Search Engines Considered Harmful

In Search of an Unbiased Web Ranking

Junghoo “John” Cho
cho@cs.ucla.edu

UCLA
Motivation

“If you are not indexed by Google, you do not exist on the Web”
– News.com article, 10/23/2002

- People “discover” pages through search engines
 - Top results: many users
 - Bottom results: no new users

- Are we biased by search engines?
Outline

Are the rich getting richer?
 - Web popularity-evolution experiment

How much bias do search engines introduce?
 - Impact of search engines

Can we avoid search-engine bias?
 - New ranking metric
Web Evolution Experiment

- Collect Web history data
 - Is “rich-get-richer” happening?
- 154 sites monitored
 - Top sites from each category of Open Directory
- Pages downloaded every week
 - All pages in each site
 - A total of average 4M pages every week (65GB)
“Rich-Get-Richer” Problem

- Construct weekly Web-link graph
 - From the downloaded data
- Partition pages into 10 groups
 - Based on initial link popularity
 - Top 10% group, 10%-20% group, etc.
- How many new links to each group after a month?
 - Rich-get-richer \rightarrow More new links to top groups
After 7 months

- 70% of new links to top 20% pages
- No new links to bottom 60% pages
After 7 months

- Decrease in PageRank for bottom 50% pages
- Due to normalization of PageRank
Outline

- Web popularity-evolution experiment
 - “Rich-get-richer” is indeed happening
 - Unpopular pages get no attention
- Impact of search engines
 - How much bias do search engines introduce?
- New ranking metric
 - Page quality
Outline

- Web popularity-evolution experiment
 - “Rich-get-richer” is indeed happening
 - Unpopular pages get no attention

- Impact of search engines
 - How much bias do search engines introduce?

- New ranking metric
 - Page quality
What we mean by bias?
Search Engine Bias

- What we mean by bias?
- What is the ideal ranking?
 How do search engines rank pages?
What is the Ideal Ranking?

Rank by intrinsic “quality” of a page?
What is the Ideal Ranking?

Rank by intrinsic “quality” of a page?
- Very subjective notion
- Different quality judgment on the same page
- Can there be an “objective” definition?
Page Quality $Q(p)$

Definition

The probability that an average Web user will like page p enough to create a link to it if he looks at it.
Page Quality $Q(p)$

Definition

The probability that an average Web user will like page p enough to create a link to it if he looks at it.

- In principle, we can measure $Q(p)$ by
 1. showing p to all Web users and
 2. counting how many people like it

- p_1: 10,000 people, 8,000 liked it, $Q(p_1) = 0.8$
- p_2: 10,000 people, 2,000 liked it, $Q(p_2) = 0.2$
Page Quality $Q(p)$

Definition

The probability that an average Web user will like page p enough to create a link to it if he looks at it.

- In principle, we can measure $Q(p)$ by
 1. showing p to all Web users and
 2. counting how many people like it

- p_1: 10,000 people, 8,000 liked it, $Q(p_1) = 0.8$
- p_2: 10,000 people, 2,000 liked it, $Q(p_2) = 0.2$

Democratic measure of quality

- When consensus is hard to reach, pick the one that more people like
PageRank: Intuition

- A page is “important” if many pages link to it
- Not every link is equal
 - A link from an “important” page matters more than others
 e.g. Link from Yahoo vs Link from a random home page

\[
PR(p_i) = (1 - d) + d \left[\frac{PR(p_1)}{c_1} + \cdots + \frac{PR(p_m)}{c_m} \right]
\]

Random-Surfer Model

When users follow links randomly, \(PR(p_i) \) is the probability to reach \(p_i \)
Page Quality vs PageRank

- PageRank \approx Page quality if everyone is given equal chance
- High PageRank \rightarrow high quality
 - To obtain high PageRank, many people should look at the page *and* like it.
- Low PageRank \rightarrow low quality?
 - PageRank is biased against new pages
- How much bias for low PageRank pages?
Ideal experiment:
- Divide the world into two groups
 - The users who do not use search engines
 - The users who use search engines very heavily
- Compare popularity evolution
Measuring Search-Engine Bias

Ideal experiment:
- Divide the world into two groups
 - The users who do not use search engines
 - The users who use search engines very heavily
- Compare popularity evolution

Problem: Difficult to conduct in practice
Let us do theoretical experiments!

