
Efficient Content-Based Image Retrieval In a
Distributed Environment

Sia Ka Cheung
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong SAR

kcsia@cse.cuhk.edu.hk

Abstract

With the recent advances of distributed computing, those limitations of information
retrieval from a centralized image collection can be removed by allowing distributed
image data sources to interact with each other for both data storage sharing and query
computation sharing. In this paper, we present our initial study of the design of a
distributed image database system using the current Peer-to-Peer (P2P) Network. We
propose a Firework Query Model for distributed information retrieval which aims to
reduce the network traffic. We carry out experiments to show the distributed image
retrieval system and the Firework information retrieval algorithm. The results show
that the algorithm reduces the network traffic while increases the recall performance.

Keywords

Peer-to-Peer (P2P) Network, Information Retrieval, Peer Clustering, Intelligent Query Rout-
ing, Content-Based Image Retrieval (CBIR), Distributed System

1

List of Figures

1 Screen-shot of a web-based CBIR system. 5

2 Illustration of information retrieval in a P2P network. 7

3 Architecture of CBIRP2P system. 9

4 Illustration of peer clustering. 13

5 Illustration of firework query. 15

6 Real-time query adjustment. 18

7 Number of query messages against the number of peers. 21

8 Recall against the number of peers. 21

9 Query efficiency against the number of peers. 22

10 Number of query messages against TTL. 24

11 Recall against TTL. 24

12 Query efficiency against TTL. 25

13 ImageQuery message. 30

14 ImageQueryHit message. 30

List of Tables

1 Definition of Terms . 11

2 Distance measure of each peer in Fig. 4 A-Sea B-Sunset C-Tree 14

3 Parameters Used in the Experiments . 20

4 experiment parameters used in investigating performance subject to change

of TTL . 22

2

1 Introduction

In recent years, the distributed computing models have accomplished tasks that are difficult

for the traditional centralized computing models to achieve. For example, by distributing

data storage over networked computers, one can have a virtual data storage that is possibly

many magnitudes larger than what can be stored in a local computer. In addition, such

distributed file system with data redundancy would provide zero down time and a powerful

fault tolerance mechanism [16, 2]. One may also envision data security by distributing

pieces of an encrypted file over many computers. Doing so, one imposes a difficult barrier

for intruder to overcome because he needs to break into several computers before getting the

file [22]. With a suitable data segmentation technique, we are able to deliver high-bandwidth

data, e.g., streaming video, using a collection of computers with slower connection speed [9].

Likewise, one may also distribute the computation among different computers to achieve a

high throughput such as the SETI (Search for Extraterrestrial Intelligence) [23]. Although

all the above can be achieved through a centralized coordinator in the existing network,

Peer-to-Peer (P2P) Network offers a completely decentralized and distributed paradigm on

top of the physical network which avoids the coordinator bottleneck problem.

Currently, most content-based image retrieval (CBIR) systems are based on the cen-

tralized computing model. Some are stand-alone applications while others are web-based

systems. We foresee the advantages of using the P2P network for CBIR in at least two

ways. First, with the increasing users joining the P2P network, the image collection will

become more huge and diverse due to individual contribution. Second, with the task of

image processing and retrieval distributed over all the peers, it overcomes the scalability

problem of image retrieval using the traditional centralized retrieval approach. These ideas

sound interest and great, however, many difficulties remain unsolved. For example, images

are distributed across different computers, there is no centralized indexing method to locate

them efficiently in contrast to the original approach. On the implementation side, we need to

standardize a set of image features that all peers compromise to use in describing their shared

images. Last but not least, the issue of charge for using and down-loading resource need to

be addressed before a system can be applied in real life, or at least be applied commercially.

In this paper, we present the design of building a CBIR system on the P2P network for

3

users to share and retrieve images. In particular, we overcome the scalability problem using

the proposed Firework Query Model.

In the following, we first review current issues in CBIR and P2P in Section 2. Then, we

proceed to present the architecture of a P2P information retrieval and the detail algorithm

of the Firework Query Model of our proposed system in Section 3. We then report and

analyze our experimental results in Section 4. We give our final remarks and conclusion in

Section 5.

2 Background and Related Works

2.1 Current Trends in Content Based Image Retrieval

In the past few years, due to emergence of large scale digital image collections, the difficulties

faced by the manual annotation in classifying images become more and more acute, CBIR was

proposed. Instead of annotating images by text-based keywords entered manually, images

would be indexed by their own visual contents, such as the color, texture and shape. Several

researchers [20, 25] had done comprehensive surveys of current techniques in CBIR and

addressed on some issues as the future direction.

Since early 1990’s, many CBIR systems have been proposed and developed, some of them

are QBIC [5], WebSEEK [26], SIMPLIcity [28], MARS [12], NeTra [11], Blobworld [1], Pho-

tobook [17], and some other systems. These systems are not designed to be distributed across

different computers in a network. One of the shortcomings is that the feature extraction,

indexing, and also the querying are all done in a centralized fashion which can be computa-

tionally intensive and it is difficult to scale up. As indicated by several researchers [20, 25],

one of the promising future trends in CBIR includes the distributed computing on data collec-

tion, data processing, and information retrieval. By reforming the centralized system model,

we not only can increase the size of image collections, but we also overcome the scalability

bottleneck problem by distributing the processing of the image information retrieval.

