P model that optimizes for the data loca-
tion process, while introducing comparatively less penalty
when peers join and leave the network? Are we able to
perform more complex content-based searching in this P2P
network? Instead of distributing the storage of index into
different peers, we allow a peer to index its own data col-
lection while retaining the original Gnutella network topol-
ogy but imposing a requirement on connections to serve as
the global indexing structure. Moreover, we introduce the
content-based image search functionality to illustrate the
potential richness of queries in a P2P network.

3. PEER CLUSTERING AND FIREWORK
QUERY MODEL

The design goal for our strategy is to improve data lookup
efficiency in a completely distributed P2P network, while
keeping a simple network topology and number of message
passing to a minimum. In our proposed network, there are
two types of connections, namely random and attractive
as shown in Fig. 3. Random connections are to link peers
randomly chosen by the users. Attractive connections are to
link peers sharing similar data together. We perform peer
clustering at the level of overlaying network topology instead
of locally shared data, thus content-based query routing is
realizable to improve query efficiency. As a result, it man-
ages to be scalable when network grows. We have imple-
mented a prototype version of DISCOVIR, built on top of
LimeWire [12] with content-based image searching capabil-
ity and improvement of data lookup effciency.

3.1 Peer Clustering
With the inherent nature of DISCOVIR network, we ap-

ply notation in graph theory to model it (see Table. 1). For
the sake of generality, we try to keep this in high level of
abstraction. In the actual realization, we choose the vector
model in information retrieval literature as the underlying
data structure for representing data. Here are some defini-
tions:

Definition 1. We consider information shared by a peer

Figure 3: Illustration of two types of connections in
DISCOVIR.

Table 1: Definition of Terms
G{V, E} The P2P network, with V denoting the

set of peers and E denoting the set of
connection

E = {Er, Ea} The set of connections, composed of
random connections, Er and attractive
connections, Ea.

ea = (v, w, The attractive connection between
peers v, w

sigv, sigw), based on sigv and sigw
v, w ∈ V, ea ∈ Ea

|V | Total number of peers.

|E| Total number of connections.

Horizon(v, t) ⊆ V Set of peers reachable from v within
t hops

SIGv, v ∈ V Set of signature values characterizing
the data shared by peer v

D(sigv, sigv), Distance measure between specific
v, w ∈ V signature values of two peers v

and w.

Dq(sigv, q) Distance measure between a query q
sigv ∈ SIGv and peer v based on sigv.
C = {Cv : v ∈ V } The collection of data shared in the

DISCOVIR network.

Cv The collection of data shared by peer
v, which is a subset of C.

REL(cv, q), A function determining relevance of
cv ∈ Cv data cv to a query q. 1-relevant,

0-non-relevant

can be represented in a multi-dimension point based on its
content, and the similarity among files is based on the dis-

tance measure between data points. Consider

f : cv → ~cv (1)

f : q → ~q (2)

f is the mapping function from file cv to a vector ~cv. In the
notion of image processing, cv is the raw image data, f is a
specific feature extraction method, ~cv is the extracted feature
vector characterizing the image. Likewise, f is also used to
map a query q to a query vector ~q, to be sent out when user
makes a query.

Definition 2. SIGv is the set of signature values repre-
senting data characteristic of peer v, with each sigv repre-
senting each specific cluster of data. We define

sigv = (~µ, ~δ), (3)

where ~µ and ~δ are the statistical mean and standard de-
viation of the collection of data belonging to a subcluster,

C
′
v, C

′
v ⊆ Cv. From now on, sigv characterizes certain por-

tion of data shared by peer p.

Definition 3. D(sigv, sigw) is defined as the distance
measure between sigv and sigw, in other sense, the similar-
ity between particular sub-cluster belonging to two different
peers v and w. It is defined as,

D(sigv , sigw) = || ~µv − ~µw ||. (4)

|| ~µv − ~µw|| is the Euclidean distance between centroid of two
sub-cluster symbolized by sigv, sigw. With this formula, we
define the data affinity of two peers, we will later use this to
help organizing the network.