- **Random-surfer model**
 - Users follow links randomly
 - Never use search engines

- **Search-dominant model**
 - Users always start with a search engine
 - Only visit pages returned by the search engine

→ Compare popularity evolution
Basic Definitions for the Models

(Simple) Popularity $\mathcal{P}(p, t)$
- Fraction of Web users that like p at time t
- E.g., 100,000 users, 10,000 like p, $\mathcal{P}(p, t) = 0.1$

Visit Popularity $\mathcal{V}(p, t)$
- Number of users that visit p in a unit time

Awareness $\mathcal{A}(p, t)$
- Fraction of Web users who are aware of p
- E.g., 100,000 users, 30,000 aware of p, $\mathcal{A}(p, t) = 0.3$
Basic Definitions for the Models

(Simple) Popularity $\mathcal{P}(p, t)$
- Fraction of Web users that like p at time t
- E.g., 100,000 users, 10,000 like p, $\mathcal{P}(p, t) = 0.1$

Visit Popularity $\mathcal{V}(p, t)$
- Number of users that visit p in a unit time

Awareness $\mathcal{A}(p, t)$
- Fraction of Web users who are aware of p
- E.g., 100,000 users, 30,000 aware of p, $\mathcal{A}(p, t) = 0.3$

$\mathcal{P}(p, t) = Q(p) \cdot \mathcal{A}(p, t)$
Random-Surfer Model

Popularity-Equivalence Hypothesis

\[V(p, t) = r \cdot P(p, t) \quad \text{(or} \quad V(p, t) \propto P(p, t) \text{)} \]

- PageRank is visit probability under random-surfer model
- Higher popularity → More visitors

Random-Visit Hypothesis

A visit is done by any user with equal probability
Random-Surfer Model: Analysis

Current popularity $P(p, t)$
→ Number of visitors from $V(p, t) = r \cdot P(p, t)$
→ Awareness increase $\Delta A(p, t)$
→ Popularity increase $\Delta P(p, t)$
→ New popularity $P(p, t + 1)$
Random-Surfer Model: Analysis

Current popularity $\mathcal{P}(p, t)$

→ Number of visitors from $\mathcal{V}(p, t) = r \cdot \mathcal{P}(p, t)$

→ Awareness increase $\Delta \mathcal{A}(p, t)$

→ Popularity increase $\Delta \mathcal{P}(p, t)$

→ New popularity $\mathcal{P}(p, t + 1)$

 Formal Analysis: Differential Equation

$$\mathcal{P}(p, t) = \left[1 - e^{-\frac{r}{n} \int_0^t \mathcal{P}(p,t) dt} \right] Q(p)$$
The popularity of page p evolves over time through the following formula:

$$\mathcal{P}(p, t) = \frac{Q(p)}{1 + \left[\frac{Q(p)}{\mathcal{P}(p, 0)} - 1 \right] e^{-\left[\frac{r}{n} Q(p) \right] t}}$$

- $Q(p)$: quality of p
- $\mathcal{P}(p, 0)$: initial popularity of p at time zero
- n: total number of Web users.
- r: normalization constant in $\mathcal{V}(p, t) = r \cdot \mathcal{P}(p, t)$
Random-Surfer Model: Popularity Graph

\[Q(p) = 1, \ P(p, 0) = 10^{-8}, \ \frac{r}{n} = 1 \]
\(\mathcal{V}(p, t) \sim \mathcal{P}(p, t) \)?
\[V(p, t) \sim P(p, t) \]?

- For \(i \)th result, how many clicks?
- For PageRank \(P(p, t) \), what ranking?
Search-Dominant Model

\(\mathcal{V}(p, t) \sim \mathcal{P}(p, t) \) ?

- For \textit{i}th result, how many clicks?
- For PageRank \(\mathcal{P}(p, t) \), what ranking?
- Empirical measurement by Lempel et al. and us
Search-Dominant Model

\[\mathcal{V}(p, t) \sim \mathcal{P}(p, t)? \]
- For \(i \)th result, how many clicks?
- For PageRank \(\mathcal{P}(p, t) \), what ranking?
- Empirical measurement by Lempel et al. and us

New Visit-Popularity Hypothesis

\[\mathcal{V}(p, t) = r \cdot \mathcal{P}(p, t)^{\frac{9}{4}} \]
Search-Dominant Model

\[\mathcal{V}(p, t) \sim \mathcal{P}(p, t) \]?