Fig. 1 shows a typical web-based content-based image retrieval system, The image at the

top is the example query images retrieved by user, while images below are images extracted

from the database based on their content similarity, in this example, co-occurance based

texture feature is used.

4

Figure 1: Screen-shot of a web-based CBIR system.

2.2 Content Based Image Retrieval Model Selection

Similar to traditional text retrieval, current implementations of CBIR mainly fall into two

categories, vector model and probabilistic model. As the performance of one shot image

retrieval approach is not so accurate because extracted image feature cannot fully describe

the semantic meaning of an images. Based on these two models, researchers formulated

different relevance feedback strategies to help improving the accuracy of search result. In

the following, we will describe a relevance feedback strategy in each of the model and explain

the choice of our model in implementing distributed CBIR.

2.2.1 Rui’s Weight Updating Method

Base on the vector model, Rui et. al. [21] formulated a weight updating method to capture

user’s preference on different features, such as color or texture. In [21], objects in image

database are modeled as

O = O(D,F,R), (1)

where D is the raw image data, F = {fi} is a set of low level visual features, such as color,

texture, and shape, and R = {rij} is the set of representations for fi, which is defined as

rij = [rij1, ..., rijk, ..., rijK]. (2)

Moreover, the feature vector is organized in a hierarchical manner. The overall similarity

of two images Oa and Ob is defined as

S(Oa, Ob) =
∑

i

WiS(f ai , f
b
i), (3)

S(f ai , f
b
i) =

∑

j

WijS(raij, r
b
ij), (4)

5

S(raij, r
b
ij) = m(raij, r

b
ij,Wijk), (5)

where m is the distance measure function, while Wi, Wij and Wijk are the weights associated

with each features, its representation and each dimension respectively. In each feedback,

they will follow two procedures, namely inter-weight updating and intra-weight updating to

update the weight in order to capture user’s interest in different features.

2.2.2 Cox’s Bayesian Formulation Method

Cox et. al. [4] formulated a Bayesian Learning approach to learn which image is more likely

to be user’s target based on the feedback. Each image is associated with a probability of

being the user’s target. The retrieval process consists of two steps. In each pass, the system

selects a set of images and presents to user. Through the feedback, the system updates the

likelihood measure to the query of each image accordingly. The probability is updated using

the Bayes’ rule as follows,

P (T = Ti|Ht) =
P (At|T = Ti, Dt, St−1)P (T = Ti|Ht−1)
∑n
j=1 P (At|Tj, Dt, St−1)P (Tj|Ht−1)

. (6)

The meaning of Eq. (6) is that the probability of Ti being the target image at iteration

t is equal to product of the probability of Ti being the target at iteration t − 1 and the

probability of user give such feedback at iteration t provided that Ti is the target, over the

summation of probability of other images. Moreover, as each image is associated with a

probability of being the target, they also proposed a maximum entropy display strategy to

select image presenting to user. As a result, the system is expected to get most information

gain from user’s feedback. Besides, [8, 24] also details a procedure to apply this strategy.

Since the probabilistic model requires a global update of the probability of each image

after a feedback iteration, it is not possible to apply in a distributed environment. We choose

to use the vector model instead as the weight for each feature can be stored locally during

the retrieval process.

2.3 Peer-to-Peer Network

Peep-to-Peer (P2P) Network is a recently evolved paradigm for distributed computing. With

the emerging P2P networks or their variants such as Gnutella [6] and Napster [13], they

6

Figure 2: Illustration of information retrieval in a P2P network.

offer the advantages of distributed resource, increased reliability and comprehensiveness of

information [23, 3, 10].

Figure 2 shows an example of a typical P2P network. In the example, different files are

shared by different peers. When a peer initiates a search for a file, it broadcasts a query

request to all its connecting peers. Its peers then propagate the request to their connecting

peers and this process continues. Each peer will process the query request to and look up

their own shared collection. Unlike the client-server architecture of the web, the P2P network

aims at allowing individual computer, which joins and leaves the network frequently, to share

information directly with each other without the help of dedicated servers running 24 hours

on the Internet. Each peer acts as a server and as a client at the same time. In these

networks, a peer can become a member of the network by establishing a connection to one

or more peers in the current network. This model is wasteful because peers are forced to

handle every query message passing through it and mostly are irrelevant query messages.

This type of search is called a Brute-Force Search (BFS) [18], as a query is being broadcasted

to all connected computers even they do not contain the relevant information.

Although the BFS technique in a P2P network is able to retrieve information from the

7

connected peers, this technique is inefficient [18] because a query needs to be broadcasted

to all neighboring peers before the information is retrieved. Current research of searching

techniques in P2P network, such as Chord [27], and Pastry [19] focus on reducing the amount

of network traffic generated. Our proposed CBIR over P2P architecture makes use of delib-

erately formed connection between peers to form a cluster and routing of queries selectively

without restricting to have a specific network topology, thus adaptable to current gnutella

network. We also incorporate image features in consideration when building the network

and routing queries.

3 Content-Based Image Retrieval Over Peer-to-Peer

Network

In Section 3.1 we detail the procedure to perform CBIR in the current Gnutella network.

Since every query is broadcasted to every peer in the network, each peer has to waste

resources in handling irrelevant queries being given. This query message flooding within the

network increases the traffic. In Section 3.2, we tackle this problem by clustering similar

image data to build a special network topology that helps to search more efficiently. Based

on this network topology, we propose the Firework Query Model which seeks to reduce

network traffic and enhance query performance in Section 3.3. In Section 3.4, we propose a

mechanism to restricting the number of results responding to a query by filtering out unlikely

data to further reduce network traffic.