Based on the above definitions, we introduce a peer clus-
tering algorithm, to be used in the network setup stage, in
order to help building the DISCOVIR as a self-organized
network oriented in content affinity. It consists of three
steps:

1. Signature Value Calculation–Every peer prepro-
cess its data collection and calculates a set of signa-
ture values SIGv to characterize its data properties.
Whenever the shared data collection, Cv, of a peer
changes, the signature value should be updated ac-
cordingly. The whole data collection of the peer will
be divided into sub-clusters automatically by a cluster-
ing algorithm, e.g. k-means [1], competitive learning
learning [19], and expectation maximization [9]. The
number of signature values is variable and is a trade-
off between data characteristic resolution and compu-
tational cost.

2. Neighborhood Discovery–After a peer joins the DIS-
COVIR network by connecting to a random peer in
the network, it broadcasts a signature query message,
similar to that of ping-pong messages in Gnutella, to
reveal the location and data characteristic of its neigh-
borhood, Horizon(v, t). This task is not only done
when a peer first joins the network, it repeats every
certain interval in order to maintain the latest infor-
mation of other peers.

3. Attractive Connection Establishment–By acquir-
ing the signature values of other peers, one can reveal

the peer with highest data affinity (similarity) to it-
self, and make an attractive connection to link them
up. When an existing attractive connection breaks, a
peer should check its host cache, which contains signa-
ture values of other peers found in the neighborhood
discovery stage, and reestablish the attractive connec-
tion using peer clustering algorithm again.

Having all peers joining the DISCOVIR network perform
the three tasks described above, you can envision a P2P
network with self-organizing ability to be constructed. Peers
sharing similar content will be grouped together like a Yellow
Pages. Based on this content similarity based clustering, we
will delineate a more complex query strategy in the next
section. The detail steps of peer clustering is illustrated in
Algorithm 1, and Fig. 4 depicts the peer clustering.

Figure 4: Illustration of peer clustering.

Algorithm 1 Algorithm for peer clustering

Peer-Clustering(peer v, integer ttl)
for all sigv ∈ SIGv do

for all w ∈ Horizon(v, t) do
for all sigw ∈ SIGw do

Compute D(sigv, sigw)
end for

end for
Ea = Ea ∪ (v, w, sigv, sigw) having min(D(sigv, sigw))

end for

3.2 Firework Query Model Over Clustered Net-
work

To make use of our clustered P2P network, we propose a
content-based query routing strategy called Firework Query
Model. In this model, a query message is routed selec-
tively according to the content of the query. Once it reaches
its designated cluster, the query message is broadcasted by
peers through the attractive connections inside the cluster
much like an exploding firework as shown in Fig. 5. Our
strategy aims to:

1. minimize the number of messages passing through the
network,

2. reduce the workload of each computer,

3. maximize the ability of retrieving relevant data from
the peer-to-peer network.

Figure 5: Illustration of firework query.

Here, we introduce the algorithm to determine when and
how a query message is propagated like a firework in Algo-
rithm 2. When a peer receives the query, it needs to carry
out two steps:

1. Shared File Look Up–The peer looks up its shared
information for those matched with the query. Let
q be the query, and ~q be its vector representation,
REL(cv, q) is the relevance measure between the query
and the information cv shared by peer v, it depends
on a L2 norm defined as,

REL(cv, q) =

{
1 ||~cv − ~q|| ≤ T
0 ||~cv − ~q|| > T,

where T is a threshold defining the degree of result sim-
ilarity a user wants. If any shared information within
the matching criteria of the query, the peer will reply
the requester. In addition, we can reduce the number
of REL(cv, q) computations by performing local clus-
tering in a peer, thus speeding up the process of query
response.

2. Route Selection–The peer calculates the distance
between the query and each signature value of its local
clusters, sigv , which is represented as,

Dq(sigv, q) =
∑

i

qi − µi
δi

, sigv = (µ, δ). (5)

If none of the distance measure between its local clusters’
signature value and the query, Dq(sigv, q), is smaller than a
preset threshold, θ, the peer will propagate the query to its
neighbors through random connections. Otherwise, if one or
more Dq(sigv, q) is within the threshold, it implies the query
has reached its target cluster. Therefore, the query will
be propagated through corresponding attractive connections
much like an exploding firework.

In our model, we retain two existing mechanisms in Gnutella
network for preventing query messages from looping forever
in the distributed network, namely, the Gnutella replicated
message checking rule and Time-To-Live (TTL) of messages.