- For \(i \)th result, how many clicks?
- For PageRank \(\mathcal{P}(p, t) \), what ranking?
- Empirical measurement by Lempel et al. and us

New Visit-Popularity Hypothesis

\[\mathcal{V}(p, t) = r \cdot \mathcal{P}(p, t)^{9/4} \]

Random-Visit Hypothesis

A visit is done by any user with equal probability
\[
\sum_{i=1}^{\infty} \frac{[P(p,t)]^{(i-\frac{9}{4})} - [P(p,0)]^{(i-\frac{9}{4})}}{(i-\frac{9}{4}) Q(p)^i} = \frac{r}{n} t \quad \text{(same parameters as before)}
\]
Comparison of Two Models

- Time to final popularity
 - Random surfer: 25 time units
 - Search dominant: 1650 time units
 → 66 times increases!

- Expansion stage
 - Random surfer: 12 time units
 - Search dominant: non existent
Outline

- Web popularity-evolution experiment
 - Is “rich-get-richer” happening?
- Impact of search engines
 - Random-surfer model
 - Search-dominant model
- New ranking metric
 - How to measure page quality?
Measuring Quality: Basic Idea

• Quality: probability of link creation by a new visitor
Measuring Quality: Basic Idea

- Quality: probability of link creation by a new visitor
- Assuming the same number of visitors
 \[Q(p) \propto \text{Number of new links} \]
 (or popularity increase)
Measuring Quality: Basic Idea

- **Quality**: probability of link creation by a new visitor
- **Assuming the same number of visitors**
 \[Q(p) \propto \text{Number of new links} \]
 (or popularity increase)

Quality Estimator

\[
\hat{Q}(p) = \frac{\Delta P(p)}{P(p)}
\]
Measuring Quality: Problem 1

- Different number of visitors to each page
 - More visitors to more popular page
- How to account for number of visitors?

Quality Estimator

\[\hat{Q}(p) = \frac{\Delta P(p)}{P(p)} + P(p) \]
Measuring Quality: Problem 1

- Different number of visitors to each page
 - More visitors to more popular page
- How to account for number of visitors?
- Idea: PageRank = visit probability

Quality Estimator

\[\hat{Q}(p) = \frac{\Delta P(p)}{P(p)} \]
Measuring Quality: Problem 1

- Different number of visitors to each page
 - More visitors to more popular page
- How to account for number of visitors?
- Idea: PageRank = visit probability

Quality Estimator

\[\hat{Q}(p) = \frac{\Delta P(p)}{P(p)} \]
Measuring Quality: Problem 2

- No more new links to very popular pages
 - Everyone already knows them
 - $\Delta \mathcal{P}(p)/\mathcal{P}(p) \approx 0$ for well-known pages
- How to account for well-known pages?

Quality Estimator

$$\hat{Q}(p) = \frac{\Delta \mathcal{P}(p)}{\mathcal{P}(p)}$$
Measuring Quality: Problem 2

- No more new links to very popular pages
 - Everyone already knows them
 - \(\Delta \mathcal{P}(p)/\mathcal{P}(p) \approx 0 \) for well-known pages
- How to account for well-known pages?
- Idea: \(\mathcal{P}(p) = Q(p) \) when everyone knows \(p \)
 - Use \(\mathcal{P}(p) \) to measure \(Q(p) \) for well-known pages

Quality Estimator

\[
\hat{Q}(p) = \Delta \mathcal{P}(p)/\mathcal{P}(p)
\]
Measuring Quality: Problem 2

- No more new links to very popular pages
 - Everyone already knows them
 - $\Delta \mathcal{P}(p)/\mathcal{P}(p) \approx 0$ for well-known pages

- How to account for well-known pages?
 - Idea: $\mathcal{P}(p) = Q(p)$ when everyone knows p
 - Use $\mathcal{P}(p)$ to measure $Q(p)$ for well-known pages

Quality Estimator

$$\hat{Q}(p) = C \cdot \Delta \mathcal{P}(p)/\mathcal{P}(p) + \mathcal{P}(p)$$

C: weight given to popularity increase
Theorem

Under the random-surfer model, the quality of page \(p \), \(Q(p) \), always satisfies the following equation:

\[
Q(p) = \left(\frac{n}{r} \right) \left(\frac{d\mathcal{P}(p,t)/dt}{\mathcal{P}(p,t)} \right) + \mathcal{P}(p,t)
\]

Compare it with \(\hat{Q}(p) = C \cdot \frac{\Delta \mathcal{P}(p)}{\mathcal{P}(p)} + \mathcal{P}(p) \)
Is Page Quality Effective?