3.1 Proposed Procedure to Perform Distributed Content-Based
Image Retrieval

We outline the overall process of sharing and retrieving image in our system. First we perform

feature extraction, e.g., color, texture, shape, etc. on shared images in each peer. Each peer

maintains his own localized index of feature vectors of his image collection. When a peer,

the requester, initiates a query by giving an example image, it performs feature extraction

on the example image and sends the feature vector to all its connecting peers. Consequently,

other peers compare this query to their feature vector index based on a distance measure

to calculate similar images and return result back to the requester. Likewise, the peers will

propagate this query to their connecting peers and the search is forwarded to more and more

8

Figure 3: Architecture of CBIRP2P system.

peers throughout the whole network.

3.1.1 Gnutella Message Modification

Our system, CBIRP2P extends the current Gnutella network (v0.4 protocol) [6] by adding

two more types of messages ImageQuery and ImageQueryHit listed in the Appendix.

3.1.2 Scenario Walk-through and Functions of Each Component

Referring to Fig. 3, we illustrate how the components inside our CBIRP2P client collaborate

to perform CBIR. In the architecture of CBIRP2P, two components are used to interface

with other peers: (1) the HTTP Agent, which is used for direct transfer of image data

outside the CBIRP2P network, and (2) the Packet Controller, which is used for exchanging

messages within the CBIRP2P network. The Packet Controller component is responsible for

delivering and receiving CBIRP2P messages, identifies their types and routes them to the

corresponding component.

For instance, an incoming ImageQuery message received from other peers, is routed to

the Similarity Comparison Agent. When the Similarity Comparison Agent receives the Im-

ageQuery message, it searches the local index, which is preprocessed by Features Extraction

Agent, to find similar images and delivers the ImageQueryHit message back to requester

through the Packet Controller. Likewise, when a user initiates a query, the Features Extrac-

tion Agent extracts the features of the query image, packs the features to the ImageQuery

9

message, and delivers it to other peers through the Packet Controller.

After initiating a query, the user waits for the replies from his peers. The User Interface

Agent is notified when an ImageQueryHit message is received from his peers. Those messages

are processed in order to show a preview of the query result. In order to download a

shared image from other peers after previewing the result, the HTTP Agent makes a HTTP

connection to the source provider and downloads the target image. On the other hand, when

the source provider receives a download request, the File Locator Agent verifies the location

of the requested file in the Shared Image Collection and completes the file transfer using the

HTTP Agent.

3.2 Peer Clustering Based on Image Similarity

One of the problems in the P2P network for searching is that since it does not have a

centralized coordinator to maintain the feature vector index, the searching mechanism is

required to perform a brute force search which is decentralized and inefficient. To solve

the above problem, we propose to cluster peers that share similar image together, making

the network organized in a systematic way like the Yellow Pages in order to improve query

efficiency. Our peer clustering strategy makes use of forming deliberate attractive links

between peers. These links are formed based on the two peers’ shared image feature similarity

within a neighborhood. With this added network topology as constraints, we propose the

Firework Query Model that can perform searching efficiently by directing queries to their

target cluster.

Similar to the concept proposed in BIRCH [29] for merging sub-clusters incrementally

based on the clustering feature, we derive a strategy to group similar peers [14]. Inside the

P2P network, each peer shares a set of images, it is responsible for extracting the content-

based feature of shared images. This collection of feature vectors is used to describe the

characteristic of the shared images. We use the set of feature vectors as signature value of a

peer and use it to determine similarity between two peers. We begin by defining several key

terms. A summary of these terms is listed in Table 1.

Definition 1 Let Collection(p) = {Ipi }ni=1 be the set of n images a peer p shares. For

each image in the collection, we perform low level feature extraction to map it to a multi-

10

Table 1: Definition of Terms
linkrandom(p) Random link–The connection which a peer p makes randomly

to another peer in the network. It is chosen by the user.
linkattractive(p) Attractive link–The connection which a peer p makes

explicitly to another peer, which they share similar images.
Cat(p) A signature value representing the characteristic of a peer p.
Sim(p, q) The distance measure between two peers p, q, which is a

function of Cat(p) and Cat(q).

Sim(p, ~Q) The distance measure between a peer p and an image query ~Q
Peer(p, t) The set of peers which a peer p can reach within t hops.
Collection(p) The set of images which a peer p shares.
Match(Collection(p), Q) The collection of distance measure between each image in

Collection(p) to the query q.
Number(Q) The number of results requested by user
Threshold(Q), θ The similarity threshold of a query

dimensional vector by function f , which extracts a real-valued d-dimensional vector as,

f : I → Rd, (7)

where f means a specific feature extraction function, for example, the color histogram, the

co-occurrence matrix based texture feature or the Fourier descriptor. After the extraction,

each peer contains a set of feature vectors { ~Rp
i }ni=1, where ~Rp

i = [Rp
i1, R

p
i2, . . . , R

p
id], d is the

number of dimension, which will be served as its local index and used in computing the

signature value and comparing the similarity to a query.