When a new query appears to a peer, it is checked against
a local cache for duplication. If it is found that the same
message has passed through before, the message will not
be propagated. The second mechanism is to use the Time-
To-Live value to indicate how long a message can survive.
Similar to IP packets, every Gnutella messages are asso-
ciated with a TTL. Each time when the message passes
through a peer, the TTL value is decreased by one. Once
the TTL is zero, the message will be dropped and no longer
forwarded. There is a modification on DISCOVIR query
messages from the original Gnutella messages. In our model,
the TTL value is decremented by one with a different proba-
bility when the message is forwarded through different types
of connection. For random connections, the probability of
decreasing TTL value is 1. For attractive connections, the
probability of decreasing TTL value is an arbitrary value
in [0, 1] called Chance-To-Survive (CTS). This strategy can
reduce the number of messages passing outside the target
cluster, while more relevant information can be retrieved
inside the target cluster because the query message has a
greater chance to survive depending on the CTS value.

Algorithm 2 Algorithm for the Firework Query Model

Firework-query-routing (peer v, query q)
for all sigv ∈ SIGv do

if Dq(sigv, q) < θ (threshold) then
if rand() > CTS then
qttl = qttl − 1

end if
if qttl > 0 then

propagate q to all ea(a, b, c, d) where a = v, c =
sigv or b = v, d = sigv (attractive link)

end if
end if

end for
if Not forwarding to attractive link then
qttl = qttl − 1
if qTTL > 0 then

forward q to all er(a, b) where a = v or b = v (random
link)

end if
end if

4. EXPERIMENTS AND RESULTS
Two main goals of routing algorithm in P2P network are

to increase the percentage of desired result retrieved (Recall
- R) and decrease the percentage of peers visited (Visited
- V) for a query. Therefore, we define the query efficiency
as R/V and we investigate how this quantity varies with
different number of total peers. In our experiments, we gen-
erate a certain number of peers and randomly assign two
to four classes of data points to each of them. Then, We
initiate a query starting from a randomly selected peer and
the retrieved data point is treated as desired result if it be-
longs to the same class as the query point. We simulate
the environment using both controlled data and real data.
For the controlled data, each class of data points follows a
Gaussian distribution and we generate 200 classes of data
points totally. For the real data, each class of data points is
extracted from a category in CorelDraw’s Image Collection
and we select 200 different categories also.

4.1 Query Efficiency against the Number of
Peers

We measure the query efficiency against the number of
peers with four different routing methods or data sets: (1)
Brute Force Search (BFS) with controlled data, (2) FQM
with 1 signature value per peer and controlled data, (3)
FQM with 3 signature values per peer and controlled data,
and (4) FQM with 3 signature values and real data. As
seen in Fig. 6, FQM outperforms BFS algorithm and it
can perform even better if an appropriate number of sig-
nature values per peer is used. As expected, recall and vis-
ited peers percentage in BFS are more or less equal because
data classes are evenly distributed among peers, the more
peers visited, the more desired data retrieved. The curve of
FQM follows a bell shape with a long tail. Query efficiency
increases at first due to three reasons:

1. The network can be clustered more appropriately when
the network size increases.

2. The percentage of peers visited is inversely propor-
tional to the network size when the TLL is fixed.

3. FQM advances the recall percentage when the query
message reaches the target cluster.

When the network size increases further, a query might
not reach its target cluster, so query efficiency starts to drop.
The result shows that the improvement in FQM is reduced
when real data is used. This is because the real data cannot
be clustered as well as our controlled data.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

1

2

3

4

5

6

7
R/V against number of peers in network

Number of peers

R
/V

BFS
1 cluster
3 clusters

Figure 6: R/V against number of peers.

4.2 Query Efficiency against the TTL value of
Query Message

Figure 7 shows the query efficiency against number of
TTL. As seen in Fig. 7, FQM outperforms BFS algorithm
and the performance is the best when an appropriate TTL
values is chosen. Similar to the experiment decribed in sec-
tion 4.1, recall and visited peers percentage in BFS are
more or less equal because data classes are evenly distributed
among peers, the more peers visited, the more desired data

retrieved. The curve of FQM follows a bell shape due to the
following reasons:

1. When the TTL value is low, the probability of the
query message reaching the target cluster is low.

2. The query efficiency is optimal when an appropriate
TTL values is used.

3. Further increasing the TTL value is useless since un-
necessary query messages are generated, the query ef-
ficiency drops.