- How to measure its effectiveness?
 - Implement it to a major search engine?
 - Any other alternatives?

Idea: Pages eventually obtain deserved popularity (however long it may take...)

"Future" PageRank \(\approx Q(p) \)
How to measure its effectiveness?
- Implement it to a major search engine?
- Any other alternatives?

Idea: Pages eventually obtain deserved popularity (however long it may take...)
- “Future” PageRank $\approx Q(p)$
\(\hat{Q}(p) \) as a predictor of future PageRank

- Compare the correlations of
 - “current” \(\hat{Q}(p) \) with “future” PageRank
 - “current” PageRank with “future” PageRank

→ \(\hat{Q}(p) \) predicts “future” PageRank better?
\(\hat{Q}(p) \) as a predictor of future PageRank

- Compare the correlations of
 - “current” \(\hat{Q}(p) \) with “future” PageRank
 - “current” PageRank with “future” PageRank

\[\rightarrow \hat{Q}(p) \text{ predicts “future” PageRank better?} \]

- Download the Web multiple times with long intervals

\[t_1 \quad t_2 \quad t_3 \quad t_4 \]

1 month \[\quad \] 4 months
\(\hat{Q}(p) \) as a predictor of future PageRank

- Compare the correlations of
 - “current” \(\hat{Q}(p) \) with “future” PageRank
 - “current” PageRank with “future” PageRank

\[\rightarrow \hat{Q}(p) \text{ predicts “future” PageRank better?} \]

- Download the Web multiple times with long intervals

\[PR(p, t_3) \quad ? \quad PR(p, t_4) \]
$\hat{Q}(p)$ as a predictor of future PageRank

- Compare the correlations of
 - “current” $\hat{Q}(p)$ with “future” PageRank
 - “current” PageRank with “future” PageRank

→ $\hat{Q}(p)$ predicts “future” PageRank better?

- Download the Web multiple times with long intervals

![Diagram with time intervals and PageRank calculations](image)
Compare the average relative error

\[
err(p) = \begin{cases}
\left|\frac{PR(p, t_4) - \hat{Q}(p, t_3)}{PR(p, t_4)}\right| \\
\left|\frac{PR(p, t_4) - PR(p, t_3)}{PR(p, t_4)}\right|
\end{cases}
\]

For the pages whose PageRank consistently increased/decreased from \(t_1 \) through \(t_3 \).
Compare the average relative error

\[err(p) = \begin{cases}
\frac{| PR(p,t_4) - \hat{Q}(p,t_3) |}{PR(p,t_4)} \\
\frac{| PR(p,t_4) - PR(p,t_3) |}{PR(p,t_4)}
\end{cases} \]

Result *

- For \(\hat{Q}(p, t_3) \): average \(err = 0.32 \)
- For \(PR(p, t_3) \): average \(err = 0.78 \)
- \(\hat{Q}(p, t_3) \) twice as accurate.

*For the pages whose PageRank consistently increased/decreased from \(t_1 \) through \(t_3 \).
Search Engines Considered Harmful

Junghoo “John” Cho
Summary

- Web popularity-evolution experiment
 - “Rich-get-richer” is indeed happening
- Impact of search engines
 - Random-surfer model
 - Search-dominant model
 - Search engines have worrisome impact
- New ranking metric
 - Page quality
Page Quality

- “Improved” version of PageRank
 - Accounts for different levels of exposure
- Third-generation ranking principle
 - 1^{st}: Term frequency
 - 2^{nd}: Link structure
 - 3^{rd}: Link evolution
- Potential to reduce Web inequality
 - Identify high-quality pages early on
Thank You

For more details, see

What’s New on the Web?

J. Cho and S. Roy
Impact of Web Search Engines on Page Popularity

Page Quality: In Search of an Unbiased Web Ranking
UCLA CS Department, Nov. 2003.

Any Questions?
Relative increase in number of in−inks

Search Engines Considered Harmful

Junghoo “John” Cho
Popularity Increase: Relative PageRank

Relative increase in PageRank

Search Engines Considered Harmful

Junghoo “John” Cho