Definition 2 Cat(p) is defined as (~µp, ~δP), where ~µp and ~δp are the mean and variance of

the image feature vectors collection { ~Rp
i }ni=1 that peer p shares. The j-th mean and variance

is defined as,

µpj =
1

n

n∑

i=1

Rp
ij j = 1 . . . d (8)

δpj =
1

n

n∑

i=1

(Rp
ij − µpj)2 j = 1 . . . d (9)

The following example shows a peer p shares seven images [I p1 , . . . , I
p
7], where we extract

the three-dimensional feature vectors as [~Rp
1, . . . ,

~Rp
7] respectively. ~µp and ~δp are computed

as the signature value for this peer p as,

11

~Rp
1 = (5.141, 5.735, 8.620)
~Rp

2 = (5.182, 6.121, 7.970)
~Rp

3 = (5.663, 5.911, 8.695)
~Rp

4 = (4.505, 4.656, 8.603)
~Rp

5 = (5.041, 6.499, 7.990)
~Rp

6 = (4.975, 5.820, 8.735)
~Rp

7 = (4.762, 5.677, 9.106)
~µp = (5.038, 5.774, 8.531)
~δp = (0.112, 0.274, 0.146)

Definition 3 Sim(p, q) is defined as the distance measure between Cat(p) and Cat(q). Let

them be (~µp, ~δp) and (~µq, ~δq) respectively. The following formula is used.

Sim(p, q) = || ~µp − ~µq||2 + (
d∑

i=1

δpi × δqi)1/2 (10)

We assume each peer often shares images related to a certain topic. For example, a peer

may share collection of tree pictures, then, the feature vectors of its shared images will form

a sub-cluster in the high dimensional space, thus, ~µ and ~δ can describe the characteristic of

this collection. Our target is to group each sub-cluster to form a cluster of peers which share

similar images. Connecting peers with similar ~µ and small ~δ is analogous to achieving this.

In (10), the more similar two peers p and q are, the smaller the value Sim(p, q) is. Sim(p, q)

measure is small when ~µp and ~µq are close and both ~δp and ~δq are small. When the means ~µ

are close, it means that the two sub-clusters are close in the high dimensional space. If both

variances ~δ measure are small, it means the image feature vectors in the two sub-cluster are

closely clustered, that is, the shared images are highly related to a common topic.

Based on the above definition, we introduce a clustering algorithm to assign the attractive

link in order to group similar peers as illustrated in Algorithm 1. There are three steps in

our peer clustering strategy:

1. Signature Value Calculation–In the beginning, every peer calculated its a signa-

ture value, Cat(p) based on the characteristic of images shared by that peer p, see

Definition 2.

2. Neighborhood Discovery–When this peer joins the network, it will connect to an-

other peer randomly chosen by the user. Through the ping-pong messages [6], it learns

12

Figure 4: Illustration of peer clustering.

the characteristic of the set of peers within a certain number of hops away from it

(Peer(p, t)).

3. Similarity Calculation and Attractive Link Establishment–Using the attractive

link algorithm as shown in Algorithm 1, it will connect to another peer q having the

lowest Sim(p, q) value through attractive links.

Referring to Fig. 4, There are three main classes of image being shared over the network,

namely, Tree, Sunset, and Sea. A peer named as Tree1 means the majority of images

it shares is related to tree. When the peer Tree4 joins the network, it makes a random

link to Sunset4, and by ping-pong messages, it learns the location and signature value of

other peers, then it makes an attractive link to Tree3 to perform peer clustering because

Sim(Tree4, T ree3) is the smallest, as shown in Table 2. As peers continue to join the

network using this algorithm, peers of similar characteristic will be connected by attractive

link gradually to form a cluster, which makes information retrieval much more systematic

and efficient.

13

Algorithm 1 Algorithm for choosing attractive link

Attractive-Link-Selection(peer p, integer t)
for all q in Peer(p, t) do

Compute Sim(p, q)
end for
assign linkattractive(p) to q with minargq(Sim(p, q))

Table 2: Distance measure of each peer in Fig. 4 A-Sea B-Sunset C-Tree
Sim C1 A1 B1 A2 C2 B2 B3 C3 A3 B4 C4

C1 0.0 7.0 2.9 2.2 0.4 3.7 1.9 0.5 6.5 2.0 0.9

A1 0.0 3.0 0.6 6.0 1.0 4.0 2.3 0.3 2.5 4.5

B1 0.0 4.0 6.6 0.3 0.5 4.5 7.3 0.4 5.7

A2 0.0 0.9 2.2 3.5 9.8 0.5 1.7 2.6

C2 0.0 7.8 7.8 0.7 7.1 7.7 0.8

B2 0.0 0.7 5.5 3.6 0.6 6.1

B3 0.0 6.3 2.8 1.0 5.1

C3 0.0 8.2 4.3 0.2

A3 0.0 9.0 3.3

B4 0.0 6.2

C4 0.0

3.3 Firework Query Model Over Clustered Network

To make use of our clustered P2P network, we propose the Firework Query Model, which aims

to reduce the query message traffic. In this model, a query message first walks around the

network from peer to peer through random links, by doing this, the message is routed selective

towards its target cluster and avoids from passing through peers containing irrelevant data.

Once it reaches the designated cluster, the query message will be broadcasted by peers

through attractive link insides the cluster as shown in Fig. 5.