From the experiment result, we can observe that the ef-
ficiency of our algorithm is sensitive to the TTL value of
query message. If the TTL value is too low, the query mes-
sage cannot reach its target cluster. If the TTL value is too
high, although the query message can reach its target clus-
ter, unnecessary messages are generated. Therefore, choos-
ing a good TTL value is important in our algorithm. In
our simulation, the best TTL value is 6 when the network
is consisted of 8000 peers.

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

0.6

0.8

1

1.2

1.4

1.6

R/V against TTL

TTL

R
/V

BFS
Real data
Control Data

Figure 7: R/V peers against TTL.

5. CONCLUSION
In this paper, we propose a peer clustering and content-

based routing strategy to retrieve information based on their
content efficiently over the P2P network. We verify our pro-
posed strategy by simulations with different parameters to
investigate the performance changes subject to different net-
work size and TTL value of query message. We show that
our FQM outperforms the BFS method in both network
traffic cost and query efficiency measure.

Acknowledgments
DISCOVIR is built based on LimeWire open source project.
This research work is supported in part by an Earmarked
Grant (#2150317) from the Research Grants Council of Hong
Kong, SAR.

6. REFERENCES
[1] M. R. Anderberg. Cluster analysis for applications. In

Academic Press, New York, 1973.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Adison Wesley, first edition,
1999.

[3] W. Bolosky, J. Douceur, D. Ely, and M. Theimer.
Feasibility of a Serverless Distributed File System
Deployed on an Existing Set of Desktop PCs. In
Proceedings of SIGMETRICS 2000 (Santa Clara, CA,
June 2000).

[4] P. Chen, E. Lee, G. Gibson, R. Katx, and
D. Patterson. Raid: High-performance, reliable
secondary storage. In ACM Computing Surveys,
volume 26, pages 145–188, June 1994.

[5] G. Coulouris, J. Dollimore, and T. Kindberg.
Distributed Systems Concepts and Design.
Addison-Wesley, third edition, 2001.

[6] DIStirbuted COntent-based Visual Information
Retrieval.
http://www.cse.cuhk.edu.hk/∼miplab/discovir.

[7] The freenet homepage. http://freenet.sourceforge.net.

[8] The Gnutella homepage. http://www.gnutella.com.

[9] I. King and Z. Jin. Relevance feedback content-based
image retrieval using query distribution estimation
based on maximum entropy principle. In L. Zhang and
F. Gu, editors, Proceedings to the International
Conference on Neural Information Processing
(ICONIP2001), volume 2, pages 699–704, Shanghai,
China, November 14-18 2001. Fudan University,
Fudan University Press.

[10] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An Architecture for Global-Scale
Persisten Storage. In Proceedings of ASPLOS 2000
(Cambridge, Massachusetts, Nov. 2000).

[11] Y. B. Lee and P. C. Wong. A server array approach
for video-on-demand service on local area networks. In
Proc. IEEE INFOCOM’ 96, pages 27–34, 1996.

[12] Modern Peer-to-Peer File-Sharing over the Internet.
http://www.limewire.com/index.jsp/p2p.

[13] The morpheus homepage. http://www.musiccity.com.

[14] The Napster homepage. http://www.napster.com.

[15] C. H. Ng and K. C. Sia. Peer Clustering and Firework
Query Model. In Poster Proc. of The 11th
International World Wide Web Conference, May 2002.

[16] D. Patterson, G. Gibson, and R. Katz. A case for
redundant arrays of interactive disks. In Proc. of ACM
International Conf. on Management of Data
(SIGMOD), pages 109–116, May 1988.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network.
In In Proc. ACM SIGCOMM, August 2001.

[18] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location and routing for
large-scale peer-to-peer systems. In Proc. of the 18th
IFIP/ACM International Conference on Distributed
Systems Platforms, November 2001.

[19] D. Rumelhart and D. Zipser. Feature discovery by
competitive learning. In Cognitive Science, 1985.

[20] The worldwide computer.
http://www.scientificamerican.com/2002/0302issue.

[21] The Search for Extraterrestrial Intelligence homepage.

http://www.setiathome.ssl.berkeley.edu.

[22] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In Proc. of
ACM SIGCOMM, pages 149–160, August 2001.

[23] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann Publishers, Inc., second
edition, 1999.

[24] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and
routing. Technical report, Computer Science Division,
U.C. Berkeley, April 2001.