Here we introduce the algorithm to determine when and how a query message is propa-

gated like a firework in Algorithm 2. Referring to Fig. 4 again, we illustrate with an example

of the Firework Query Model. Assume the peer Tree4, whose shared images are mostly

under the topic of tree, initiates a search to find similar images to its query image, which is

an image of sea. First, the features of this query image are extracted and used to calculate

the distance between the query and its signature value Cat(p). Since the distance measure

between the query and its signature value is larger than a preset threshold, θ, according to

Algorithm 2, Tree4 sends the query to Sunset4 through the random link because the target

14

Figure 5: Illustration of firework query.

of query is not likely to appear in the cluster connected by attractive link. When Sunset4

receives this query, it needs to carry out two steps:

1. Shared File Look Up–The peer looks up its shared image collection for those match-

ing the query. Let ~Q be the query feature vector. Sim(~Rp
i , ~Q) is the distance measure

between the query and an image i shared by peer p, it is a L2 norm defined as,

Sim(~Rp
i , ~Q) = [

d∑

j

(Rp
ij −Qj)

2]
1
2 . (11)

If any shared image matches within the matching criteria of the query in a peer, it will

reply the requester.

2. Route Selection–The peer calculates the distance between the query and his signa-

ture value, which is represented as,

Sim(p, ~Q) = [
d∑

j

(µpj −Qj)
2)]

1
2 . (12)

For the same reason, since the distance measure Sim(p, ~Q) between Sunset4 and query

is larger than θ, it then forwards the query to Sea2 through the random link again.

After walking around the network randomly, the query message reaches its target cluster

and starts to expand the search much like a firework. During the explosion, Sea2 also looks

up its shared image collection for those matching the query. Obviously, the number of shared

15

images in Sea2 matching the query will be much larger than the number in Sunset3. After it

replies the requester, it will forward the query to Sea1 through the attractive link. Likewise,

Sea1 will carry out the same checking, forwarding the query to Sea3, Tree1 and so on.

There are two mechanisms to prevent a query message from looping forever in the dis-

tributed network. One of the mechanisms is the inherent Gnutella replicated message check-

ing rule. When a new query appears to a peer, it is checked against a local cache for

duplication. If it is found that the same message has passed through before, the message

will not be forwarded. The second mechanism is to use the Time-To-Live (TTL) value to

indicate how long a message can survive. Similar to IP packets, every Gnutella messages

are associated with a TTL. Each time when the message passes through a peer, the TTL

value is decreased by one. Once the TTL is zero, the message will be dropped and no longer

forwarded.

The difference between our query messages and the Gnutella messages is that the TTL

is not decreased when the messages are sent through attractive link. The reason is that,

when a query reaches its target cluster, all peers inside the cluster are sharing highly related

images, in order to get as much hits as possible, there is no reason to decrease the TTL and

prevent further searching inside the highly related cluster. Hence, the only way to stop the

infinite looping problem in a clustered network is by using the default message checking rule.

Algorithm 2 Algorithm for the Firework Query Model

Firework-query-routing (peer p, query Q)
if Sim(p,Q) < θ (threshold) then

reply the query Q
TTLnew(Q) = TTLold(Q)
forward Q to all linkattractive(p)

else
TTLnew(Q) = TTLold(Q)− 1
if TTLnew(Q) > 0 then

forward Q to all linkrandom(p)
end if

end if

3.4 Real-time Query Adjustment

So far, we have been focusing on how to reduce the network traffic by limiting the amount

of query messages generated. On the other hand, we can also reduce the traffic by limiting

16

the amount of query-hit messages. As the query-hit messages are usually long, they greatly

increase the network traffic. When a user initiates a query, he may only be interested in a

certain number of most similar matches. Any further matches does not improve the goodness

of search result. On the other hand, the extra query-hit messages introduces unnecessary

traffic in the network. Therefore, we might need to refine the matching criteria adaptively

to restrict irrelevant images from being retrieved as the query message travels along the P2P

network. We propose a strategy here to re-adjust the query message on-the-fly such that the

amount of query-hit message generated will be reduced. Consider a user want to search for

images that is of 80% similar to an example images provided by him. In a retrieval process,

he might only want to get the top 20 results, it is wasteful for every peers to reply this query

by returning all result that is 80% similar to the query. The idea comes like if a peer can

return 20 results of 90% similar to the query, there is no need to further ask other peer for

results with similarity 80% or more, instead, we have to restrict the similarity to 90% or

more.

Referring to Fig. 6, suppose peers B, C, D and E contain 20 images of similarity within 1.5

to the query initiated by peer A. Without query adjustment, peers B, C, D and E will return

the top 15 results in their collection back to peer A, generating a total of 60 results. (this

result is not the actual image data, but the information about the location of images and

the similarity value, please refer to Appendix) With the help of real-time query adjustment,

peer B and C refine the query to be searching for images with in 0.8 and 0.9 similarity

respectively. This is because the similarity of the 20th retrieved images from B and C to the

query is 0.8 and 0.9 respectively. Thus the number of images matches this criteria in peer

D and E are reduced, so they only return 6 and 7 results respectively. The total number of

results generated is 43 in this case.

Referring to the definitions in Table. 1, Number(Q) is the maximum number of results

to be retrieved in a query, Threshold(Q) or θ is a degree of similarity chosen by the user

to filiter out non-relevant result. By this algorithm, The query Q is refined as Qnew and

pass along to other peers, the threshold is iteratively restricted, os non-relevant results are

filtered out. Due to time limitation, the simulation of this part is not yet done, but we are

sure the algorithm is able to reduce the amount of query-hit message generated.

17

Figure 6: Real-time query adjustment.

Algorithm 3 Algorithm for the Real-time Query Adjustment

Real-time-Query-Adjustment (peer p, query Q)
Result = Match(Collection(p), Q)
Sort Result
Qnew = Q
if |Result| > Number(Q) then
Threshold(Qnew) = Sim(Result[Number(Q)], Q)

end if
Apply Firework-query-routing(p, Qnew)

4 Experiments and Results

In this section, we present our experiment results and analyses. We investigate the effect

on query efficiency subject to increasing number of peers and increasing of query message’s

TTL. In each of these two experiments, we further take the average measure of (1) number

of query messages generated (network traffic cost), (2) recall (comprehensiveness of search),

and (3) recall per query message (query efficiency) in twenty iterations giving us a total of

six cases. In each of the six cases, we compare the differences in performance of the Random

BFS, one of the de facto methods in the Gnutella network, and our proposed Firework Query

Model.

Let P be the set of peers that receive query message, pr be the number of query messages

a peer p received. The number of query messages generated M , the recall RE and the query

efficiency E are defined as follows:

18

M =
∑

p∈P
pr, (13)

RE =
|{∀Ipi , Sim(~Rp

i , ~Q) < θ, p∈P}|
|{∀Ipi , Sim(~Rp

i , ~Q) < θ}|
, (14)

E =
RE

M
. (15)

In our simulation environment, we generate a certain number of nodes, assign each of

them to a specific class respectively. Then, each node randomly picks a value of mean and

variance according to the association to the class. Using this set of parameters, each node

generates a set of data points following the Gaussian distribution, which is to model as the

feature vectors set of the shared images it possesses. With each node having its own signature

value as in Eq. 8, 9, we connect nodes together based on our proposed peer clustering strategy

to form a special network topology. After building the network, we perform twenty runs of

query evenly distributed within the high dimensional feature vector space and repeat this

four times for different network topology. We take the average for number of query messages

generated and recall accordingly.

The simulation is done on Sun Enterprise E4500 (12 400MHz Ultra IIi) running Solaris

v.7 using C. For a simulation of 30,000 peers, the running time is approximately around 15

minutes. For the CBIR system, we build our client program based on Gnutella v0.4 protocol.

For image related operations, we use ImageMagik library [7] to assist in extracting visual

feature. When testing our client program, we use different port numbers to simulate different

peers.

4.1 Increasing The Number of Peers

The first experiment tests the scalability of our system and algorithm by measuring the

model’s efficiency against the network size and the size of the image collection. The experi-

ment parameters are listed in Table 3.

4.1.1 Number of Query Messages Against The Number of Peers

Figure 7 shows the number of query messages generated in two cases. We vary the number of

peers in the network to observe the changes in number of query messages generated when a

19

Table 3: Parameters Used in the Experiments

Parameters Value and Description

TTL of query message 6
Number of classes 30, evenly distributed within [0, 10]
Range of mean within a class [-1,+1]
Range of variance [0.08,0.6]
Number of dimension 6
Query range threshold, θ 0.9
Number of data points in one peer 15-30

peer initiates a search. From the observation, the Firework Query Model shows a promising

sub-linear increase in the number of query messages subject to increase in number of peers in

the network, while the BFS increases in a much faster rate. We conclude our model generate

mush less traffic.

4.1.2 Recall Against the Number of Peers

Figure 8 shows the recall against number of peers in two cases. When the size of network

increases, the recall of Firework Query Model continues to remain at a higher range, while

the recall for BFS drops when size of network grows. We conclude that even the size of

network grows, our model still can reach a large portion of the network containing the query

target.

4.1.3 Query Efficiency Against the Number of Peers

Figure 9 shows the query efficiency against number of peers in two cases. When the size

of network increases, both the efficiency of Firework Query Model and the BFS decrease.

However, our proposed strategy always outperforms the BFS and the ratio of Firework Query

Model to BSF keeps increasing as network size grows.

4.2 Increasing The Query Message’s TTL

This experiment investigates what parameters setting can perform optimally in Firework

Query Model. We look into the relationship of number of query messages generated and

recall measure to figure out how to use the minimal number of query messages to cover the

maximal portion of network containing relevant data. The experiment parameters are listed

in Table 4.

20

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of peers

N
um

be
r

of
 q

ue
ry

 m
es

sa
ge

BFS
Clustering

Figure 7: Number of query messages against the number of peers.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of peers

R
ec

al
l

BFS
Clustering

Figure 8: Recall against the number of peers.

21

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Number of peers

Q
ue

ry
 e

ffi
ci

en
cy

(r
ec

al
l p

er
 q

ue
ry

 m
es

sa
ge

)

BFS
Clustering

Figure 9: Query efficiency against the number of peers.

Table 4: experiment parameters used in investigating performance subject to change of TTL

Parameter Value and Description

number of peers 10000
number of classes 30, evenly distributed within [0, 10]
range of mean within a class [-1,+1]
range of variance [0.08,0.6]
number of dimension 2
query range threshold, θ 0.3
number of data points in one peer 15-30

22

4.2.1 Number of Query Messages Against TTL of Query Message

Figure 10 shows the number of query messages generated in two cases. We vary the TTL

of query message to observe the changes in the number of query messages generated when

a peer initiates a search. Similar to the result in Section 4.1.1, the Firework Query Model

shows a promising sub-linear increase in number of query messages subject to increasing

TTL of query message, while the BFS increases in a much faster rate.

4.2.2 Recall Against TTL of Query Message

Figure 11 shows the recall against TTL of query message in two cases. When the value of

TTL increases, both the recall of Firework Query Model and the BFS increase, while our

proposed strategy increases in a much faster rate. When the TTL is larger than 7, the recall

graph tails down in the Firework Query Model because the recall is nearly saturated and

cannot be improved anymore.

4.2.3 Query Efficiency Against TTL of Query Message

Figure 12 shows the query efficiency against TTL of query message in two cases. As the recall

remains nearly unchanged after TTL greater than six, increasing the TTL of query message

successively introduce more unnecessary query messages, so we experience an increase in

query efficiency when TTL less than six, while query efficiency drops when TTL is greater

than six. We found that the optimal TTL value is six in a network size of ten thousands

peers.

5 Future Work and Conclusion

Among the possible ways to extend the current work, the most challenging one is to perform

normalization of feature vectors in a distributed environment. The need for normalizing

image feature vectors is a must in order to avoid one particular dimension overshadowing

the others. We need to have an algorithm to normalize image feature vector by just knowing

a partial picture of the network in order to achieve better performance in CBIR.

23

2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

TTL of query message

N
um

be
r

of
 q

ue
ry

 m
es

sa
ge

BFS
Clustering

Figure 10: Number of query messages against TTL.

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TTL of query message

R
ec

al
l

BFS
Clustering

Figure 11: Recall against TTL.

24

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

TTL of query message

Q
ue

ry
 e

ffi
ci

en
cy

(r
ec

al
l p

er
 q

ue
ry

 m
es

sa
ge

)

BFS
Clustering

Figure 12: Query efficiency against TTL.

Normalization

In the definition of Sim(p, q) described in section 3.2, we have assumed that the value of

each vector component in the signature value, ~µp and ~δp, are of the same dynamic range.

Otherwise, the distance measure between two peers becomes less meaningful because one

dimension may overshadow the others if its dynamic range is too large compared with others.

For this reason, the vector components should be normalized before applying the similarity

measure Sim(p, q). Assume that there are N peers in the network and let p be the peer id

index, then

~µp = [µp1, µ
p
2, µ

p
3, . . . , µ

p
k]

~δp = [δp1, δ
p
2 , δ

p
3, . . . , δ

p
k]

is the signature value for peer p, where k is the k-th component in vector ~µp and ~δp. A

good approach to normalize the above vector components have been proposed in [15],[12] ,

used the Gaussian normalization as follow :

~knew =
~k − ~µ
~δ

(16)

However, the P2P network does not have centralized server to keep track of what images

are being shared in what peer, and stores the signature value of each peer in the network,

25

therefore, we cannot perform normalization without a collection of all the images features.

In order to solve this, we may try to normalize the signature value as follow. First, a peer

will send ping-pong messages to ask other’s signature value of the set of peers within a

certain number of hops away form it (Peer(p, t)). After collecting the replies from other

peers, our strategy will perform a normalization of his personal signature value based on

other’s signature values using eq. 16. Likewise, the extracted features vectors of images are

also need to perform normalization in order to get a satisfactory result. In our proposed

strategy, it has one limitation, the size of (Peer(p, t)) must be large enough, so that the set

of collected signature value of peers is able to represent the whole collection of images in the

network. In order to show our strategy work, we need to carry out empirical experiments to

verify in the future.

In this paper, we demonstrate how to implement a CBIR system over the current Gnutella

network. When users need to search for an image, all peers inside the network will lookup

their own collection of images and respond to the requesters. Such architecture fully utilizes

the storage and computation capability of computers in the Internet. However, the lack

of a centralized index requires a query to be broadcasted throughout the network in order

to achieve a satisfactory result. To solve this problem, we propose a peer clustering and

intelligent query routing strategy to search images efficiently over the P2P network. We

verify our proposed strategy by simulations with different parameters to investigate the

performance changes subject to different network size and TTL of query messages. We show

that our Firework Query Model outperforms the BFS method in both network traffic cost

and query efficiency measure.

Acknowledgments

CBIRP2P is a collaborative work with Mr. Ng Cheuk Hang. The author would like to thank

him and the guidance of Prof. Irwin King in finishing this paper.

26

References

[1] C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein, and J. Malik. Blobworld: a system for
region-based image indexing and retrieval. In Proc. Int. Conf. on Visual Information Systems,
1999.

[2] P. Chen, E. Lee, G. Gibson, R. Katx, and D. Patterson. Raid: High-performance, reliable
secondary storage. In ACM Computing Surveys, volume 26, pages 145–188, June 1994.

[3] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems Concepts and Design.
Addison-Wesley, third edition, 2001.

[4] I. J. Cox, M. L. Miller, T. P. Minka, T. V. Papathomas, and P. N. Yianilos. The bayesian
image retrieval system, pichunter, theory, implementation, and psychophysical experiments.
IEEE Transactions on Image Processing, 9(20-37), January 2000.

[5] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, N. W., D. Petkovic, and W. Equitz. Effi-
cient and effective querying by image content. Journal of Intelligent Information Systems:
Integrating Artificial Intelligence and Database Technologies, 3(3-4):231–262, 1994.

[6] The gnutella homepage. http://www.gnutella.com.
[7] The imagemagik homepage. http://www.imagemagik.com.
[8] I. King and Z. Jin. Relevance feedback content-based image retrieval using query distribution

estimation based on maximum entropy principle. In L. Zhang and F. Gu, editors, Proceedings
to the International Conference on Neural Information Processing (ICONIP2001), volume 2,
pages 699–704, Shanghai, China, November 14-18 2001. Fudan University, Fudan University
Press.

[9] Y. B. Lee and P. C. Wong. A server array approach for video-on-demand service on local area
networks. In Proc. IEEE INFOCOM’ 96, pages 27–34, 1996.

[10] Modern peer-to-peer file-sharing over the internet. http://www.limewire.com/index.jsp/p2p.
[11] W. Y. Ma and B. Manjunath. Natra: A toolbox for navigating large image databases. In

Proc. IEEE Int. Conf. Image Processing, pages 568–571, 1997.
[12] S. Mehrotra, Y. Rui, M. Ortega, and T. Huang. Supporting content-based queries over images

in mars. In Proc. IEEE Int. Conf. Multimedia Computing and Systems, pages 632–633, 1997.
[13] The napster homepage. http://www.napster.com.
[14] C. H. Ng and K. C. Sia. Peer clustering and firework query model. In Proceedings of 11th

World Wide Web Conference, May 2002.
[15] M. Ortega, Y. Rui, K. Chakrabarti, S. Mehrotra, and T. S. Huang. Supporting similarity

queries in mars. In Prof. of ACM Conf. on Multimedia, 1997.
[16] D. Patterson, G. Gibson, and R. Katz. A case for redundant arrays of interactive disks. In

Proc. of ACM International Conf. on Management of Data (SIGMOD), pages 109–116, May
1988.

[17] A. Pentland, R. W. Picard, and S. Sclaroff. Photobook: tools for content-based manipulation
of image databases. In Proc. SPIE, volume 2185, pages 34–47, February 1994.

[18] M. Portmann, P. Sookavatana, S. Ardon, and A. Seneviratne. The cost of peer discovery and
searching in the gnutella peer-to-peer file sharing protocol. In Proceedings to the International
Conference on Networks, volume 1, 2001.

[19] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems. In Proceedings of the 18th IFIP/ACM International Confer-
ence on Distributed Systems Platforms, November 2001.

[20] Y. Rui, T. S. Huang, and S.-F. Chang. Image retrieval: current techniques, promising direc-
tions and open issues. Journal of Visual Communication and Image Representation, 10:39–62,
April 1999.

27

[21] Y. Rui, T. S. Huang, M. Ortega, and S. Mehrota. Relevance feedback: A power tool for inter-
active content-based image retrieval. IEEE Transactions on Circuits and Video Technology,
8(644-655), September 1998.

[22] The worldwide computer. http://www.scientificamerican.com/2002/0302issue/0302anderson.html.
[23] The search for extraterrestrial intelligence homepage. http://www.setiathome.ssl.berkeley.edu.
[24] K. C. Sia and I. King. Relevance feedback based on parameter estimation of target distribution.

In Proceedings of International Joint Conference on Neural Networks, May 2002.
[25] A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jai. Content-based image retrieval

at the end of the early years. IEEE Transaction on Pattern Analysis and Machine Intelligence,
22(12):1349–1380, December 2000.

[26] J. R. Smith and S. F. Chang. An image and video search engine for the world-wide web. In
Proc. SPIE, volume 3022, pages 84–95, 1997.

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proceedings of ACM SIGCOMM,
pages 149–160, August 2001.

[28] J. Z. Wang, G. Li, and G. Wiederhold. Simplicity: Semantics-sensitive integrated matching
for picture libraries. In IEEE Trans. on pattern Analysis and Machine Intelligence, volume 23,
pages 947–963, 2001.

[29] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering method for
very large databases. In In Proceedings of the 1996 ACM SIGMOD International Conference
on Management of Data, pages 103–114, 1996.

28

Appendix: Modification of Gnutella Message

In order to implement a CBIR system on the current Gnutella network, we propose to extend

the Gnutella protocol v0.4 [6] by adding two new descriptors as following:

• ImageQuery–Extension of the Query descriptor. This is the primary mechanism for

searching images based on their servent content in the distributed network. A servent

receiving an ImageQuery descriptor will respond with an ImageQueryHit if a match

is found against its local data set. Four extract bytes are added to store the id of the

feature extraction method. Another four extract bytes are added to store the matching

criteria. Fig. 13

• ImageQueryHit–Extension of the QueryHit descriptor. It is the response to an Im-

ageQuery. This descriptor provides the recipient with enough information to acquire

the images matching the corresponding ImageQuery. 4 extra bytes of data are added

in each result of the Result Set to store the similarity between each result to the

corresponding query. Fig. 14

ImageQuery (0x90)

• Minimum Speed–The minimum speed of servents that should respond to this mes-

sage.

• Feature Extraction Method–The identification number of the feature extraction

method used in this query message.

• Matching criteria–The maximum distance measure of the query image to the shared

images that peer required to reply the requester.

• Search criteria– A vector that is extracted by the method stated in Feature Ex-

traction Method field.

ImageQuery Hit (0x91)

The descriptor of ImageQueryHit is the same as the original QueryHit, only that 4 bytes of

data are added in each result of the Result Set to store the similarity between each result to

the corresponding query.

29

Figure 13: ImageQuery message.

Figure 14: ImageQueryHit message.

30

